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Introduction: Several epigenetic clocks have been developed, with five measures of
epigenetic age acceleration (EAA) especially receiving extensive investigations:
HannumEAA, IEAA, PhenoEAA, GrimEAA, and DunedinPACE. These epigenetic
clocks were mainly developed by individuals of European or Hispanic ancestry. It
remains unclear whether they can reflect disease morbidity and physiological
conditions in Asian populations.

Methods: I here investigated five measures of EAA of 2,474 Taiwan Biobank
participants with DNA methylation data. Using logistic regressions, I sequentially
regressed various health outcomes on each of the five measures of EAA while
adjusting for chronological age, sex, body mass index, the number of smoking pack-
years, drinking status, regular exercise, educational attainment, and six cell-type
proportions.

Results: Except for IEAA, all measures of EAA reflected the obesity of Taiwanese (p <
4.0E-4). Diabetes was reflected by DunedinPACE (p = 5.4E-6) and GrimEAA (p =
5.8E-5). Moreover, DunedinPACE was associated with dyslipidemia, including
hypertriglyceridemia (p = 1.1E-5), low high-density lipoprotein cholesterol (HDL-
C) (p = 4.0E-5), and high triglyceride to HDL-C ratio (p = 1.6E-7).

Discussion: This is one of the first studies to show that epigenetic clocks (developed
by individuals of European or Hispanic ancestry) can reflect Taiwanese physiological
conditions. DunedinPACE was associated with more Taiwanese health outcomes
than the other four measures of EAA.
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Introduction

Given the advancement of epigenetics, several epigenetic clocks have been developed to
estimate human biological age, with five especially receiving much attention (Hannum et al.,
2013; Horvath 2013; Levine et al., 2018; Lu et al., 2019; Belsky et al., 2022). Epigenetic age
acceleration (EAA), usually obtained from the residuals of regressing epigenetic age on
chronological age, measures whether people are aging faster than their chronological age
(Jain et al., 2022; Lo and Lin 2022). EAA can provide important insights into human health
(Horvath et al., 2016).

The earliest among the five is Hannum’s clock (Hannum et al., 2013), in which the aging
model was built with more than 450,000 cytosine-phosphate-guanine (CpG) sites from the
whole blood of 426 Caucasian and 230 Hispanic individuals. With the elastic net regression
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(Zou and Hastie 2005), Hannum et al. selected 71 from the
~450,000 CpGs to predict chronological age (Hannum et al., 2013).

By using 82 data sets (n = 7,844), Horvath further developed a
multi-tissue predictor of age, allowing to estimate the DNA
methylation (DNAm) age of many tissues and cell types (Horvath
2013). A total of 353 CpGs were selected by regressing a calibrated
version of chronological age on 21,369 CpGs with the elastic net
regression (Zou and Hastie 2005). A weighted sum of these CpGs
formed Horvath’s clock (Horvath 2013). The abovementioned
Hannum et al.‘s clock (Hannum et al., 2013) and Horvath’s clock
(Horvath 2013) are called “the first-generation epigenetic clocks”, as
they are used to estimate chronological age rather than biological age.
Predicting chronological age can be an important topic in forensic
medicine when an individual’s chronological age is unknown.

In 2018, Levine et al. proposed a novel two-step approach and
found hundreds of CpGs to form the so-called “PhenoAge” epigenetic
clock (Levine et al., 2018). By analyzing the data of the third National
Health and Nutrition Examination Survey (NHANES III, including
Americans of European ancestry or African ancestry and Mexican-
American persons), they first built a “phenotypic age” model by
incorporating nine clinical biomarkers and chronological age. In
the second step, the elastic net regression (Zou and Hastie 2005)
was used to select 513 from among 20,169 CpGs as predictors of the
‘phenotypic age’. A linear combination of these CpGs formed the third
epigenetic clock, “PhenoAge”.

In 2019, Lu et al. used a two-stage approach to build the fourth
epigenetic clock, “GrimAge” (Lu et al., 2019). They first correlated the
levels of 88 plasma proteins (measured from immunoassays) and self-
reported smoking pack-years with DNAm values from the Framingham
Heart Study data (Dawber et al., 1951). Through this step, plasma proteins
and self-reported smoking pack-years were found to be estimated by some
CpGs. The linear combinations of these selectedCpGs are called “DNAm-
based surrogate markers of plasma proteins and smoking pack-years”. In
the second stage, with the elastic net Cox regression, Lu et al. regressed
time-to-death onDNAm-based surrogatemarkers of plasma proteins and
smoking pack-years while adjusting for sex and chronological age.
DNAm-based biomarkers for smoking pack-years and seven plasma
proteins were selected to reflect time-to-death. The union of these
eight sets of DNAm markers, a total of 1,030 CpGs, formed the
epigenetic clock, “GrimAge”.

Recently, Belsky et al. proposedDunedinPACE to estimate the pace of
aging (Belsky et al., 2022). DunedinPACE was built by analyzing the
longitudinal data from 1,037 babies born in Dunedin, New Zealand,
during 1972–1973 (Belsky et al., 2022). The majority (93%) of this cohort
was of European descent (Poulton et al., 2015). Based on the elastic net
regression (Zou and Hastie 2005), Belsky et al. linked the aging pace
across 2 decades of these individuals to their DNAm probes with good
test-retest reliability (i.e., probes with slight variation across technical
replicates). DunedinPACE was further evaluated in five additional
datasets, in which most individuals were also of European descent.

PhenoAge, GrimAge, and DunedinPACE can be regarded as “the
second-generation epigenetic clocks” because they are linked to
“phenotypic age” (a combination of various phenotypes such as
creatinine, albumin, etc.) (Levine et al., 2018), time-to-death due to all-
cause mortality (Lu et al., 2019), and declines in organ-system integrity
(Belsky et al., 2022), respectively. Therefore, these three epigenetic clocks
can better reflect physiological conditions than the first-generation clocks.

Among the five abovementioned epigenetic clocks, four earlier
clocks have been compared by some studies (Lu et al., 2019; Maddock

et al., 2020; McCrory et al., 2021). For example, Lu et al. (Lu et al.,
2019) applied the four earlier epigenetic clocks to an extensive
validation data set (6,935 individuals) comprising three ethnic
groups (50% European ancestry, 40% African Americans, and 10%
Hispanic ancestry). They showed that GrimAge outperformed the
other three clocks regarding its ability to predict time to death, time to
coronary heart disease, time to cancer, etc (Lu et al., 2019).

By investigating 709 Scottish individuals, Hillary et al. have shown
that GrimAge is associated with various measures of brain health and
can help predict cognitive functions (Hillary et al., 2021). Through
analyzing data from three British cohorts, Maddock et al. found that
PhenoAge and GrimAge were significantly associated with three of the
five measures of cognitive performance or functional ability (Maddock
et al., 2020). McCrory et al. further demonstrated that GrimAge was
superior to the other three clocks in predicting age-related phenotypes
and all-cause mortality (McCrory et al., 2021).

All five abovementioned epigenetic clocks were mainly
developed by European, African, or Hispanic individuals
(Hannum et al., 2013; Horvath 2013; Levine et al., 2018; Lu
et al., 2019; Belsky et al., 2022). However, notable differences in
DNAm age may exist between several ethnic groups. As shown by
Levine et al., there are significant differences in PhenoAge between
ethnic groups in the Women’s Health Initiative data set (Levine
et al., 2018). On average, individuals of African ancestry had the
highest PhenoAge, whereas individuals of European ancestry
generally had the lowest PhenoAge. Hispanics were between
them but close to people of African ancestry.

Despite these abundant studies in DNAm age, very few have been
conducted using data from Asian populations. Whether these five
epigenetic clocks can reflect Asians’ disease morbidity or physiological
conditions remains unknown. In this work, I calculated five measures
of EAA using the DNAm data of 2,474 Taiwan biobank (TWB)
participants. As DNAm age has received extensive attention,
exploring the EAA measure that can most effectively reflect
Taiwanese health outcomes will be essential.

Methods

Taiwan biobank

TWB was approved by the Institutional Review Board on
Biomedical Science Research/IRB-BM, Academia Sinica, and also
by the Ethics and Governance Council of Taiwan Biobank, Taiwan.
The current study further received approval from the Research Ethics
Committee of National Taiwan University Hospital (NTUH-REC no.
201805050RINB). Written informed consent was obtained from each
participant following institutional requirements and the principles of
the Declaration of Helsinki.

Since October 2012, TWB has recruited 160,808 community-based
volunteers aged 30–70 years. The majority of TWB individuals were of
Han Chinese ancestry (Chen et al., 2016). After a fast for at least 6 h, each
TWB participant provided blood and urine samples and took physical
examinations. Lifestyle information was further collected through a face-
to-face interview with TWB researchers. During 2016–2021, 2,474 TWB
participants were randomly selected for DNAm analysis. The Illumina
Infinium MethylationEPIC BeadChip (Illumina, Inc., San Diego, CA)
covering ~860,000 CpG sites was used to quantify their blood DNAm
values.
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Calculation of five epigenetic clocks

DNAm intensity data were normalized by the normal-
exponential out-of-band (noob) approach (Triche et al., 2013)
with the preprocessNoob function in the R package minfi v1.36
(Aryee et al., 2014). The TWB DNAm data were then uploaded to
the online DNAm Age Calculator developed by Horvath’s
laboratory, https://dnamage.genetics.ucla.edu/new. The Illumina
Infinium MethylationEPIC BeadChip included 91.5% of the
30,084 sites (i.e., 27,526 CpGs) listed in the annotation file
“datMiniAnnotation3. csv” under Horvath’s “Advanced
Analysis”. The average detection p-value across the 27,526 CpGs
was used to evaluate the quality of DNAm quantification for each
sample. Because all samples’ average detection p-values were much
smaller than the suggested cutoff 0.01 (Maksimovic et al., 2016),
the quality of the DNAm data was regarded as satisfactory.

The measures of EAA based on four epigenetic clocks were
extracted from the columns “AgeAccelerationResidualHannum”

(Hannum et al.‘s clock (Hannum et al., 2013)), “IEAA”
(Horvath’s clock (Horvath 2013)), “AgeAccelPheno” (Levine
et al.‘s clock (Levine et al., 2018)), and “AgeAccelGrim” (Lu
et al.‘s clock (Lu et al., 2019)) of the output from Horvath’s
DNAm age calculator, respectively. Furthermore, DunedinPACE
(Belsky et al., 2022) was calculated using the R package
DunedinPACE, available from GitHub at https://github.com/
danbelsky/DunedinPACE.

Health outcomes

I here investigated the associations of EAA measures with
metabolic conditions, cardiovascular health, physical activity, and
lung function. Metabolic conditions included obesity (body mass
index [BMI] > 27 kg/m2), adiposity (male body fat percentage
[BFP] > 25% or female BFP >30%), abdominal obesity (male waist
circumference [WC] > 90 cm or female WC > 80 cm), diabetes (with
physician-diagnosed diabetes, or fasting glucose >126 mg/dL or
glycated hemoglobin [HbA1c] > 6.5% based on TWB test results),
hypertension (with physician-diagnosed hypertension, or diastolic
blood pressure [DBP] > 80 mmHg or systolic blood pressure
[SBP] > 130 mmHg based on TWB test results),
hypertriglyceridemia (triglyceride [TG] > 150 mg/dL), low-density
lipoprotein cholesterol [LDL-C] > 130 mg/dL, low high-density
lipoprotein cholesterol (HDL-C) (male HDL-C < 40 mg/dL or
female HDL-C < 50 mg/dL), high TG/HDL-C ratio (male TG/
HDL-C > 3.75 or female TG/HDL-C > 3).

The cutoff values for BMI, BFP, WC, TG, LDL-C, and HDL-C
were based on Taiwan’s Ministry of Health and Welfare (MoHW)
recommendations. The definition of obesity (BMI ≥27 kg/m2) is
more suitable for Asians, although it is more stringent than the
criterion defined by the World Health Organization (BMI ≥30 kg/
m2). According to Taiwan’s MoHW, dyslipidemia refers to
unhealthy levels for at least one type of lipid, including TG >
150 mg/dL, LDL-C level >130 mg/dL, and male HDL-C
level <40 mg/dL or female HDL-C level <50 mg/dL. Moreover,
TG to HDL-C (the TG/HDL-C ratio) is a useful predictor for
identifying cardiometabolic risk (Murguia-Romero et al., 2013).
Therefore, the TG/HDL-C ratio cutoff is defined as 3.75 (= 150/40)
for males or 3 (= 150/50) for females. In addition to these

dichotomous traits, I also analyzed 11 health outcome
measurements without dichotomization.

BFP was measured by bioelectrical impedance analysis using a
TANITA Body composition analyzer BC-420MA (Tokyo, Japan).
After a fast for at least 6 h, serum HbA1c and glucose levels
were measured with the Trinity Biotech Premier
Hb9210 analyzer (Bray, Ireland/Kansas City, MO) and the
Hitachi LST008 analyzer (Hitachi High-Technologies, Tokyo,
Japan), respectively. To obtain more reliable DBP and SBP, I
used the average of two measured blood pressure levels (a 5-min
rest interval between the two measurements).

Cardiovascular health outcomes included coronary artery disease
(CAD) and cardiovascular diseases (CVDs). CVDs indicated valvular
heart disease, CAD, arrhythmia, cardiomyopathy, congenital heart
disease, apoplexy, and other diseases involving blood vessels or the
heart.

I also assessed the relationship between these 5 measures of EAA
and regular exercise (yes vs. no). Regular exercise was defined as
performing 30 min of “exercise” three times a week. “Exercise”
included leisure-time activities such as walking, brisk walking,
jogging, swimming, dancing, weight training, badminton, table
tennis, mountain climbing, etc. A total of 1,092 out of the
2,474 individuals (44%) developed the habit of regular exercise.
Subjects with regular exercise were further surveyed on what kind
of exercise they usually performed within the last 3 months.Walking is
a less physically demanding activity and may be chosen by subjects
with limited exercise capacity. I here investigated the associations of
these 5 measures of EAA with “choosing walking as the regular
exercise”. Finally, lung function was assessed by forced vital
capacity (FVC).

Statistical analysis

The logistic regression was performed for each dichotomous
health outcome. Each outcome (yes vs. no) was regressed on the
z-score transformation of EAA while adjusting for sex,
chronological age (in years), BMI, the number of smoking pack-
years, drinking status (yes vs. no), regular exercise (yes vs. no),
educational attainment (an integer ranging from 1 to 7), and six
cell-type proportions (B lymphocytes, CD4+ T cells, CD8+ T cells,
monocytes, natural killer cells, and neutrophils). These immune
cell proportions were estimated by the Houseman deconvolution
method (Houseman et al., 2012), because this is the optimal among
reference-based deconvolution methods (Kaushal et al., 2017; Titus
et al., 2017).

Non-etheless, BMI was not adjusted when the health outcome (the
response variable) was obesity, adiposity, or abdominal obesity.
Likewise, regular exercise was not adjusted when the response
variable was regular exercise (itself) or “choosing walking as the
regular exercise” (because all the 1,092 individuals performed
regular exercise in this analysis).

FVC and 11 metabolic traits (without dichotomization) were
continuous. I first calculated the residuals of regressing the
continuous traits on the 13 covariates mentioned above, becoming
“covariates-adjusted traits”. Using Spearman’s rank correlation
coefficient, I then assessed the association between each covariates-
adjusted trait and each EAA measure. The p-value for testing no
correlation between covariates-adjusted trait and EAA was also
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TABLE 1 Basic characteristics of the 2,474 TWB participants.

Males Females p-valuea

Total 1,243 (50.2%) 1,231 (49.8%)

Chronological age (years) 50.3 ± 11.3 49.3 ± 10.8 0.0246

HannumEAA (years) 0.68 ± 3.73 −0.69 ± 3.70 8.5E-20

IEAA (years) 0.66 ± 3.68 −0.67 ± 3.63 2.6E-19

PhenoEAA (years) 0.05 ± 4.69 −0.05 ± 5.14 0.5854

GrimEAA (years) 1.43 ± 3.62 −1.44 ± 2.71 5.0E-100

DunedinPACE 1.005 ± 0.108 0.976 ± 0.104 2.0E-11

Drinkingb 147 (11.8%) 24 (1.9%) 7.7E-22

Smokingc 235 (18.9%) 48 (3.9%) 2.0E-31

The number of pack-years for smokers 22.3 ± 20.8 10.8 ± 10.3 6.2E-8

Regular exercised 595 (47.9%) 497 (40.4%) 2.0E-4

Educational attainmente 5.8 ± 0.9 5.4 ± 0.9 1.6E-22

BMI (kg/m2) 25.2 ± 3.4 23.5 ± 3.7 2.3E-32

Obesity (BMI >27 kg/m2) 333 (26.8%) 196 (15.9%) 6.0E-11

Body fat percentage (%) 22.9 ± 5.4 31.8 ± 6.5 4.5E-228

Adiposityf 381 (30.7%) 687 (55.8%) 2.4E-36

Waist circumference (cm) 87.9 ± 9.3 80.5 ± 9.8 6.8E-76

Abdominal obesityg 442 (35.6%) 561 (45.6%) 4.9E-7

Diabetesh 122 (9.8%) 67 (5.4%) 5.9E-5

Hypertensioni 586 (47.1%) 300 (24.4%) 5.5E-32

Coronary artery disease 35 (2.8%) 7 (0.57%) 3.0E-5

Cardiovascular diseasesj 140 (11.3%) 136 (11.0%) 0.9155

Hypertriglyceridemiak 319 (25.7%) 161 (13.1%) 3.7E-15

High LDL-Cl 469 (37.7%) 417 (33.9%) 0.0502

Low HDL-Cm 274 (22.0%) 318 (25.8%) 0.0306

High TG/HDL-C ration 300 (24.1%) 181 (14.7%) 4.2E-9

“walking” as the regular exercise 183 (14.7%) 183 (14.9%) 0.9650

Forced vital capacity (FVC, in mL) 3623 ± 687 (811 males measured FVC) 2537 ± 613 (765 females measured FVC) 3.8E-183

Data are presented in n (%) or mean ± standard deviation.
ap-value of testing the mean difference between males and females, based on the two-sample t-test (for continuous variables) or proportion test (for dichotomous variables).
bDrinking was defined as a person having a weekly intake of more than 150 mL of alcoholic beverages for at least 6 months and having not stopped drinking at the time he/she participated in TWB.
cSmoking was defined as a person who had smoked cigarettes for at least 6 months and had not quit smoking at the time he/she participated in TWB.
dRegular exercise was defined as performing 30 min of “exercise” three times a week. “Exercise” included leisure-time activities such as walking, jogging, swimming, cycling, dancing, weight training,

mountain climbing, etc.
eEducational attainment ranged from 1 to 7: 1 “illiterate”, 2 “no formal education but literate”, 3 “primary school graduate”, 4 “junior high school graduate”, 5 “senior high school graduate”, 6 “college

graduate”, and 7 “Master’s or higher degree”.
fAdiposity: Male BFP >25% or female BFP >30%.
gAbdominal obesity: Male WC > 90 cm or female WC > 80 cm.
hIndividuals with diabetes included those with physician-diagnosed diabetes, or subjects having fasting glucose >126 mg/dL or HbA1c > 6.5% (48 mmol/mol) based on TWB test results.
iIndividuals with hypertension included those with physician-diagnosed hypertension, or subjects having DBP >80 mmHg or SBP >130 mmHg based on TWB test results.
jCardiovascular diseases (CVDs) included the diagnosis of valvular heart disease, coronary artery disease, arrhythmia, cardiomyopathy, congenital heart disease, and apoplexy or any other diseases

involving blood vessels or heart.
kHypertriglyceridemia: TG > 150 mg/dL.
lHigh LDL-C: LDL-C > 130 mg/dL.
mLow HDL-C: Male HDL-C < 40 mg/dL or female HDL-C < 50 mg/dL.
nHigh TG/HDL-C ratio: male TG/HDL-C > 3.75 (= 150/40) or female TG/HDL-C > 3 (= 150/50).
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presented. Given Spearman’s rank correlation coefficients, the
magnitudes of associations with EAA measures can be compared
across different continuous traits.

Results with p < 4.0E-4 � 0.05/(25 × 5) were regarded as
statistically significant, according to the Bonferroni correction for
five measures of EAA and 25 health outcomes (14 health outcomes
and 11 continuous metabolic traits). The p-values for testing
associations of EAA measures with health outcomes were based on
logistic regression and Spearman’s rank correlation coefficient for
dichotomous and continuous traits, respectively.

Results

Basic characteristics of the 2,474 TWB
participants

The basic characteristics of the 2,474 TWB participants are
shown in Table 1. Among the 2,474 individuals, 1,243 (50.2%) were
males while 1,231 (49.8%) were females. The chronological age
ranged from 30 to 70 years, with averages of 50.3 (standard
deviation, s.d. = 11.3) and 49.3 (s.d. = 10.8) years for males and
females, respectively. All epigenetic clocks except for PhenoEAA
showed that males had a significantly faster aging rate than females
(p<=2.0E-11). For example, the result of DunedinPACE showed an
average of 1.005 (s.d. = 0.108) biological years per chronological

year for males and an average of 0.976 (s.d. = 0.104) biological years
per chronological year for females.

While DunedinPACE measures the pace of aging (Belsky et al.,
2022), the other four clocks estimate biological age (Hannum et al.,
2013; Horvath 2013; Levine et al., 2018; Lu et al., 2019). Figure 1
shows the pairwise scatter plots of the four measures of DNAm age
and chronological age. All four measures of DNAm age are highly
correlated with chronological age (Spearman’s rank correlation
coefficient ≥ 0.90, as shown by the bottom row of Figure 1)
(Spearman’s rank correlation coefficient was used throughout
this study for its robustness to outliers). Four measures of EAA
were obtained by residuals of regressing the respective DNAm age
on the chronological age. In this way, EAA can be robust to
different measurement platforms and normalization methods
(McEwen et al., 2018). Figure 2 shows the pairwise scatter plots
of four measures of EAA and DunedinPACE. The largest
Spearman’s rank correlation coefficient is 0.49 between the latest
two clocks, i.e., GrimEAA (Lu et al., 2019) and DunedinPACE
(Belsky et al., 2022).

Table 1 shows that sex difference was significant in most health
outcomes (p < 0.05), except for CVDs (p = 0.9155), “high LDL-C” (p =
0.0502) and “choosing walking as the regular exercise” (p = 0.9650).
Therefore, sex would be adjusted in all (logistic) regression models.

FVC was used to evaluate individuals’ lung function. It measured
the total exhaled volume of air after a maximal inspiration.
Approximately 64% of the 2,474 TWB participants underwent this

FIGURE 1
Pairwise scatter plots of four measures of DNAm age and chronological age (C.A). R represents Spearman’s rank correlation coefficient.
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respiratory examination. The mean FVC was 3,623 (s.d. = 687) mL for
811 males and 2,537 (s.d. = 613) mL for 765 females.

Epigenetic age acceleration and health
outcomes

Before assessing the associations of EAA with health outcomes, I
removed extreme outliers of EAA if they were smaller than Q1 −
3 × (Q3 − Q1) or larger than Q3 + 3 × (Q3 − Q1), where Q1 and Q3

are the 25th and 75th percentiles of an EAA, respectively. Through this step,
a total of 7, 1, 2, 5, and 1 extreme outliers were excluded for HannumEAA,
IEAA, PhenoEAA, GrimEAA, and DunedinPACE analyses, respectively.

After removing the extreme outliers from respective analyses, I
investigated the associations of the five measures of EAA sequentially
with the 14 health outcomes (one outcome at a time). Figure 3 presents
the analysis results of 13 dichotomous outcomes (FVCwas continuous
and was summarized in Table 2). DunedinPACE was associated with
8/14 health outcomes. For example, an s.d. increase in DunedinPACE
was associated with an OR of 1.48 to develop diabetes (95% C.I. =
1.25–1.75, p = 5.4E-6), an OR of 1.67 to develop abdominal obesity
(95% C.I. = 1.45–1.92, p = 4.9E-13), an OR of 1.31 to develop
hypertriglyceridemia (95% C.I. = 1.16–1.48, p = 1.1E-5), etc.

GrimEAA was associated with 3/14 health outcomes, including
diabetes (p = 5.8E-5), abdominal obesity (p = 1.5E-4), and obesity (p =
1.9E-6). An s.d. increase in GrimEAA (3.43 years) was associated with
an OR of 1.48 to develop diabetes (95% C.I. = 1.22–1.79), an OR of

1.31 to develop abdominal obesity (95% C.I. = 1.14–1.51), and an OR
of 1.37 to develop obesity (95% C.I. = 1.20–1.55).

PhenoEAA and HannumEAA were associated with 3/14 health
outcomes, including obesity, adiposity, and abdominal obesity (p <
4.0E-4). An s.d. increase in PhenoEAA (4.79 years) or HannumEAA
(3.63 years) was associated with a higher risk of developing obesity-
related outcomes.

I further calculated Spearman’s rank correlation coefficients between
the five measures of EAA and 11 adjusted metabolic traits (adjusted for
covariates, explained in Materials and Methods). Through Spearman’s
rank correlation coefficients, I may compare the magnitudes of
associations with EAA measures across different continuous traits. The
results are presented in Table 2. Except for IEAA, all measures of EAA
were significantly positively correlated with three obesity traits (p < 4.0E-
4), i.e., BMI, BFP, and WC. DunedinPACE provided the most
considerable magnitude of correlations with the three obesity traits
(Spearman’s rank correlation coefficients >0.2, Table 2). Furthermore,
DunedinPACEwas significantly negatively correlated with fasting glucose
(p = 5.3E-8) and HDL-C (p = 6.5E-11).

Epigenetic age acceleration and regular
exercise

A total of 595 males (47.9%) and 497 females (40.4%) had developed
the habit of regular exercise. None of the five EAA measures were
associated with performing regular exercise (p > 4.0E-4, Figure 3).

FIGURE 2
Pairwise scatter plots of four measures of epigenetic age acceleration and DunedinPACE. R represents Spearman’s rank correlation coefficient.
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Subjects with regular exercise also provided the activity they usually
engaged in within the last 3 months, including walking, brisk walking,
jogging, swimming, dancing, weight training, badminton, table tennis,
mountain climbing, etc. Walking is a less physically demanding exercise
and is more likely to be chosen by subjects with limited exercise capacity.

Among the five measures of EAA, DunedinPACE was significantly
associated with “choosing walking as the regular exercise” (p = 4.0E-4).
An s.d. increase in DunedinPACE was associated with an OR of 1.31 to
choose walking as the regular exercise (95% C.I. = 1.13–1.52). Among
the individuals with regular exercise, people with larger levels of
DunedinPACE were more likely to choose walking as the regular
exercise (implying that they may have a limited exercise capacity). The
other four measures of EAA were also in the same direction regarding
their associations with “choosing walking as the regular exercise”
(OR > 1.0, Figure 3). However, they were not as significant as
DunedinPACE.

For future meta-analyses, I also listed the results from minimally
adjusted models in the Supplementary Materials, i.e., models adjusted
only for age and sex. Results of minimally adjusted models also
showed that DunedinPACE is associated with more Taiwanese
health outcomes than the other four measures of EAA.

Epigenetic age acceleration and lifestyle
factors

To explore how such environmental and lifestyle factors may
similarly or differently impact epigenetic models of aging in Asian

populations, I regressed each EAA on the seven main covariates while
adjusting for the six cell-type proportions. Covariates with p < 0.05/
(5 × 7) = 1.4E-3 were regarded as significant, according to the
Bonferroni correction considering five measures of EAA and seven
main covariates.

Table 3 shows that alcohol drinking was not significantly
associated with any EAA (p > 1.4E-3). In my data, alcohol
drinking was defined as a person having a weekly intake of more
than 150 mL of alcoholic beverages for at least 6 months and having
not stopped drinking at the time he/she participated in TWB. People
with moderate and heavy levels of alcohol consumption were all
categorized as “alcohol drinking” in the TWB data. Therefore, I
may not detect the protective effect against aging for moderate
alcohol consumption.

Regarding cigarette smoking, I found that the number of pack-
years was significantly associated with an increase in HannumEAA
(p = 8.1E-4), PhenoEAA (p = 2.8E-4), GrimEAA (p = 1.3E-124), and
DunedinPACE (p = 1.6E-27). This result is similar to that observed in
HannumEAA of other ancestries (Beach et al., 2015).

Discussion

EAA has become a promising aging biomarker (Jylhava et al.,
2017). However, studies to date have been focused on individuals of
European, African, and Hispanic ancestries (Hannum et al., 2013;
Horvath 2013; Levine et al., 2018; Lu et al., 2019; Maddock et al., 2020;
Hillary et al., 2021; McCrory et al., 2021; Belsky et al., 2022). For

FIGURE 3
Odds ratio (with 95% C.I. and p-values) of increasing one standard deviation of epigenetic age acceleration. Significant results with p < 0.05/(25 × 5) =
4.0E-4 were marked in green background.
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TABLE 2 Spearman’s rank correlation coefficients (with 95% C.I. and p-values) between epigenetic age acceleration and continuous health outcomes. Significant results with p < 0.05/(25 × 5) = 4.0E-4 were highlighted in bold font.

12 continuous
health outcomes

HannumEAA (s.d. = 3.63 years) IEAA (s.d. = 3.69 years) PhenoEAA (s.d. = 4.79 years) GrimEAA (s.d. = 3.43 years) DunedinPACE (s.d. = 0.1064)

Spearman’s
correlation

95% CI p-value Spearman’s
correlation

95% CI p-value Spearman’s
correlation

95% CI p-value Spearman’s
correlation

95% CI p-value Spearman’s
correlation

95% CI p-value

Body mass index 0.089 0.050 0.128 9.8E-06 0.058 0.019 0.098 3.7E-03 0.115 0.076 0.154 1.1E-08 0.115 0.076 0.154 1.0E-08 0.238 0.200 0.275 4.1E-33

Body fat percentage 0.084 0.044 0.124 3.7E-05 0.046 0.006 0.086 2.3E-02 0.101 0.061 0.140 7.9E-07 0.104 0.064 0.144 3.6E-07 0.217 0.178 0.255 7.8E-27

Waist circumference 0.084 0.044 0.123 3.2E-05 0.048 0.009 0.087 1.7E-02 0.106 0.066 0.144 1.5E-07 0.110 0.071 0.149 4.1E-08 0.209 0.171 0.247 8.4E-26

Fasting glucose −0.011 −0.051 0.028 5.8E-01 −0.025 −0.064 0.015 2.2E-01 −0.029 −0.069 0.010 1.5E-01 −0.049 −0.088 −0.010 1.5E-02 −0.109 −0.148 −0.070 5.3E-08

HbA1c 0.014 −0.026 0.053 4.9E-01 −0.010 −0.050 0.029 6.2E-01 0.014 −0.026 0.053 4.9E-01 0.003 −0.037 0.042 8.9E-01 −0.019 −0.059 0.020 3.4E-01

Diastolic blood pressure 0.026 −0.013 0.066 1.9E-01 0.056 0.017 0.095 5.4E-03 0.025 −0.015 0.064 2.2E-01 0.007 −0.032 0.047 7.2E-01 0.017 −0.022 0.057 3.9E-01

Systolic blood pressure 0.026 −0.013 0.066 1.9E-01 0.031 −0.009 0.070 1.3E-01 0.011 −0.029 0.050 5.9E-01 0.017 −0.023 0.056 4.1E-01 0.023 −0.017 0.062 2.6E-01

Triglyceride 0.020 −0.020 0.059 3.3E-01 −0.008 −0.048 0.031 6.8E-01 0.027 −0.013 0.066 1.9E-01 −0.014 −0.053 0.026 5.0E-01 0.026 −0.013 0.066 1.9E-01

LDL-C −0.016 −0.055 0.024 4.3E-01 −0.016 −0.055 0.024 4.4E-01 −0.023 −0.062 0.017 2.6E-01 −0.009 −0.049 0.030 6.5E-01 −0.039 −0.079 0.000 5.1E-02

HDL-C −0.043 −0.082 −0.003 3.5E-02 −0.013 −0.052 0.027 5.3E-01 −0.039 −0.078 0.001 5.4E-02 −0.068 −0.107 −0.029 7.0E-04 −0.131 −0.170 −0.092 6.5E-11

TG/HDL-C ratio 0.029 −0.010 0.069 1.5E-01 −0.009 −0.048 0.031 6.6E-01 0.035 −0.005 0.074 8.5E-02 −0.022 −0.061 0.018 2.8E-01 0.029 −0.011 0.068 1.6E-01

Forced vital capacity −0.020 −0.069 0.030 4.3E-01 −0.003 −0.052 0.046 9.1E-01 0.004 −0.045 0.054 8.6E-01 −0.004 −0.054 0.045 8.7E-01 −0.003 −0.053 0.046 8.9E-01
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example, by analyzing 490 participants from the Irish Longitudinal
Study on Ageing (TILDA), McCrory et al. showed that GrimEAA and
PhenoEAA were associated with 8/9 and 4/9 health outcomes,
respectively (McCrory et al., 2021). A meta-analysis pooled
23 studies relevant to HannumEAA and IEAA, among which
11 studies assessed the associations of DNAm age with age-related
diseases (Fransquet et al., 2019). Most individuals were of European,
African, and Hispanic ancestries, while very few subjects were of Asian
descent. All 11 but one of the studies found that increased
HannumEAA or IEAA level was associated with elevated risks of
diseases (Fransquet et al., 2019).

Despite emerging interest in linking epigenetic clocks to diseases
and aging, replications to Asian populations have been sparse and rare.
Due to significant differences observed in DNAm age between various
ethnic groups (Levine et al., 2018), it is essential to investigate whether
these epigenetic clocks can be applied to Asians.

Associations between lifestyle factors and first-generation EAA have
been evaluated in individuals of European, African, and Hispanic
ancestries (Beach et al., 2015; Quach et al., 2017). Moderate alcohol
consumption was negatively associated with HannumEAA (anti-aging)
(Beach et al., 2015; Quach et al., 2017), while low and heavy levels of
alcohol consumption were positively associated with HannumEAA (pro-
aging) (Beach et al., 2015). Cigarette smoking was also associated with an
increase in HannumEAA (pro-aging) (Beach et al., 2015).

A limitation is that mortality outcomewas not included due to a short
follow-up time. Indeed, the blood samples of the 2,474 TWB participants
were collected during 2012–2021, and very few mortality outcomes have
been observed till 2022. Therefore, I here evaluated the performance of the
five measures of EAA in explaining the physiological conditions of the
Taiwanese. The five measures were sequentially used as a predictor to
explain the health outcomes (response variable) while adjusting for sex,

chronological age, BMI, the number of smoking pack-years, drinking
status, regular exercise, educational attainment, and six cell-type
proportions. All the significant results were described as associations
rather than causality.

This is one of the first studies to apply the five measures of EAA to an
Asian population. Results from samples of other ancestries indicated that
DunedinPACE and GrimEAA outperformed the other clocks in
measuring biological aging (Belsky et al., 2022). Moreover,
DunedinPACE provided better prediction in disability than GrimEAA
(Belsky et al., 2022). Belsky et al.’s finding is in line with my analysis result
for the Taiwanese data, i.e., people with larger DunedinPACE were more
likely to choose a less physically demanding activity (such as walking) as
regular exercise (p = 4.0E-4, Figure 3). Through my investigation and
analyses, DunedinPACE reflected more Taiwanese health outcomes than
the other four measures of EAA.

Data availability statement

The data analyzed in this study is subject to the following licenses/
restrictions: The individual-level Taiwan Biobank data supporting this
study’s findings are available upon application to Taiwan Biobank
(https://www.twbiobank.org.tw/new_web/). Requests to access these
datasets should be directed to Taiwan Biobank (https://www.
twbiobank.org.tw/new_web/).
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TABLE 3 Results of regressing each EAA on the seven main covariates (six cell-type proportions were also adjusted in the models).

HannumEAA
(in years)

IEAA (in years) PhenoEAA (in years) GrimEAA (in years) DunedinPACE

Effect
estimate

p-value Effect
estimate

p-value Effect
estimate

p-value Effect
estimate

p-value Effect
estimate

p-value

Chronological age
(in years,
continuous
variable)

−0.0349 6.6E-07 0.0007 9.3E-01 −0.0205 2.6E-02 −0.0199 3.6E-04 0.0022 2.2E-27

Sex (1: male vs. 0:
female)

0.3093 1.2E-01 1.0850 8.7E-07 −1.2921 1.1E-06 1.6890 1.3E-25 0.0089 1.1E-01

BMI (in kg/m2,
continuous
variable)

0.0947 5.2E-07 0.0485 1.9E-02 0.1667 2.1E-11 0.0819 4.8E-08 0.0070 3.5E-38

The number of
smoking pack-
years (continuous)

0.0251 8.1E-04 0.0003 9.7E-01 0.0360 2.8E-04 0.1535 1.3E-124 0.0023 1.6E-27

Drinking status (1:
yes vs. 0: no)

0.5196 5.4E-02 0.2879 3.3E-01 0.8320 1.9E-02 0.4617 3.2E-02 0.0047 5.4E-01

Regular exercise (1:
yes vs. 0: no)

−0.0200 8.9E-01 −0.1783 2.6E-01 −0.4483 1.9E-02 −0.1664 1.5E-01 −0.0075 6.5E-02

Educational
attainment (an
integer of 1–7)

−0.1053 1.7E-01 −0.0318 7.1E-01 −0.2901 4.1E-03 −0.2421 7.4E-05 −0.0100 3.9E-06

Significant results with p < 0.05/(5 × 7) = 1.4E-3 were highlighted in bold font (5: Five measures of EAA; 7: Seven main covariates).
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