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Parkinson’s disease (PD) is a common neurodegenerative disease in middle-aged and
elderly people, and there is less research on the relationship between immunity and PD.
In this study, the protein-protein interaction networks (PPI) data, 2747 human immune-
related genes (HIRGs), 2078 PD-related genes (PDRGs), and PD-related datasets
(GSE49036 and GSE20292) were downloaded from the Human Protein Reference
Database (HPRD), Amigo 2, DisGeNET, and Gene ExpressionOmnibus (GEO) databases,
respectively. An immune- or PD-directed neighbor co-expressed network construction
(IOPDNC)was drawnbasedon theGSE49036dataset andHPRDdatabase. Furthermore,
a PD-directed neighbor co-expressed network was constructed. Modular clustering
analysis was performed on the genes of the gene interaction network obtained in the
first step to obtain the central core genes using the GraphWeb online website. The
modules with the top 5 functional scores and the number of core genes greater than
six were selected as PD-related gene modules. The Gene Ontology (GO) and Kyoto
Encyclopedia ofGenes andGenomes (KEGG) enrichment analyses of differentmodule
genes were performed. The single sample Gene Set Enrichment Analysis (ssGSEA)
algorithm was used to calculate the immune cell infiltration of the PD and the normal
samples. The quantitative Reverse Transcription Polymerase Chain Reaction (qRT-
PCR) was performed to investigate the expression of module genes. An IOPDNC and
PD-directed neighbor co-expressed network (PDNC network) were constructed.
Furthermore, a total of 5 immune-PD modules were identified which could
distinguish between PD and normal samples, and these module genes were
strongly related to PD in protein interaction level or gene expression level. In
addition, functional analysis indicated that module genes were involved in various
neurodegenerative diseases, such as Alzheimer disease, Huntington disease, Parkinson
disease, and Long-term depression. In addition, the genes of the 6 modules were
significantly associated with these 4 differential immune cells (aDC cells, eosinophils,
neutrophils, and Th2 cells). Finally, the result of qRT-PCR manifested that the
expression of 6 module genes was significantly higher in normal samples than in
PD samples. In our study, the immune-related geneswere found to be strongly related
to PD and might play key roles in PD.
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Introduction

PD is the second most common neurodegenerative disease after Alzheimer’s disease
(Del Rey et al., 2018). According to the report, the incidence rate is about 1%–2% (Tarsy,
2012) in the elderly over 60. The typical symptoms are static tremor, slow movement,
increased muscle tone, abnormal postural gait, and some non-motor symptoms such as
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insomnia and constipation. The main pathological manifestations
of the disease are degeneration and loss of nigra dopaminergic
neurons and abnormal accumulation of α-synuclein (α-syn) (Kalia
and Lang, 2016). However, the occurrence of disease also involves
the influence of the environment and epigenetics, so additional
research on these underlying factors is required (Elsworth, 2020).

By analyzing the mRNA expression levels of inflammatory
mediators, it was found that the intensity of inflammation in PD
nigra was notably increased (Pajares et al., 2020).
Neuroinflammatory markers include reactive CNS myeloid cells,
T lymphocytes, and increased proinflammatory cytokines/
chemokines in the blood, cerebrospinal fluid (CSF), and brain
parenchyma of the patients (Marras et al., 2018). These
inflammatory markers change with elevated levels of T cells and
autoantibodies (anti-α-syn and anti-GM1-gangliosides) in
peripheral blood and CSF of PD patients. The accumulation of
α-syn triggers an immune response characterized by inflammation
(Kline et al., 2021). In rat studies, overexpression of α-syn was
found to cause microglial activation and release of inflammatory
factors (IFN-γ and resolvin D1) (Krashia et al., 2019). Moreover, α-
syn can trigger neuronal autoantigen presentation (Cebrián et al.,
2014), which relies on MHC I and MHC II. There are a large
number of drugs that have been proven to be effective in the
treatment of PD. These drugs mainly include anti-melanin
antibodies (Double et al., 2009), α-syn-related drugs
(Yanamandra et al., 2011; Horvath et al., 2017; Huang et al.,
2019), and GM1 ganglioside-related immune responsers (Zappia
et al., 2002). All these studies suggest that the pathogenesis and
progression of PD may be related to the immune response.

In recent years, with the development of bioinformatics
analysis, many significant advances have been made in a wide
range of diseases. Several potentially therapeutic drugs (Sun
et al., 2016) and key pathways (Zhang et al., 2012) have been
identified by bioinformatics in PD. As the genes and the proteins
they encode play key roles in physiological activities, it would be
useful to study their networks in the disease. In our study, the
association between immunity and PD was systematically analyzed
using bioinformatics techniques based on the construction of co-
expression network, providing a new perspective for the treatment
and research in PD.

Materials and methods

Data source

The high-confidence protein-protein interaction (PPI) data with
score >10000 were downloaded from the Human Protein Reference
Database (HPRD, http://www.hprd.org/). The 2747 immune-related
genes (HIRGs) were downloaded from the Amigo 2 database (http://
amigo.geneontology.org/amigo) with immune as the key word. The
2078 PD-related genes (PDRGs) were downloaded from the DisGeNET
database (https://www.disgenet.org/search). The FPKMexpression profiles
of GSE49036 and GSE20292 datasets were downloaded from the Gene
Expression Omnibus (GEO) database. In the GSE49036 dataset, 8 normal
and 14 PD samples were selected for data analysis, and 15 normal and
11 PD samples of GSE20292 dataset were selected for validation analysis.
The clinical characteristics of GSE20292 and GSE49036 datasets were
shown in Supplementary Table S1.

Construction of an immune- or PD-directed
neighbor co-expressed network construction
(IOPDNC)

The fragments per kilobase of transcript per million fragments
mapped (FPKM) values of gene expression in the GSE49036 dataset
were log2-transformed, and the Pearson correlation of the two
genes was calculated using the R package psych (version 2.1.9).
Then, according to a threshold of |Pearson coefficient value| >
0.7 and FDR <0.05 to obtain the correlation among genes.
Furthermore, based on the correlation between the filtered
genes, mapped into the protein interaction network of the
HPRD database, the common network was selected. The
common network was drawn using Cytoscape software (version
3.8.2) (Shannon et al., 2003). According to the high connectivity
score of genes in the common network, the number of four types of
genes (PD, immune-PD, immune, and others) was counted. The
Veen online tool (http://www.bioinformatics.com.cn/static/others/
jvenn/example.html) was used to draw a Venn diagram of the
correlation of protein-interacting genes, PDRGs, and immune
genes. The R package ggplot (version 2.3.3.2) (Villanueva, 2019)
was applied to draw a histogram of the four gene categories.

Dissecting PD and immune-associated gene
features in network

Based on the above-mentioned high connectivity score of genes
in the common network, the core genes of PD-related genes were
extracted, including PD and immune-PD genes, and their
connected genes. Next, only the PD genes and their direct-acting
genes were extracted as core genes. Subsequently, the number of
four types of genes (PD, immune-PD, immune, other) were
counted, and visualized by ggplot (Version 2.3.3.2) package
(Villanueva, 2019). Notably, the immune-PD genes were both
immune-related genes and PD-related genes. In the interaction
network where the core gene was only PD gene, the correlation of
different types of genes was calculated. Finally, the expression data
of all genes in the network (the core genes are only the PD genes)
were extracted and compared with the core genes. Wilcoxon rank-
sum test was applied to compare the coexpression correlation
coefficients between different gene groups (immune, immune-
PD, PD, and other genes). Subsequently, to investigate the level
of interaction between different gene groups with neighbors,
cumulative distribution function (CDF) was utilized to assess the
degree of the expression correlation for each gene group. The
Pearson correlations of genes and the genes that related to the
corresponding core genes were calculated, and the R package
pheatmap was used to draw correlation heatmaps.

Module cluster analysis and validation of its
classification power

Modular clustering analysis was performed on the genes in the
IOPDNC to obtain the central core genes using the GraphWeb
online website (https://biit.cs.ut.ee/graphweb/). Subsequently, the
number of core genes (i.e. PD-related genes) was adjusted to six in
the GraphWeb database, with the rest set to default, and the
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modules with top five functional score values were selected as PD-
related gene modules. Then, the R package ConsensusClusterPlus
(version 1.54.0) (Wilkerson and Hayes, 2010) was used to perform
consistent clustering analysis on the genes with the top 5 functional
scores in the module, and the appropriate K value was selected
based on the clustering results. In the external validation set
GSE20292 dataset, the expression levels of modular genes were
extracted in the same way and the accuracy of our screening of
modular genes was validated against the same consistent clustering
criteria.

Functional enrichment analysis and pathway
enrichment analysis of modular genes

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses of different module
genes were analyzed using the R package Clusterprofiler package
(version 4.0.2) (Wu et al., 2021). According to the significance
threshold p < 0.05 and count value, the enrichment analysis of
each module was carried out separately, and the ggplot (version
2.3.3.2) was used for plotting. According to the website of Pathview
(https://pathview.uncc.edu/), the immune-related pathway
hsa04650 was selected to visualize the most immune-related
pathways in the module.

Differential analysis of immune cell infiltration
by modular genes

Based on the 24 immune cell sets, the single sample Gene Set
Enrichment Analysis (ssGSEA) algorithm was used to calculate the
immune cell infiltration of the PD and normal samples, and the rank
sum test was used to analyze the immune differences between the PD
and normal samples of cell infiltration.

Blood samples correlation

Peripheral blood mononuclear cells (PBMC) samples from eight
normal samples and eight PD patients was collected using vacuum
blood tubes containing EDTA anticoagulant in accordance with
clinical blood collection techniques. Each PBMC sample was gently
shaken repeatedly and loaded into a 4°C thermostat and transferred to
the laboratory for subsequent manipulation according to biosafety
requirements.

The quantitative reverse transcription
polymerase chain reaction (qRT-PCR) analysis

The total RNA of 16 PBMC samples (8 normal samples and 8 PD
samples) was extracted to verify the results of the bioinformatics
analysis. The top 1 gene of each module (module 1, module 2,
module 3, module 4, module 5, and module all) was selected for qRT-
PCR experiments. The total RNA of 16 samples was extracted with
TRIzol Reagent (Life Technologies-Invitrogen, Carlsbad, CA,
United States). Then, these total RNA were reverse transcription
into cDNA with the SureScript-First-strand-cDNA-synthesis-kit
(Genecopoeia, Guangzhou, China) prior to qRT-PCR. The primers
of these genes for qPCR were as follows:

PSMB7-For:CATGGGTTCTGGCTCCTTGG; PSMB7-Rev:CTGGT
CCCCTTCTTGTTGGG; GRIN1-For:CAAGAAGGAGTGGAATGGG
ATG; GRIN1-Rev:GCTCGTTGTT TATGGTTAGCGG; NME1-For:CAA
CCCTGCAGACTCCAAGC; NME1-Rev:GGTGAAACCACAAGCCG
ATC; SIN3B-For:ACCCTGCCACCTACAACGG; SIN3B-Rev:TTGTCA
GAGGCGAC TGTATGTTTA; HABP4-For:GAGGCAGGCAGACTTC
ACAGHABP4-Rev:CGAACTCCACATCCACCCAT; STX1A-For:CAAT
GTGGAACACGCGGTAG; STX1A-Rev: ACAGTGGAGGCGATG
ACGAT.

The expression was uniformized to the internal reference GAPDH
and computed employing the 2−ΔΔCt method.

FIGURE 1
The immune- or PD-directed neighbor co-expressed network (IOPDNC network). (A) The global IOPDNC network was constructed to identify a
common network by the GSE49036 dataset and HPRD database. (B) The histogram chart of the common genes in the IOPDNC network. (C) The Venn
diagram showed the intersections of immune-related genes, PD-related genes, and common network genes.
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Western blotting

RIPA Lysis Bufferb (Servucebui) containing a protease inhibitor
(Servucebio) was utilized to obtain the protein from tissues,
subsequently, immunoblotting was performed. The bicinchoninic
acid (BCA) quantification kit was applied to determine protein
concentration of the cell lysates. The protein samples were loaded
and separated by SDS-PAGE and shifted to PVDF membranes

(Millpore, Sigma). Membranes were incubated with specific
primary antibodies against PSMB7 (cst), GRIN1 (Affinity), NME1
(Affinity), SIN3B (Affinity), HABP4 (Proteintech), STX1A (BOSTER),
and β-Actin (Proteintech) after blocked with 5% nonfat dry milk at
4 °C. Furthermore, secondary antibodies (IgG) were incubated at room
temperature for 60 min and visualized using an ECL system. The
dilution factors of the primary and secondary antibodies were shown
in Supplementary Table S2.

FIGURE 2
The properties of PD-directed neighbor co-expressed network (PDNC network). (A) The global PDNC network. (B) A sub-network was extracted from
the PDNC network which comprised only PD genes and their linked genes. (C) A Venn diagram showed the intersections of PD-related genes, immune-
related genes, and common network genes from the sub-network. (D) The histogram chart of the common genes included 5 immune-related genes, 51 PD-
related genes, 5 immune-PD associated genes, and 26 other genes from the sub-network. (E) The violin plots of the Pearson correlations of the pairwise
genes in the four gene categories. Wilcoxon rank-sum test was applied to compare the coexpression correlation coefficients between different gene groups.
(F) The cumulative distribution curves of co-expression values (Pearson correlations) for diverse gene types. The vertical axis indicatd the degree of the
expression correlation for each gene group. (G) The heatmap suggested the corrections between PD genes and their linked genes, Horizontal axis represents
PD genes linked genes, vertical axis represents PD genes, and red squares indicated |Pearson coefficient value| > 0.7.
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Results

The construction of IOPDNC

A total of 1022077 gene relationship pairs were selected from the
GSE49036 dataset. Then, the common network with 416 nodes and
281 edges was obtained from the GSE49036 dataset and HPRD
database (Figure 1A, Supplementary Table S3). Among the
common network genes of Figure 1A, the number of immune
genes was 63; the number of PD genes was 77; the number of
immune-PD genes was 39; the number of other genes were 237
(Figure 1B). Genes with high protein interaction connectivity
scores were selected, and a Venn diagram of protein-interacting
genes associated with PD and immune genes was drawn. There
were 39 intersection genes between 2078 PD genes, 2740 immune
genes, and 416 common network genes (Figure 1C). The results

indicated that immune-related genes played a vital role in the
IOPDNC network. Together, these results suggested that immune-
related genes might be important contributors for PD.

Dissecting PD and immune-associated gene
features in the network

The core genes of PD, immune-PD genes, and their linked genes
were extracted from the network of 3.1. Then, a network of these genes
was constructed with 130 nodes and 91 nodes (Figure 2A,
Supplementary Table S4). The genes whose core genes only were
PD and the genes that were directly affected by PD were extracted to
construct a network that including 87 nodes and 60 edges (Figure 2B,
Supplementary Table S5). Totally five common genes were detected
between 2078 PD genes, 2740 immune genes, and 87 core genes

FIGURE 3
Detection of PD-related clusters and validation of their classification power. (A) Important clusters of modules were generated in the IPGDNC network.
(B–G) The consensus cluster heatmap, cumulative distribution function (CDF) plot, delta area plot, gene expression heatmap, gene correlation heatmap, and
gene expression box plot of modules including module 1 (B), module 2 (C), module 3 (D), module 4 (E), module 5 (F), and the common genes (G).
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(Figure 2C). Furthermore, the number of genes in the four gene
categories (PD, immune-PD, immune, and other genes) that the
core genes only were PD of the PD gene interaction network were
accounted (Figure 2D). Among the protein-interaction network, the
number of immune genes was 5; the number of PD genes was 51; the
number of immune-PD genes was 5; the number of other genes was 26
(Figure 2D). Moreover, there were significant differently expressed
correlations between different gene groups, except immune-PD and
PD genes (p = 0.39) (Figure 2E). In the PD genes and its linked genes,
the correlation of immune genes, immune-PD genes and other genes
was significant (Figure 2F). The correlation between PD genes and its
linked genes was significant with |Pearson coefficient value| > 0.7 and
FDR <0.05 (Figure 2G). Totally, the results showed that there were
topological interactions and expression patterns among the correlations
between PD- and immune-related genes.

Module cluster analysis and validation of its
classification power

Themodules with top 5 functional scores were selected (Figure 3A,
Supplementary Table S6). In the all of 5 modules, 25 PD genes,

11 immune genes, 5 immune-PD genes, and 46 other genes were
contained.

In these 6 modules, the genes were divided into 2 clusters when the
K = 4, and the expression of these module genes were higher in cluster
1 (Figures 3B–G). In these modules, the expression levels of module
genes except PSMB1, KARS, TERT, ZBTB16, NFKB1, MAPKAPK2,
MAP3K3, MAP2K4, IRS2, IQGAP1, HDAC1, EPB41L3, C1QBP,
BRCA1, BAG2, FYN, MAPK6, MAP3K2, and FNY in the PD
group were higher than that in the control group.

The samemethod was used to validate the accuracy of the screened
module genes in the external validation set GSE20292 data set
(Figure 4). These genes have better representation and can screen
out patients at different stages. These results demonstrated that the
model genes could distinguish PD and control samples well.

Functional enrichment analysis of modular
genes

Module 1 genes were enriched in 104 GO BPs (including 12 GO
CCs, 7 GO MFs) and 8 KEGG pathways, and these GO terms and
KEGG pathways were mainly related to various metabolic

FIGURE 4
Validation of the classification power by GSE20292 data set. The consensus cluster heatmap, cumulative distribution function (CDF) plot, delta area plot,
gene expression heatmap, gene correlation heatmap, and gene expression box plot of sixmodules includingmodule 1 (A), module 2 (B), module 3 (C), module
4 (D), module 5 (E), and common genes (F).

Frontiers in Genetics frontiersin.org06

Dong et al. 10.3389/fgene.2023.1090382

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1090382


processes, complexes, and disease pathways (Supplementary
Figures S1A, B). Module 2 genes were enriched in 303 GO BPs,
55 GO CCs, 12 GO MFs, and 7 pathways, and these GO terms and
KEGG pathways were mainly related to various cell migration,
protein binding, and disease pathways (Supplementary Figures
S1A, B). Module 3 genes were enriched in 60 GO BPs, 17 GOs
CC, 51 GO MFs, and 2 KEGG pathways, and these GO terms were
mainly related to various telomere. The KEGG pathways were base
excision repair and non-homologous end-ioining (Supplementary
Figures S1A, B). Module 4 genes were enriched in 198 GO BPs,
35 GO CCs, 32 GO MFs, and 32 KEGG pathways, and these GO
terms and KEGG pathways were mainly related to various protein
binding, response to stimulus and disease pathways
(Supplementary Figures S1A, B). Module 5 genes were enriched
in 141 GO BPs, 30 GO CCs, 35 GO MFs, and 12 KEGG pathways,
and these GO terms and KEGG pathways were mainly related to
various response to stimulus and signaling pathways
(Supplementary Figures S1A, B). All of the 5 module genes was
enriched in 312 GO BPs, 80 GO CCs, 68 GO MFs, and 49 KEGG
pathways, and these GO terms and KEGG pathways were mainly
related to various protein binding and disease pathways
(Supplementary Figures S1A, B). Additionally, the natural killer
(NK) cell mediated cytotoxicity pathway was showed in Figure 5,
Fyn, Vav and PKC were significantly enriched.

Differential analysis of immune cell infiltration
by module genes

To explore the differences in immune cell infiltration between the
control and PD samples, the ssGSEA algorithm was performed. There

were significant differences in aDC, eosinophils, neutrophils, and
Th2 cells between the control and PD samples (Figure 6A). In
addition, the genes of the 6 modules were significantly associated
with these 4 differential immune cells (Figure 6B).

Validation the expression of six module genes
by qRT-PCR and western blot

The mRNA and protein expression of 6 module genes were
significantly higher expressed in the normal samples than that in
the PD samples (Figure 7 and Figure 8), the detailed statistical results
for qRT-PCR and western blot were shown in Supplementary Table S7
and Supplementary Table S8, the original bar charts of western blot
were shown in Supplementary Figure S2. These results confirm that
these module genes could act as potential diagnostic markers for PD.

Discussion

At present, the research on PD biomarkers has been gradually in-
depth, but there is still no global study and recognition of some
immune-related features. In this study, we explored the function and
mechanism of immune-related genes in PD from a global perspective
by integrating gene expression profiles from interaction networks and
GEO databases.

The crosstalk between the peripheral immune system and
neuroinflammation plays an important role in the pathogenesis of
PD (Pajares et al., 2020). In our study, modular genes were mainly
enriched in some stimulus-related categories and disease-related
pathways. For example, the total module is enriched in Pathways

FIGURE 5
The map of natural killer (NK) cell mediated cytotoxicity signaling pathway. Red: up-regulation, grey: no significant difference.
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of neurodegeneration - multiple diseases, Spinocerebellar ataxia, Prion
disease, Alzheimer disease (AD), Huntington disease, PD, Long-term
depression, and other disease pathways. Therefore, we speculated that
the identified modules and genes played an important role in the
development and progression of PD. It also further justified our typing
of PD based on these genes. It has been suggested that genes involved
in regulating substantia nigra development were enriched in RAC1+
NK cells and these cells showed increased brain infiltration in 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD
mice (Guan et al., 2022). Moreover, NK cells are also present in

the brain parenchyma of mouse models of PD (Earls et al., 2020). NK
cells can reduce synuclein burden in vitro, and systemic depletion of
NK cells in a preclinical mouse model of PD results in increased
pathological α-syn burden in numerous brain regions, including the
striatum, SNpc, and brainstem (Peng et al., 2019). In the natural killer
(NK) cell-mediated cytotoxicity pathway, Fyn, Vav, and PKC were
significantly enriched. Among them, Fyn is a tyrosine
phosphotransferase of Src family non-receptor kinases, which is
mainly related to immune regulation, cell proliferation, and brain
development (Guglietti et al., 2021). In previous studies, Fyn was

FIGURE 6
Immune cell infiltration analysis. (A) ssGSEA algorithm was performed to calculate the infiltration levels of 24 immune cell types in PD and normal
samples. (B) The correlation heatmaps of 6 module genes with differential immune cells. * represented p < 0.05, ** indicated p < 0.01, ns represented no
significant difference, red indicated positive correlation, blue indicated negative correlation.
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confirmed to be a major upstream regulator of proinflammatory
signaling pathway involving BDNF/TrkB, PKCδ, MAPK, AMPK,
NF-κB, Nrf2, and NMDAR axis. Fyn is also being used as a
potential signaling node for the development of novel anti-

neuroinflammatory drug candidates for the treatment of PD and
other related neurodegenerative diseases (Peng et al., 2019). For
example, saracatinib, a non-selective Fyn inhibitor, has been tested
in clinical trials to treat PD (Angelopoulou et al., 2021). The protein

FIGURE 7
Verification of the mRNA expression of six modular genes by qRT-PCR and Western blot.

FIGURE 8
Verification of the protein expression of six modular genes by Western blot. (A) The grayscale values six of modular genes in PD and normal samples by
Western blot. (B) The mages of six modular genes in PD and normal samples by Western blot.
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kinase C (PKC) family is a phospholipid-dependent serine/threonine
kinase (Kishimoto et al., 1980). The protein kinase family consists of
more than 15 subgroups and 500 kinases whose expression affects the
progression of various diseases, including neurodegenerative diseases
(Zisopoulou et al., 2013; Jha et al., 2015; Crawley et al., 2017). PKCα
inhibits the expression of peroxisome proliferator-activated receptor C
coactivator 1(PGC-1) by inducing miR-129–2 in neural tube defect
(NTD) embryonic mouse models, and the overexpression of PGC-1
protects neurons from mitochondrial dysfunction under oxidative
stress in PD (Mudò et al., 2012).

There is growing evidence linking the immune system to neuronal
death and the pathogenesis of PD. Previous studies have shown that
detection of immune cell components in the blood can identify the
early stages of PD progression, leading to earlier detection and
confirmation of PD (Farmen et al., 2021). Activated microglia
(brain’s resident immune cells) correlate directly with the clinical
and pathological severity of PD (Lanskey et al., 2018). Through
immune infiltration analysis executed by the ssGSEA algorithm, we
discovered that aDC and Th2 cells were significantly decreased in PD
samples, and eosinophils and neutrophils cells were significantly
upregulated in PD samples. But there is still a gap in how these
cells play a role in the progression of cup-like lesions in Parkinson’s
disease, however, this provided a basis and direction to further unravel
the immune-related mechanisms of PD.

The top1 gene was selected from the 6 modules for qRT-PCR and
Western blot validation. NME1 was a protein with serine/threonine
specific protein kinase activity (Yu et al., 2021). NME1 has been shown
to play an important role in neuronal growth by increasing
mitochondrial respiration and preventing α-synuclein and LRRK2-
induced degeneration. In PD treatment, NME1 can promote neurite
growth in PD cell models and restore damaged mitochondrial
respiration and cellular pathways (Anantha et al., 2022). GRIN1
(encoding NMDAR subunit n-methyl-D-aspartate 1) gene has been
shown to be closely associated with neurodevelopmental disorders
(Platzer et al., 1993), and its polymorphism has also been
demonstrated as a potential biomarker for reducing the risk of PD
in previous studies (Wu et al., 2010). The module genes such as the
expression of NME1, SIN3B, HABP4, STX1A, SIN3B, HABP4, and
STX1A could distinguish PD and normal samples, indicating these
genes may become promising candidate genes for PD.

In conclusion, these results indicated strong correlations between
immune- and PD-related genes not only in terms of network structures
but also in expression patterns. According to the differential expression
and functional enrichment analyses, some immune-related genes may
have the potential as diagnostic and therapeutic biomarkers for PD.
However, there still have two main limitations in this study. Firstly, this
study was a retrospective study based on a public database with limited
sample sizes. Second, the important genes andmechanisms in this study
need further experimental studies to be validated. Altogether, we have
revealed the association between immunity and PD through systematic
network studies and bioinformatics approaches, providing a theoretical
basis for further studies on the pathogenesis of PD and clinical
therapeutic targets.

Conclusion

In summary, all the results presented here indicate a strong
association between immune and PD-related genes not only in

network structure but also in expression patterns. After analyzing
the expression patterns and functions of the genes in the five modules,
we believe that these genes have potential as molecular diagnostic
markers.
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