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Triple-negative breast cancer (TNBC) is oneof themore aggressive subtypes of breast
cancer. The prognosis of TNBCpatients remains low. Therefore, there is still a need to
continue identifying novel biomarkers to improve the prognosis and treatment of
TNBC patients. Research in recent years has shown that the effective use and
integration of information in genomic data and image data will contribute to the
prediction and prognosis of diseases. Considering that imaging genetics can deeply
study the influence ofmicroscopic genetic variation on disease phenotype, this paper
proposes a sample prior information-induced multidimensional combined non-
negative matrix factorization (SPID-MDJNMF) algorithm to integrate the Whole-
slide image (WSI), mRNAs expression data, and miRNAs expression data. The
algorithm effectively fuses high-dimensional data of three modalities through
various constraints. In addition, this paper constructs an undirected graph between
samples, uses an adjacency matrix to constrain the similarity, and embeds the clinical
stage informationof patients in the algorithmso that the algorithmcan identify the co-
expression patterns of samples with different labels. We performed univariate and
multivariate Cox regression analysis on the mRNAs and miRNAs in the screened co-
expression modules to construct a TNBC-related prognostic model. Finally, we
constructed prognostic models for 2-mRNAs (IL12RB2 and CNIH2) and 2-miRNAs
(miR-203a-3p andmiR-148b-3p), respectively. The prognosticmodel can predict the
survival time of TNBC patients with high accuracy. In conclusion, our proposed SPID-
MDJNMF algorithm can efficiently integrate image and genomic data. Furthermore,
we evaluated the prognostic value of mRNAs and miRNAs screened by the SPID-
MDJNMF algorithm in TNBC, which may provide promising targets for the prognosis
of TNBC patients.
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1 Introduction

Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer (BC)
(Sukumar et al., 2021). Compared with other BC subtypes, TNBC is generally more
aggressive, with rapid disease progression and multiple metastatic diseases at an early
stage (Lyons, 2019). Therefore, the prognosis of TNBC patients is poor. Currently, the

OPEN ACCESS

EDITED BY

Andreas Pfenning,
Carnegie Mellon University, United States

REVIEWED BY

Wenbin Liu,
Guangzhou University, China
Furong Huang,
Duke University, United States

*CORRESPONDENCE

Jifeng Feng,
fjf0771@163.com

Qinghua Huang,
huangqinghua@stu.gxmu.edu.cn

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Computational Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 06 November 2022
ACCEPTED 10 February 2023
PUBLISHED 22 February 2023

CITATION

Ning S, Xie J, Mo J, Pan Y, Huang R,
Huang Q and Feng J (2023), Imaging
genetic association analysis of triple-
negative breast cancer based on the
integration of prior sample information.
Front. Genet. 14:1090847.
doi: 10.3389/fgene.2023.1090847

COPYRIGHT

© 2023 Ning, Xie, Mo, Pan, Huang, Huang
and Feng. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 22 February 2023
DOI 10.3389/fgene.2023.1090847

https://www.frontiersin.org/articles/10.3389/fgene.2023.1090847/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1090847/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1090847/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1090847/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1090847&domain=pdf&date_stamp=2023-02-22
mailto:fjf0771@163.com
mailto:fjf0771@163.com
mailto:huangqinghua@stu.gxmu.edu.cn
mailto:huangqinghua@stu.gxmu.edu.cn
https://doi.org/10.3389/fgene.2023.1090847
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1090847


treatment methods for TNBC patients are mostly chemotherapy and
surgery, but the recurrence rate after TNBC treatment is high
(Hwang et al., 2019). Therefore, it is necessary to mine novel
biomarkers related to the prognosis of TNBC patients.

MicroRNAs (miRNAs) can regulate gene expression, cancer
development, and metastasis by binding to target messenger RNAs
(mRNAs) (Li et al., 2017; Hong et al., 2020). Previous studies have
identified many miRNAs involved in BC pathological progressions,
such as miR-205, miR-21, and miR-10b. Overexpression of miR-205
can inhibit the metastasis and invasion of tumor cells in BC (Wang
et al., 2013). miR-21 and miR-10 b can promote tumor metastasis
and cancer cell proliferation in BC by regulating genes such as
NOTCH1, TGFBR2, and TGFB1 (Lee and Jiang, 2017). Therefore,
identifying key miRNAs and mRNAs in TNBC may provide new
therapeutic targets for TNBC patients. In addition to gene-related
biomarkers, cancer tissue-related pathological images provide vital
information for disease diagnosis and prognosis. Also, integrating
mRNA and image data may contribute to more accurate cancer
prognosis prediction (Cheng et al., 2017). Sun et al. (2008) Proposed
a new method named GPMKL, which effectively predicted the
prognosis of BC patients by entirely using the heterogeneous
information in genomic data and image data. Wang et al. (2021)
Proposed a unified framework named GPDBN to improve the
performance of prognosis prediction in BC patients by
integrating genomic data and pathological images. The above
studies show that fully mining and integrating the information in
mRNA expression data and image data can better predict the
prognosis of patients.

Imaging genetics is a non-invasive method that correlates
genomics and imaging data to discover significant disease-related
modules and explain the pathogenesis of the disease. Most of the
previous imaging genetics research has been done on Alzheimer’s
disease. Due to the characteristics of small samples and high
dimensions of imaging genetics, a variety of effective penalty
terms are needed to enable the algorithm to perform effective
feature selection in high-dimensional data. Lin et al. (2014) Took
into account the prior knowledge of the structure within the data.
They used structured sparse canonical correlation analysis
(SCCA) to correlate SNPs with fMRI signals at the voxel level
to identify more risk loci. In order to solve the association
analysis research without prior information, Du et al. (2020)
Developed a method based on SCCA to fuse the pairwise group
LASSO and graph-guided pairwise group LASSO penalty terms.
These two penalty terms are in the SCCA model, the structural
information in gene and image data can be automatically
recovered, respectively. However, SCCA-related algorithms
have high algorithm complexity, and it is time-consuming to
perform association analysis on high-dimensional data, and there
are few studies on cancer imaging genetics. Some scholars
extracted features from the tumor contours of CT images of
lung cancer patients, compared and analyzed the imaging
features with clinical information and gene expression, and
found many imaging features with the predictive ability (Aerts
et al., 2014).

In recent years, matrix decomposition technology has been
widely used in biological multi-omics analysis and has made
significant progress. However, few studies have used this type of
technology to integrate cancer imaging genetics data and explore the

impact of genetic data on imaging phenotypes. Deng et al. proposed
a multi-constrained joint non-negative matrix factorization
(MCJNMF) algorithm that integrated PET images and DNA
methylation data of sarcomas and successfully discovered co-
expression modules associated with lung metastasis. Furthermore,
they extended the modality to three dimensions by extending the
MCJNMF algorithm. They proposed a multidimensional non-
negative matrix factorization (MDJNMF) algorithm that
integrated pathological images, DNA methylation data, and copy
number variation data from sarcoma data. The mechanism of
interaction of the three data in sarcoma patients was successfully
discovered (Deng et al., 2021).

This paper proposes a sample prior information-driven
multidimensional joint non-negative matrix factorization (SPID-
MCJNMF) algorithm, which adds a diagnostic information
constraint to the basis matrix based on the MDJNMF algorithm.
Specifically, we add the clinical stage information of triple-negative
breast cancer patients into the algorithm through the Laplace
constraint, which is used to make the samples of the same stage
closer in the feature space, and the samples of different stages further
in the feature space, allow the algorithm to identify expression
patterns across samples of different stages. The results show that
compared with several other competitive algorithms, the SPID-
MCJNMF algorithm has better reconstruction performance and
obtains a significant co-expression module with biological
significance. Then, to further mine the biomarkers related to the
prognosis of TNBC, we performed the prognosis analysis based on
the modules screened by the SPID-MCJNMF algorithm and
constructed the mRNA and miRNA-related prognosis models,
respectively. Prognostic analysis of external datasets further
validated the predictive accuracy of the prognostic model. Our
study may provide new targets for the treatment and prognosis
of TNBC.

2 Method

2.1 Joint non-negative matrix factorization
(JNMF)

Non-negative matrix factorization (NMF) is a robust
dimensionality reduction algorithm widely used in
bioinformatics to ensure the non-negativity of the original
data. Joint non-negative matrix factorization (JNMF) is
evolved from NMF, which solves the disadvantage that NMF
can only decompose single-modal data, and its objective function
is shown in formula (1).

min∑n

i�1‖ XI −WHI ‖2F
s.t.W> 0, Hi > 0, i � 1, 2, 3, ..n (1)

Among them, n represents the total number of samples. XI

represents the feature matrix of different modal data, each row
represents a sample, and each column represents a feature of the
sample; it is necessary to ensure that the number of rows of
Xi(i � 1, 2, 3, . . .) is consistent (sample one correspondence), the
number of columns (number of features) can be different. W is the
base matrix obtained after splicing multipleXi and performing non-
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negative matrix decomposition, and Hi is the multiple coefficient
matrices obtained by decomposing. In this paper, XI represents the
WSI image, X2 represents miRNA, and X3 represents mRNA. The
coefficient matrices obtained after decomposition are H1, H2, and
H3, respectively.

2.2 Multi-dimensional joint non-negative
matrix factorization (MDJNMF)

TheMDJNMF algorithm is proposed by Deng et al. Based on the
JNMF algorithm, they added orthogonal constraints to the
coefficient matrix to prevent redundant features from affecting
the results. In addition, they added the absolute value of the
Pearson correlation coefficient between WSI image and genetics
as prior information to the algorithm, and its objective function is
shown in Eq. 2.

Γ W,H1, H2, H3( ) � min∑3

l�1 X| l −WHl|2F + α H| lH
T
l − I2F

∣∣∣∣ + γ2
∣∣∣∣ H| l

∣∣∣∣21
−λ1Tr H1A1H

T
2( ) − λ2Tr H1A2H

T
3( ) + γ1

∣∣∣∣W∣∣∣∣2F
(2)

Where I is the identity matrix, α is used to control the orthogonality
ofHl, and λ1、 λ2、 γ1 and γ2 are hyperparameters that control the
strength of each regularization constraint, respectively.

2.3 Sample prior information driven multiple
dimension joint non-negative matrix
factorization (SPID-MDJNMF)

To improve the model’s generalization ability and identify
markers associated with breast cancer, this subsection introduces
a diagnosis-guided penalty term. By treating each sample as a node
in an undirected graph, connections between nodes are used to
embed clinical information about the patient. In this paper, we
embed the clinical stage information of triple-negative breast cancer
patients. If any two nodes are selected, and their diagnosis is the
same, then there is a connection between them; if the diagnosis is
different, there is no connection. Then the adjacency matrixA can be
obtained, and its element Aij can be defined as:

Aij � 1, if xi and xj are f rom the same group
0,Others

{ (3)

Where the group represents the stage of the samples, and if the stage
of the i − th and j − th samples is the same, the i − th row and j − th
column of matrix A takes the value 1. Furthermore, we define the
penalty term for diagnosis guidance as shown in Eq. 3.

P W( ) � ∑k

i�1Aij Wi −Wj( ) (4)

Where Wi and Wj represent the i − th and j − th columns of the
basis matrixW, respectively. k is the dimensionality reduction. Aij is
each element of the matrix A∈Rn×n, which is used to embed the
disease course information of the sample. Furthermore, we
introduce a degree matrix D, which is a pair whose diagonal
elements are angle matrix Dii � ∑n

j�1Aij. Next, this paper further
rewrites P(W) into the following form:

P W( ) � Tr WTLW( ) (5)
L represents the Laplace matrix of L. And L � D − A, and then

the objective function of the SPID-MCJNMF algorithm is obtained:

Γ W,H1, H2, H3( ) � min∑3

l�1 X| l −WHl|2F + α H| lH
T
l − I2F

∣∣∣∣ + γ2
∣∣∣∣ H| l

∣∣∣∣21
−λ1Tr H1A1H

T
2( ) − λ2Tr H1A2H

T
3( )

+βTr WTLW( ) + γ1
∣∣∣∣W∣∣∣∣2F (6)

Where β is a hyperparameter that controls the strength of the
constraints of the sample prior information. Let φij and ϕij′ be
Wij ≥ 0 and (HI)ij ≥ 0. The Lagrange multiplier L is expressed as:

L W,Hl( ) � Γ + Tr ΨWT( ) +∑3

l�1Tr Φ,H
T
l( ),Ψ � Φij[ ],Φ � ϕij

′[ ]
(7)

Then L takes the partial derivative with respect toW andHl, and
Eq. 8 can be obtained.

zL

zW
� ∑3

l�1
−2XlH

T
l + 2WHlH

T
l[ ] + 2γ1W + 2βWL + Ψ

zL

zH1
� −2WTX1 + 2WTWH1 + 4αH1H

T
1H1 − 4αH1 − λ1H2A

T
1

− λ2H3A
T
2 + γ2E1 + Φ1

zL

zH2
� −2WTX2 + 2WTWH2 + 4αH2H

T
2H2 − 4αH2 − λ1H1A1

+ γ2E2 + Φ2

zL

zH3
� −2WTX3 + 2WTWH3 + 4αH3H

T
3H3 − 4αH3 − λ2H1A2

+ γ3E3 + Φ3

(8)
Among them, the elements of E1, E2 and E3 are all 1. Based on

the KKT condition, the equations ofWij and (Hl)ij can be obtained:

−∑3
l�1

XlH
T
l( )ijwij + βWL + ∑3

l�1
WHlH

T
l( ) + γ1W⎡⎣ ⎤⎦

ij

wij � 0

−2WTX1 − 4αH1 − λ1H2A
T
1 − λ2H3A

T
2( )ijh1ij

+ 2WTWH1 + 4αH1H
T
1H1 + γ2E1[ ]ijh1ij

� 0

−2WTX2 − 4αH2 − λ1H1A1( )ijh2ij
+ 2WTWH2 + 4αH2H

T
2H2 + γ2E2[ ]ijh2ij

� 0

−2WTX3 − 4αH3 − λ2H1A2( )ijh3ij
+ 2WTWH3 + 4αH3H

T
3H3 + γ2E3[ ]ijh3ij

� 0 (9)

Finally, the update rules for W and Hl can be expressed as
Eq. 10.

wij ← wij

X1HT
1 +X2HT

2 +X3HT
3 + βWL( )ij

WH1HT
1 +WH2HT

2 +WH3HT
3 + γ1W( )ij

h1ij ← h1ij

WTX1 + 2aH1 + λ1
2H2A

T

1
+ λ2

2H3AT
2( )

ij

WTWH1 + 2αH1HT
1H1 + γ2

2El( )
ij
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h2ij ← h2ij
WTX2 + 2aH2 + λ1

2H1A1( )
ij

W( TWH2 + 2αH2HT
2H2 + γ2

2E2)ij
h3ij ← h3ij

WTX3 + 2aH3 + λ2
2H1A2( )

ij

W( TWH3 + 2αH3HT
3H3 + γ3

2E3)ij (10)

According to the continuously updated W and Hl, make it
satisfy the convergence rule, that is, the relative error of reaching
the set value or reaching the set number of iterations. We
initialize W and Hl through singular value decomposition,
which effectively avoids the randomness of the initialization
process of W and Hl. Furthermore, for membership
confirmation of co-expression modules, this paper is
consistent with previous studies (Li et al., 2017; Hong et al.,
2020). In addition, we take the reconstruction error as the
criterion for the performance of the algorithm, and its
expression is as follows.

relative error �‖ X −WH‖2F (11)

2.4 Functional enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were used to explore the biological processes in
which key mRNAs are involved. In addition, in order to further
explore the pathways in which key miRNAs are involved, this paper
is based onmiRDB, TargetScan, andmiRTarBase three databases for
key miRNA target gene prediction, and KEGG enrichment analysis
for their target genes. Pathways with p-values less than 0.05 were
considered significant (Figure 1).

2.5 Screening and validation of prognosis-
related genes

In the prognostic survival analysis, only TNBC patients with a
survival time greater than 90 days were retained. Univariate Cox
regression analysis was used to identify genes (mRNAs or miRNAs)
associated with the prognosis of TNBC patients, and mRNAs or
miRNAs with a p-value less than 0.05 were reserved as input for
multivariate Cox regression analysis. Next, multivariate Cox
regression analysis was used to construct mRNA and miRNA-
related prognostic models. We then calculated a risk score, which
can be used to classify patients in the training cohorts and validation
cohorts into high and low-risk groups. The formula for calculating
the risk score is as follows:

Risk Score � ∑m
n�1

coef n( )*x n( ) (12)

where coef(n) represent the Cox regression coefficient; x(n)
represent the expressive value of each genes, m represents the
number of gene. Finally, overall survival (OS) times were
compared for the two subgroups in the test and validation
datasets by KM analysis to determine the predictive value of the
risk model. Receiver operating characteristic (ROC) curves were
used to assess the accuracy of risk models by the R package
“timeROC.”

3 Results

3.1 Data source and preprocessing

The data used in this paper are from the TCGA database
(https://www.cancer.gov). In this study, the mRNA expression
data (mRNA-Seq, 104 cases), miRNA expression data (miRNA-
Seq, 102 cases), WSI image data (69 cases), and clinical data
(116 cases) of TNBC patients were obtained from the TCGA
database. Finally, 69 TNBC samples with mRNA expression data,
miRNA expression data, WSI image data, and clinical data were
retained. The GEO cohort (https://www.ncbi.nlm.nih.gov/geo/,
GSE58812) was used to validate the accuracy of the prognostic
model constructed from mRNA expression data. The miRNA data
of the TCGA-BRCA cohort (1000 cases) were utilized to validate the
accuracy of the prognostic model constructed from the miRNA
expression data.

FIGURE 1
The workflow of this study.
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In this study, mRNA expression data were differentially analyzed
using the “limma” package, and genes with p-values less than 0.05 and |
logFC|>2 were regarded as differentially expressed genes. Finally,
1438 differentially expressed genes were obtained (Figure 2A), and
the expression data of 764 mRNAs were reserved for further analysis
through gene annotation. Next, we use the “edgeR” package to
normalize the miRNA data (count) by CPM and retain miRNAs
with a mean CPM greater than 1. Finally, the expression data of
524 miRNAs were obtained for further analysis (Figure 2B).

Genomic data used in this paper are all from the TCGA database
(https://www.cancer.gov). WSI images are from 69 patients with
sarcoma. Feature extraction for each WSI image consists of three
steps, nuclear segmentation, cell-level feature extraction, and
aggregating cell-level features into patient-level features
(Phoulady et al., 2016). Based on the experience of previous
papers (Cheng et al., 2020), we extracted ten different cell-level
features from each segmented nucleus: nuclear area (denoted as
area), length of nucleus long and short axes, and long and short axis
lengths. The ratio (major, minor, and ratio) of the cell’s mean pixel
value in the three channels of RGB (rMean, gMean, and bMean) and
the mean, maximum and minimum distances to its neighboring
nuclei (distMean, distMax, and distMin) (Cheng et al., 2017). The
naming convention for each feature includes cell-level and patient-
level features, such as area_bin1, area_mean, etc. In particular, area_
bin1 represents the percentage of extremely small cores, and area_
bin10 represents the percentage of extremely large cores. Finally,
150 WSI image features are selected as the image data input. We list
150 WSI imaging features in detail in the Supplementary Material.
In addition, we provide the difference result files for mRNA and
miRNA in Figure 2 (TCGA.diff_mRNA.xls and TCGA. diff_
miRNA.xls are in the Supplementary Material).

3.2 Hyperparameter selection

The hyperparameter λ1, λ2, β, γ1, γ2 and the number of co-
expression modules K involved in this paper. We conducted

experiments on the real dataset, selecting the number of co-
expression modules and the remaining four hyperparameters. For
the selection of k, since the minimum number of samples/features in
the training set is 69, according to the parameter selection
experience in the literature (Deng et al., 2020), this paper sets the
value of k to 7. For other hyperparameters, we use the grid search
method to select parameters. Each parameter is selected from the
range of [0.001, 0.01. 0.1. 1], and finally, 1024 parameter
combinations are obtained. We take the reconstruction error as
the selection basis for selecting all parameters. Furthermore, we use a
strategy of early stopping, which stops the iteration when the error
no longer decreases, to speed up parameter selection. The
hyperparameter selection process is shown in Figure 3 below.

Finally, we selected the 273rd group of parameters
corresponding to the smallest relative error, and the relative error

FIGURE 2
Expressions of the 1438 genes and 524 miRNAs. (A) Heatmap of the 1438 genes between the normal (N, blue) and the tumor tissues (T, red). (B)
Heatmap of the 524 miRNAs between the normal (N, blue) and the tumor tissues (T, red).

FIGURE 3
Relative errors corresponding to different parameter
combinations. The horizontal coordinate in the figure represents
1024 parameter combinations, and the vertical coordinate represents
the index to measure the performance of the algorithm
proposed in Eq. 11 in Section 2.3.
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of this group of parameters was 0.7799. Among them λ1 � 0.01,
λ2 � 0.001, β � 0.001, γ1 � 0.001, γ2 � 0.01.

3.3 Selection of co-expression modules

The meaning of the co-expression module is a low-dimensional
representation of all the features of the three types of data obtained
for the projection of the three types of data into the low-dimensional
space. The features of each module equivalent to three types of data
with large coefficients in the same projection direction are deposited
into the same co-expression module. In the experiments, we
obtained a total of 69 co-expression modules. We use the
absolute value of the Pearson correlation coefficient between the
original matrix and the reconstructed matrix of the three elements in
each module as the screening basis. The following figure shows the
Pearson correlation coefficient and Pearson correlation of the three
elements in all modules and the mean of the three elements
(Figures 4A–D).

As can be seen from Figure 3, module 4 has the smallest total
relative error. Therefore, target gene prediction of miRNAs in
module 4 was performed in this paper. Next, we performed
target gene prediction for the 71 miRNAs in module 4, and the
miRNA-mRNA pairs supported by the three miRNAs databases
were reserved for further analysis. We predicted 76 target genes.
Subsequently, we performed KEGG enrichment analysis on the
target genes of mRNAs and miRNAs in module 4 to explore

their enriched biological pathways. The results showed that
76 mRNAs in module 4 were enriched in Neuroactive ligand-
receptor interaction (Figure 5A). Meanwhile, the target genes of
miRNAs in module 4 were mainly enriched in MAPK signaling
pathway, Breast cancer, PI3K-Akt signaling pathway, Axon
guidance, mTOR signaling pathway, FoxO signaling pathway,
and Neurotrophin signaling pathway (Figure 5B). In addition, we
provide a list of the identified target genes in the Supplementary
Material (miRNA_target_gene.xls).

3.4 Comparison with other algorithms

To confirm that the proposed algorithm has good reconstruction
performance, we compared the proposed SPID-MDNMF algorithm
with the previous JNMF algorithm, the MDJNMF algorithm, under
the same experimental conditions. Specifically, the value of k for all
three algorithms is 7, and the JNMF algorithm does not have any
additional hyperparameters that need to be adjusted. Parameter
selection ofMDJNMF algorithm is λ1 � 0.01, λ2 � 0.001, γ1 � 0.001,
and γ2 � 0.01. Parameter selection of SPID—MDNMF algorithm
for λ1 � 0.01, λ2 � 0.001, β � 0.001, γ1 � 0.001, and γ2 � 0.01. The
relative error between the original matrix and the reconstructed
matrix and the comparison of the Pearson correlation coefficients is
shown in Table 1 below.

As can be seen from the above table, the proposed SPID-
MDJNMF algorithm obtains a minor relative error.

FIGURE 4
Comparison of Pearson correlation coefficients of three elements in different modules. (A–C) are the absolute values of the Pearson correlation
coefficients between the original and reconstructed matrices of WSI, miRNA, and mRNA for different modules, respectively. (D) is the mean of the
absolute value of the Pearson correlation coefficient.
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3.5 Prognostic biomarkers

To further screen for key biomarkers, we performed prognostic
survival analysis on 76 mRNAs and 71 miRNAs in module 4 to
obtain biomarkers that could predict the prognosis of TNBC
patients. Univariate Cox regression analysis was performed on
the expression data of 76 mRNAs and the expression data of
71 miRNAs, respectively, to screen mRNAs and miRNAs
associated with survival time of TNBC patients, mRNAs, and
miRNAs with p-value <0.05 were retained for further analysis.
We obtained a total of 3 mRNAs (IL12RB2, CNIH2 and TIMP4;
Figure 6A) and 2miRNAs (hsa-miR-203a-3p and hsa-miR-148b-3p;
Figure 6B) associated with the survival time of TNBC patients
(Tables 2, 3). Next, we used multivariate Cox regression analysis
(Tables 4, 5) to construct 2-mRNAs-related prognostic models
(IL12RB2 and CNIH2) and 2-miRNAs-related prognostic models
(hsa-miR -203a-3p and hsa-miR-148b-3p). The risk score of the 2-
mRNAs-related prognostic model is expressed as: risk score =
(IL12RB2 exp.* −0.60498) + (CNIH2 exp.* −0.43137). The risk
score of the 2-miRNAs-related prognostic model is expressed as: risk
score = (hsa-miR-203a-3p exp.* 0.403829) + (hsa-miR-148b-3p
exp.* 0.997387). TNBC patients in the training dataset (mRNA
expression data, TCGA-TNBC) and testing dataset (mRNA
expression data, GSE58812) were classified as low-risk group and
high-risk group based on the median risk score of the 2-mRNAs-
related prognostic model of the TCGA-TNBC cohort. TNBC
patients in the training dataset (miRNA expression data, TCGA-
TNBC) and the testing dataset (miRNA expression data, TCGA-

BRCA) were classified according to the median risk score of the 2-
miRNAs-related prognostic model of the TCGA-TNBC cohort into
the low-risk group and the high-risk group.

Subsequently, we performed KM analysis on mRNA and
miRNA-related training datasets. The mRNA-related KM
curve showed that the OS rate of high-risk patients in the
training dataset was significantly lower than that of low-risk
patients over 5 years (Figure 7A, p < 0.001). The miRNA-related
KM curve showed that the OS rate of high-risk patients in the
training dataset was significantly lower than that of low-risk
patients over 5 years (Figure 7B, p = 0.003). To verify the
predictive accuracy of the prognostic model, we plotted the 1-,
3-, and 5-year ROC curves of TNBC patients in the mRNA as well
as miRNA-related training datasets. The mRNA-related ROC
curve showed that the 2-mRNAs prognostic model we
constructed could predict the 1-year (AUC = 0.849), 3-year
(AUC = 0.752), and 5-year (AUC = 0.802) survival rates of
TNBC patients with high accuracy (Figure 7C). The miRNA-
related ROC curve showed that the 2-miRNAs prognostic model
we constructed could predict the 1-year (AUC = 0.746), 3-year
(AUC = 0.863), and 5-year (AUC = 0.765) survival rates of TNBC
patients with high accuracy (Figure 7D).

We performed KM analysis and ROC analysis on the mRNA
and miRNA-related test datasets to further verify the predictive
accuracy of the constructed prognostic model. The mRNA-
related KM curve showed that the OS rate of high-risk
patients in the testing dataset was lower than that of low-risk
patients over 5 years (Figure 8A, p = 0.078). The miRNA-related

FIGURE 5
The functional enrichment analysis of module 4 in TNBC. (A) The enriched item of the 76mRNAs. (B) The enriched item of themiRNA-related target
genes.

TABLE 1 Comparison of relative errors and correlation coefficients of algorithms.

Corr(X1,WH1) Corr(X2,WH2) Corr(X3,WH3) relative error

JNMF 0.8268 0.7710 0.7849 1.1941

MDJNMF 0.9031 0.8529 0.8889 0.8693

SPID-MDJNMF 0.8925 0.8632 0.8870 0.7799
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KM curve showed that the OS rate of high-risk patients in the
test dataset was significantly lower than that of low-risk patients
over 5 years (Figure 8B, p = 0.025). The mRNA correlation ROC
curve showed that the 2-mRNAs prognostic model we
constructed could predict the 1-year (AUC = 0.788), 3-year
(AUC = 0.591), and 5-year (AUC = 0.569) survival of TNBC
patients in the test set with certain accuracy rate (Figure 8C).
The miRNA-related ROC curve showed that the 2-miRNAs
prognostic model we constructed could predict the 1-year
(AUC = 0.588), 3-year (AUC = 0.591), and 5-year (AUC =
0.573) survival of TNBC patients in the test set with certain
accuracy rate (Figure 8D).

4 Discussion

Efficient integration of pathological images and genomic data has
been reported to help predict disease prognosis and identify critical
targets. To this end, we propose the SPID-MDJNMF algorithm to
integrate the pathological image data, mRNAs expression data, and
miRNAs expression data of TNBC to identify essential biomarkers in
TNBC. Subsequently, we compared the original and reconstructed
matrices’ relative errors and Pearson correlation coefficients between
the proposed SPID-MDNMF algorithm and the previous JNMF
algorithm, the MDJNMF algorithm. The results show that our
proposed SPID-MDNMF algorithm has better reconstruction
performance. We obtained module 4 through the proposed SPID-
MDNMF algorithm. The genomic data and image data in module
4 were left for further analysis.

Next, enrichment analysis was utilized to explore the biological
functions of the genes in module 4 in TNBC. The 76 mRNAs in
module 4 were enriched in Neuroactive ligand-receptor interaction,
Homologous recombination, and Cell cycle. Meanwhile, the target
genes of miRNAs in module 4 were mainly enriched in the MAPK
signaling pathway, Breast cancer, PI3K-Akt signaling pathway, Axon
guidance, FoxO signaling pathway, andNeurotrophin signaling pathway.

FIGURE 6
Forest map of univariate regression analyses. (A) Univariate Cox regression analysis for identification prognosis-associated mRNAs. (B) Univariate
Cox regression analysis for identification prognosis-associated miRNAs.

TABLE 2 mRNAs associated with TNBC overall survival time were obtained
from univariate Cox regression analysis.

Id HR HR.95L HR.95H P-value

IL12RB2 0.506086 0.325646 0.786507 0.002465

CNIH2 0.550965 0.314765 0.964411 0.036904

TIMP4 1.270984 1.008827 1.601266 0.041899

HR, Hazard ratio; HR.95L, Low 95% CI of HR; HR.95H, High 95% CI of HR.

TABLE 3 miRNAs associated with TNBC overall survival time were obtained
from univariate Cox regression analysis.

Id HR HR.95L HR.95H P-value

hsa-miR-203a-3p 1.428542 1.062854 1.920049 0.018078

hsa-miR-148b-3p 2.761921 1.471813 5.182863 0.001559

TABLE 4 mRNAs were obtained from multivariate Cox regression analysis.

Id Coef HR HR.95L HR.95H P-value

IL12RB2 −0.60498 0.546086 0.350705 0.850315 0.007414

CNIH2 −0.43137 0.649622 0.376577 1.120642 0.121011

Coef, The coefficient of mRNAs (IL12RB2 and CNIH2) correlated with survival; HR,

Hazard ratio; HR.95L, Low 95% CI of HR; HR.95H, High 95% CI of HR.

TABLE 5 miRNAs were obtained from multivariate Cox regression analysis.

Id Coef HR HR.95L HR.95H P-value

hsa-miR-203a-3p 0.403829 1.497548 1.094616 2.048801 0.01156

hsa-miR-148b-3p 0.997387 2.711189 1.509255 4.870316 0.000846
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Some pathways have been shown to be associated with the pathological
progression of triple-negative breast cancer, such as BECN1 knockout
hinders tumor growth,migration, and invasion by inhibiting the cell cycle
and partially inhibiting the epithelial-mesenchymal transition of human
triple-negative breast cancer cells (Wu et al., 2018). Alterations in the
homologous recombination (HR) system are typical of breast cancer
mutant tumors (Belli et al., 2019). Previous studies have shown that the
homologous recombination deficiency score may predict the
chemotherapeutic range of response to platinum-based neoadjuvant
therapy in triple-negative breast cancer (Telli et al., 2016). The RNA-
binding protein QKI can inhibit the progression of breast cancer by
regulating the RASA1/MAPK signaling pathway (Cao et al., 2021).
PIK3CA mutations can confer resistance to chemotherapy in TNBC
by activating the PI3K/AKT/mTOR signaling pathway (Hu et al., 2021).
The above results suggest that the genes in module 4 may also play an
essential role in the occurrence and progression of TNBC.

Subsequently, to screen for biomarkers associated with the
prognosis of TNBC patients, we performed univariate and
multivariate Cox regression analysis on the 76 mRNAs and

71 miRNAs in module 4. Finally, we constructed a prognostic gene
model based on 2mRNAs (IL12RB2 and CNIH2) and 2miRNAs (hsa-
miR-203a-3p and hsa-miR-148b-3p). Moreover, the mRNA-related
and miRNA-related prognostic models we constructed can predict
the overall survival of TNBC patients with high accuracy. Epigenetic
changes in IL12RB2 play an essential role in the plastic behavior of T
Helper 17 (Th17) Cells (Bending et al., 2011). Treg and Th17 cells can
influence breast cancer progression through Treg cell-mediated
suppression of effector T cell responses (Benevides et al., 2013).
Therefore, IL12RB2 may affect breast cancer development by
regulating Th17 cells. CNIH2 is an AMPA receptor-binding protein
significantly slows AMPAR inactivation (Herring et al., 2013). A
previous study found that AMPA antagonists inhibited the
proliferation of breast and lung cancer cells in vitro (Rzeski et al.,
2002). Therefore, CNIH2 may play a role in breast cancer progression
through interaction with AMPA. A previous study showed that hsa-
miR-203a-3p was upregulated in breast cancer tissues compared with
adjacent breast tissues and promoted breast cancer development and
carcinogenesis (Cai et al., 2018). Xu et al. found that hsa-miR-203a-3p

FIGURE 7
Construction of prognostic model in the training datasets. (A) KM curves for the OS of patients in the high- and low-risk groups in the 2 mRNAs-
related prognostic model. (B) KM curves for the OS of patients in the high- and low-risk groups in the 2 miRNAs-related prognostic model. (C) Time-
dependent ROC curve analysis of the 2 mRNAs-related prognostic for predicting 1-, 3-, 5-year OS. (D) Time-dependent ROC curve analysis of the
2 miRNAs-related prognostic for predicting 1-, 3-, 5-year OS. In addition, we used GSE42568 to validate survival in the high - and low-risk groups
(see the Supplementary Figure S1 in Supplementary Material).
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could inhibit breast cancer progression and metastasis by interacting
with circTADA2As (Xu et al., 2019). Breast cancer-related in vitro
experiments demonstrated that hsa-miR-148b-3p could inhibit tumor
cell proliferation and promote breast cancer cell apoptosis by
downregulating TRIM59 (Yuan et al., 2019). In breast cancer, miR-
148b-3p was found to be associated with disease recurrence and
pathological progression by targeting a series of oncogenes (Cimino
et al., 2013).

In conclusion, this paper proposes a SPID-MDNMF algorithm that
can effectively integrate image data, mRNAs expression data, and
miRNAs expression data. Compared with other similar algorithms,
the SPID-MDNMF algorithm has better reconstruction performance.
Based on module 4 screened by the SPID-MDNMF algorithm, we
constructed 2-mRNAs (IL12RB2 and CNIH2) and 2-miRNAs (hsa-
miR-203a-3p and hsa-miR, respectively) by performing a prognostic
survival analysis on the TCGA-TNBC cohort -148b-3p) prognostic
model. The prognosticmodel can better predict the prognosis of TNBC.

5 Conclusion

In summary, we proposed the SPID-MDJNMF algorithm to
integrate the imaging genetics data of TNBC patients and obtain

the co-expression patterns of TNBC patients in different stages.
For the significant co-expressed modules, a variety of
bioinformatics analyses were performed to construct a
prognostic model for TNBC patients. Multiple genes with
prognostic value obtained from screening may be potential
biomarkers for TNBC.
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