
Re-evaluating the impact of
alternative RNA splicing on
proteomic diversity

JeruManoj Manuel1,2, Noé Guilloy2, Inès Khatir1,2, Xavier Roucou2,3,4

and Benoit Laurent1,2*
1Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie-Centre
Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada, 2Department of Biochemistry and
Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC,
Canada, 3Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke,
QC, Canada, 4Quebec Network for Research on Protein Function Structure and Engineering, PROTEO,
Québec, QC, Canada

Alternative splicing (AS) constitutes amechanismbywhich protein-coding genes and
long non-coding RNA (lncRNA) genes producemore than a single mature transcript.
From plants to humans, AS is a powerful process that increases transcriptome
complexity. Importantly, splice variants produced from AS can potentially encode
for distinct protein isoforms which can lose or gain specific domains and, hence,
differ in their functional properties. Advances in proteomics have shown that the
proteome is indeed diverse due to the presence of numerous protein isoforms. For
the past decades, with the help of advanced high-throughput technologies,
numerous alternatively spliced transcripts have been identified. However, the low
detection rate of protein isoforms in proteomic studies raised debatable questions
on whether AS contributes to proteomic diversity and on how many AS events are
really functional. We propose here to assess and discuss the impact of AS on
proteomic complexity in the light of the technological progress, updated genome
annotation, and current scientific knowledge.

KEYWORDS

alternative splicing, RNA, isoform proteins, alternative proteins, ghost proteome

Introduction

Alternative splicing (AS) is a key process by which genes produce more than a single
mRNA, hence contributing to the transcriptome complexity. In this process, specific exons of a
gene can be included or excluded in the final RNA. Protein-coding genes and lncRNA genes can
generate multiple splice variants from one gene through AS (Mercer et al., 2011; Khan,
Wellinger, and Laurent 2021). From plants to humans, AS is a powerful mechanism that
increases transcriptome plasticity and can control the expression level of certain genes (Castle
et al., 2008; Gueroussov et al., 2015; Muhammad et al., 2022). Indeed, RNA splice variants
arising fromAS can exhibit different mRNA stabilities and structures. In humans, it is estimated
that 95% of genes undergo AS, which underscores its importance (Castle et al., 2008; Pan et al.,
2008; Nilsen and Graveley 2010). Three transcripts are produced in average from each protein-
coding gene (Khan, Wellinger, and Laurent 2021). Importantly, splice variants produced from
protein-coding genes can potentially encode for distinct protein isoforms. For a given gene, the
most expressed transcript is usually defined as coding for the canonical protein. This canonical
status is determined based on the transcript expression across different tissues of an organism,
the conservation of its exon combination with other species, and/or the existence of a functional
role for the protein (Osmanli et al., 2022). Compared to their canonical proteins, isoform
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proteins can lose or gain certain domains and, therefore, can differ in
their functional properties by the alteration of localization signals,
sequences for post-translational modifications, or interaction with
other proteins (Kriventseva et al., 2003; Stamm et al., 2005; Leoni et al.,
2011; Light and Elofsson 2013). Advances in proteomics have shown
that the proteome is indeed diverse due to the presence of numerous
protein isoforms. For the past decades, with the help of advanced high-
throughput technologies such as RNA sequencing (RNA-seq), a full
catalog of alternatively spliced transcripts has been established, but the
functional significance of most AS events remains still largely
unknown. Hence, the identification of numerous alternatively
spliced transcripts raises important and debatable questions: how
many AS events are real and not mere artefacts of splicing
machinery? How many AS products are functional? Does AS really
expand proteomic diversity? We propose here to re-evaluate and
discuss the impact of AS on proteomic diversity in the light of the
technological progress, updated genome annotation, and current
scientific knowledge.

Alternative splicing and proteomic
diversity: Two different visions

Whether AS is a major source of proteome complexity has always
been a contentious issue in the field. For example, on this debatable
question, Benjamin J. Blencowe and Michael L. Tress et al. have
mutually expressed their contrasting opinions few years ago (Tress
et al., 2017a; Blencowe 2017; Tress et al., 2017b).

Michael L. Tress and colleagues claimed that AS might not be the
key to proteome complexity. They argued that most genes only
expressed one main transcript across multiple cell lines (Gonzalez-
Porta et al., 2013), and hence, one single main protein isoform can be
detected by high-resolution mass spectroscopy (Abascal et al., 2015;
Ezkurdia et al., 2015). The abundance of alternatively spliced variants
identified from more than 100 different tissues at various
developmental stages was, therefore, in contrast with the low
number of multiple protein isoforms per gene. They found that
only 2% of genes had multiple isoform proteins (246 genes with
splice event-specific peptide evidence over 12,716 human genes for
which at least two peptides have been detected) (Abascal et al., 2015).
As few genes provided reliable evidence for more than one isoform, the
authors stated that alternative variants were not abundant at the
protein level (Tress, Abascal, and Valencia 2017a). One possible
reason could be the misidentification of a good peptide spectrum
with multiple assigned peaks. However, the discrepancies between
transcriptomics and proteomics experiments are difficult to explain
solely on a technical issue. They described that alternatively spliced
exons were not under selective pressure and are evolving neutrally
(Tress, Abascal, and Valencia 2017a). This observation suggested in
their opinion that AS events were not evolutionary innovations and
that most alternatively spliced variants were not functionally
important if translated.

In response to Tress et al. (2017a) and Tress et al. (2017b),
Benjamin J Blencowe agreed that AS events were mostly specific to
species and, hence, are under relaxed selection pressure (Blencowe
2017). However, he pointed out that even though alternatively spliced
transcripts were expressed at lower levels than their corresponding
main protein isoforms, it did not mean that these splice variants were
not translated or did not have a relevant function in a given cell or

tissue type. Blencowe argued that protein abundance was
predominantly related to transcript abundance (Liu, Beyer, and
Aebersold 2016) and that many splice variants identified by
transcriptomics have been detected in polysome fractions and were
likely translated (Weatheritt, Sterne-Weiler, and Blencowe 2016).
Finally, Blencowe stated that the low detection rate of protein
isoforms by LC-MS/MS cannot be interpreted since their
identification is limited by the coverage and sensitivity of the
technology. Indeed, the peptide number largely exceeds the number
of sequencing cycles provided using a mass spectrometer, thereby
limiting the detection of splice variants compared to a constitutively
expressed sequence (Blencowe 2017).

Different perspectives: Right and wrong
at the same time?

These two visions highlight the AS potential role in proteomic
diversity on two different ends of the spectrum. The limitations to the
available technology and the scientific knowledge at the time the
studies were conducted have potentially skewed the interpretation to
opposite ends. In this section, we discuss critical points that should be
considered to assess the impact of AS on proteomic diversity.

Alternative splicing: Real or artefact of
splicing machinery?

The widespread presence of alternatively spliced transcripts has raised
the question of whether they are artefacts of splicing machinery or have a
biological purpose (Graveley 2001).With the high complexity of eukaryotic
genes and the level of splice-site conservation, numerous AS events are
expected to happen along the processing of pre-mRNAs, regardless of their
functional relevance (Modrek and Lee 2002). However, having a reduced
fidelity of the spliceosome to promote proteome diversification could be
problematic for a cell since basic molecular mechanisms cannot afford to
jeopardize levels of essential proteins (Hsu and Hertel 2009). Consequently,
high degrees of specificity and fidelity are required for pre-mRNA splicing
to ensure the correct expression of critical functional mRNAs. Indeed, even
though the frequency of aberrant spliced transcripts varies widely among
loci, tissues, and species, the minimum splicing error rate in vertebrates is
around 0.1% aberrant transcripts per intron (Skandalis 2016). The
spliceosome is extremely accurate in selecting splice junctions with error
frequencies as low as one per 105 splicing events (Fox-Walsh and Hertel
2009). This estimation was only performed on specific transcripts
(i.e., UBA52, RPL23, HPRT, POLB, and TRPV1), so the extent to
which the spliceosome is error-prone remains to be globally assessed.
Although the spliceosome is prone to errors, mis-spliced mRNAs can be
degraded from cells through nonsense-mediated RNA decay (NMD) or
other RNA quality control steps (Saudemont et al., 2017; Garcia-Moreno
and Romao 2020). Therefore, the spliceosome is unlikely responsible for
generating artefactual splice variants.

An evolutionary perspective of alternative
splicing

The importance and functionality of AS events are often associated
on whether these events are conserved during evolution. Generally,
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95% of human multiexon genes undergo AS (Pan et al., 2008), but this
ratio is 60.7% in the fruit fly (Drosophila melanogaster) (Graveley et al.,
2011), 25% in the nematode (Caenorhabditis elegans) (Ramani et al.,
2011), and only 2.9% in the green alga (Volvox carteri)
(Kianianmomeni et al., 2014). Organisms with more complexity
tend to have a higher ratio of AS events. There is a strong positive
correlation between the number of unique cell types—referred as
organism complexity—and the number of AS events (Chen et al.,
2014). The study of the evolutionary landscape of AS over
~350 million years of evolution in vertebrates showed significant
differences in AS complexity among vertebrate species, with
primates harboring the highest complexity (Barbosa-Morais et al.,
2012; Merkin et al., 2012). These studies demonstrated that the
variation in gene expression was conserved at the tissue-specific
level, while AS was conserved at the species-specific level,
suggesting that AS diverged faster than gene expression. Moreover,
AS event types varied in their frequency among different organisms. In
animals, exon skipping is the most common AS event, which
represents around 50% of all AS events (Pan et al., 2008), while in
plants, intron retention is the most abundant AS event type (Reddy
et al., 2013). Most AS events have variable tissue specificities and
appear to be evolving neutrally (Wang et al., 2008). However, a subset
of AS events is conserved between species and displays tissue
specificity. For example, around 20% of alternative exons are
conserved between humans and mice (Modrek and Lee 2002;
Abascal et al., 2015). These conserved events are significantly
enriched in genes that function in common biological processes
and pathways. Alternative exons in these splicing “networks” allow
the tissue-specific rewiring of protein–protein interaction networks
(Buljan et al., 2012; Ellis et al., 2012; Irimia et al., 2014; Tapial et al.,
2017). Investigating these networks in different tissues and organs has
revealed that these conserved isoforms play a prominent role in the
regulation of neuronal development (Boutz et al., 2007; Jiao et al.,
2008; Laurent et al., 2015; Fiszbein et al., 2016), immunity (Zikherman
and Weiss 2008), and muscle differentiation (Nakka et al., 2018).
However, this evolutionary conservation does not mean that
alternative exons, which are not evolutionarily conserved, are not
significant and do not participate in proteomic diversity. These
isoforms could be expressed in a lineage-specific manner, or they
might have just recently evolved. For instance, the exonization of
intronic sequences such as repetitive elements is now widely
documented in many genomes. In primate and human genomes,
Alu elements are the most abundant transposable elements that can
generate new exons (i.e., Alu exons) and lead to novel spliced
transcripts (Krull, Brosius, and Schmitz 2005). Ribosome profiling
and proteomics data from human tissues and cell lines showed that
some Alu-derived exons can be translated and present in human
proteins (Lin et al., 2016), suggesting that some Alu exons can
contribute to proteomic diversity. However, in primates and
humans, the high number and complexity of AS events might not
reflect the functional expansion of the transcriptome but could be
explained by the nearly neutral theory (Ohta 1992). Weak selection
results in an excess of neutral or slightly deleterious mutations,
including those affecting AS regulation. A reduction of intron
splicing accuracy, mutations introducing cryptic splicing signals,
and transposable element insertion events can generate novel AS
events that produce non-functional spliced transcripts (Pickrell
et al., 2010). Since these mutations are not removed by purging
selection, they can persist and some of them can selectively give

novel functional entities, for example, AS events that become
functional.

Correlation between transcription and
translation

One common argument supporting AS contribution to proteomic
complexity is that protein abundance is predominantly related to
transcript abundance (Liu, Beyer, and Aebersold 2016). Therefore,
even low levels of alternatively spliced transcripts have a chance to be
translated into functional proteins. However, there are many
regulatory mechanisms that can balance the level of protein
expression: the translation rate, the degradation rate, the protein
synthesis rate, and transport (Vogel and Marcotte 2012; McManus,
Cheng, and Vogel 2015). Different subsets of genes exhibit different
types of regulation. At a steady state, mRNA levels correlate with
protein levels even during dynamic processes such as proliferation or
differentiation (Hsieh et al., 2012; Vogel and Marcotte 2012;
Kristensen, Gsponer, and Foster 2013; Li et al., 2014). However,
the mRNA levels of some genes are proxies for the corresponding
protein levels because of post-transcriptional and translational
mechanisms (Liu and Aebersold 2016; Liu, Beyer, and Aebersold
2016). For short-term adaptation such as stress response, the
regulation of the transcript level of specific genes is unadapted to
the cellular response and post-transcriptional mechanisms (e.g.,
increase of translation or increase of protein degradation) are
thereby more efficient. For instance, changes in the translation rate
could positively or negatively affect the mRNA–protein ratio (Lackner
et al., 2012; Cheng et al., 2016) and, hence, foster a significant
contribution of alternatively spliced transcripts to proteomic diversity.

Another argument supporting AS contribution to proteomic
complexity is that many splice variants identified by
transcriptomics have been detected in polysome fractions and,
hence, are likely to be translated (Weatheritt, Sterne-Weiler, and
Blencowe 2016). However, there may be significant levels of
alternatively spliced transcripts that do not pass co-translational
quality control mechanisms and are degraded. Aberrant
polypeptides and mRNAs can be detected and eliminated by
mRNA quality control systems while engaging the ribosome (Inada
2017). Because the ribosome has a central role in quality control
processes, alternatively spliced transcripts associated with the
ribosome are not necessarily translated into proteins.

What is new on proteomic diversity?

Re-evaluating the impact of AS on proteomic diversity necessitates
examining the newest developments in this field of investigation, more
specifically the technological progress, the update of genome
annotation, and the latest advances in scientific knowledge.

Technological and technical advances

As highlighted by Blencowe, LC-MS/MS has some limitations in
identifying all potential protein isoforms in a complex sample. The
number of peptides exceeds the number of sequencing cycles provided
using a mass spectrometer, and hence, the detection of alternative
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splice isoforms present in low quantities is limited and could
potentially explain why so few alternative isoforms can be detected
in proteomics experiments (Blencowe 2017). To address this issue, the
integration of RNA-seq with a data-independent acquisition method
acquiring all theoretical spectra has been implemented to reduce
peptide mapping uncertainty, improve quantitative accuracy, and
detect novel peptides (Liu et al., 2017; Jeong, Kim, and Paik 2018;
Agosto et al., 2019). This proteogenomic approach yielded high
reproducibility between technical and biological replicates and
enabled the quantification of a large fraction of the proteome with
quantitative accuracy (Poulos et al., 2020). Another limitation to the
detection of alternative splice isoforms is also attributed to enzymes
used to digest protein samples. The standard protease used in shotgun
proteomics is the trypsin that digests at K or R residues, hereby
producing short peptides (around six amino acids) and limiting the
proteome coverage and detection of isoform proteins (Wang et al.,
2018). Other proteases (e.g., chymotrypsin, LysC, LysN, AspN, GluC,
and ArgC) have been used to cover complementary fractions of the
proteome and improve the detection of specific peptides (Giansanti
et al., 2016). A combination of several enzymes could be the best
approach to reach comprehensive peptide identification.

Another challenge is to improve the identification of potentially
functional transcripts. The development of long-read sequencing
technologies has transformed the field since we can now obtain the
entire RNA sequence in a single read (Marx 2023). The full-length
transcript recovery and quantification helped advance transcript-level
analyses of AS processes, distinguish novel isoform changes, and
improve the ability to identify functional isoforms (Uapinyoying
et al., 2020; De Paoli-Iseppi, Gleeson, and Clark 2021; Hu et al.,
2021; Troskie et al., 2021; Wright et al., 2022). For instance, alternative
isoforms and tumor-specific isoforms arising from aberrant splicing
during liver tumorigenesis were recently identified by single-molecule
real-time long-read RNA sequencing (Chen et al., 2019). Another
study combined long-read sequencing with polysome profiling and
ribosome foot printing data to predict isoform-specific translational
status in the rat hippocampus (Wang X et al., 2019). Indeed, single-
molecule sequencing also provides the opportunity to improve
ribosome profiling quantification by adapting existing methods for
translation studies. For example, quantification of the translation of
individual transcript isoforms using ribosome-protected mRNA
fragments revealed evolutionary conserved impacts of differential
splicing on the proteome (Reixachs-Sole et al., 2020). Finally, the
single-cell revolution could also help address more accurately the
impact of AS on proteomic diversity. Single-cell differential splicing
analyses revealed novel differentially expressed splicing junctions (Liu
et al., 2021). Single-cell proteomics is now taking the center stage.
Novel quantitative single-cell proteomics approaches are capable of
consistently quantifying thousands of proteins per cell across
thousands of individual cells using limited instrument time and
display ultra-high sensitivity to detect changes in a single-cell
proteome (Schoof et al., 2021; Brunner et al., 2022). The
technology could be applied for detecting specific protein isoforms
in a particular cell type and, hence, could give unprecedented insights
into the isoform proteome in health and disease. Interestingly, there
are now integrated strategies that can profile single-cell proteome and
transcriptome in a single reaction, highlighting the promising
potential of highly multiplexed single-cell analyses (Genshaft et al.,
2016; Specht et al., 2021).

Finally, an additional challenge is that most proteomic data were
focused on the identification of proteins derived from alternatively
spliced transcripts in steady-state conditions (Blakeley et al., 2010;
Ezkurdia et al., 2012; Alfaro et al., 2017). However, most RNA splicing
changes have been associated with changes in physiological conditions
(e.g., stress response and hypoxia) or between normal and disease
states (Ly et al., 2014). Some studies have also addressed the issue of
whether targeted perturbations in RNA splicing patterns manifest as
changes in the proteomic composition. For example, by depleting a
spliceosome component (i.e., PRPF8) and using quantitative
proteomics, it was established that significant changes in RNA
relative abundance showed consistent changes in protein
production (Liu et al., 2017). Using a similar approach, it would be
interesting to determine more broadly how changes in AS for a subset
of transcripts reflect in differential protein expression and assess the
contribution of AS to proteomic complexity.

Genome annotation

Historically, mRNAs were defined as monocistronic and expected
to encode a single protein. In addition, open reading frames (ORFs)
shorter than 100 codons were automatically discarded from genome
annotations as proteins of this length were deemed too short to be
functional (Cheng et al., 2011). However, the annotation rules have
considerably limited the exploration of the proteome. Based on the
potential polycistronic nature of genes, a deeper ORF annotation from
an exhaustive transcriptome has predicted all possible alternative
ORFs (altORFs), which are defined as potential protein-coding
ORFs located either in UTRs of transcripts, in alternative reading
frames within the coding sequence of mRNAs, or in non-coding RNAs
(Samandi et al., 2017; Brunet et al., 2018; Brunet et al., 2019).
Numerous altORFs were identified to be both in-frame and out-of-
frame of annotated ORFs. Many annotated altORFs are conserved in
eukaryotes, suggesting that alternative proteins encoded from these
alternative start codons might have a function across species. The
community used ribosome profiling to capture all translation events
across the genome and confirmed the translation of many altORFs
(Bazzini et al., 2014; Ji et al., 2015; Samandi et al., 2017; Weaver et al.,
2019). Combined with large-scale proteomics, these studies have led to
the identification and functional relevance of alternative proteins
translated from many altORFs located within mature transcripts
(Saghatelian and Couso 2015; Na et al., 2018; Rothnagel and
Menschaert 2018; Orr et al., 2020). Many functional studies
showed that alternative proteins play central functions in the
maintenance of cellular homeostasis (Delcourt et al., 2018; Cardon
et al., 2020; Vergara et al., 2020; Brunet et al., 2021a; Cao et al., 2021;
Ichihara, Nakayama, and Matsumoto 2022). In humans, mutations
creating or deleting altORFs have been associated with
physiopathological conditions such as amyotrophic lateral sclerosis
(ALS) (Brunet et al., 2021b), craniofrontonasal syndrome (Tavares
et al., 2019), and thrombocythemia (Wiestner et al., 1998).
Interestingly, mutations found in cancers that are silent for
reference proteins can impact the expression of alternative proteins
resulting from the mutated mRNA, suggesting that alternative
proteins could be new biomarkers of pathologies (Child, Miller,
and Geballe 1999; Liu et al., 1999; Barbosa, Peixeiro, and Romao
2013; Sendoel et al., 2017; Schulz et al., 2018).
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FIGURE 1
Composition of the human transcriptome. (A) Pie chart showing the number of different transcripts from the human reference genome (GRCh38 v95).
Three types of transcripts are represented: canonical transcripts encoding a reference protein (blue), non-canonical transcripts generated through alternative
splicing that contain an ORF (orange), and transcripts that do not have an annotated ORF (gray). (B) Pie chart showing the proportion of different sub-types of
non-canonical transcripts containing an ORF. Three sub-types of transcripts are represented: non-canonical transcripts with both an alternative ORF
(altORF) and an isoformORF (blue), non-canonical transcripts with only an isoformORF (orange), and non-canonical transcripts with only an altORF (gray). (C)
Double pie chart representing the distribution of altORFs uniquely present in the canonical transcriptome (green) or the non-canonical transcriptome
(yellow). Using the OpenProt database (Brunet et al., 2019), the evidence obtained by mass spectrometry (MS) of altORF-related proteins is represented in
orange in the ring, while the absence of evidence is represented in blue.
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A major problem is that alternative proteins expressed from these
altORFs are usually not represented in the conventional protein databases
(Brunet, Leblanc, and Roucou 2020; Cardon, Fournier, and Salzet 2021).
Therefore, these alternative proteins represent a “ghost proteome” that
was not considered until recently. Data-driven tools such as the sORF
repository (Olexiouk, Van Criekinge, and Menschaert 2018) or the
OpenProt database (Brunet et al., 2021a) have now been developed to
offer a broader view of proteomes. The existence of thousands of altORFs
hidden within known coding sequence of mRNAs raises the question of
whether AS could also contribute to proteomic diversity through these
small alternative proteins. To address this question, we performed a
computational analysis using Ensembl human genome annotation
(GRCh38 v95) and the OpenProt database (version 1.6) to determine
the impact of AS on this hidden proteome. We identified a total of
206,808 transcripts including 29,048 transcripts defined as canonical as
they encode reference proteins (Figure 1A). These transcripts might
contain altORFs coding for alternative proteins. We also identified
154,364 transcripts (74.6%) that we categorized as non-canonical since
they derive from AS but are not referenced to encode for reference
proteins (Figure 1A). However, these transcripts may encode isoforms of
reference proteins and/or contain an altORF. Finally, we identified
23,396 transcripts (11.3%) with no ORF according to the OpenProt
database (Figure 1A). We next analyzed the non-canonical coding
transcriptome landscape. Among these 154,364 transcripts, we
identified 62,590 transcripts (40.5%) that contain both an ORF coding
for an isoform of a reference protein and an altORF (Figure 1B). We
found 80,074 transcripts (51.9%) only containing altORFs and
11,700 transcripts (7.6%) only containing an ORF coding for an
isoform of a reference protein (Figure 1B). Our analysis highlights that
AS generates numerous transcripts that do not encode for an isoform of a
reference protein, supporting the claim by Tress and colleagues that AS
might not be the key to proteomic complexity (Tress, Abascal, and
Valencia 2017a). However, these transcripts contain altORFs that can
potentially code for alternative proteins. These altORFs might also be
commonly present in the related canonical transcripts as they could be
located in the exons that are not directly affected by AS. We analyzed the
distribution of these altORFs and identified 71,144 altORFs that were
uniquely present in the canonical transcriptome (29,048 transcripts),
while 262,628 altORFs were uniquely present in the non-canonical
transcriptome (154, 364 transcripts) (Figure 1C). It represents an
average of 2.4 unique altORFs per canonical transcript and 1.7 unique
altORFs per non-canonical coding transcript. Using the OpenProt
database that encompasses 87 ribosome profiling and 114 mass
spectrometry studies from several species, tissues, and cell lines
(Brunet et al., 2019), we looked for mass spectrometry evidence for all
these altORFs. We found that 5,676 unique altORFs (7.98%) in canonical
transcripts had evidence in mass spectrometry, while 20,634 unique
altORFs (7.85%) in non-canonical transcripts produced alternative
proteins detected by mass spectrometry (Figure 1C). This result clearly
indicates that AS can indeed contribute to the human proteomic diversity
through the translation of altORFs within mature RNAs.

Contribution of long non-coding RNAs and
circular RNAs

Long non-coding RNAs (lncRNAs) represent an important part of
the transcriptome (Liu et al., 2005; Derrien et al., 2012). LncRNAs are
transcripts of 200 nucleotides or more that should not harbor protein-

encoding ORFs (Dinger et al., 2008; Khalil et al., 2009; Derrien et al.,
2012). Genome-wide translation profiling has recently revealed that small
ORFs identified in lncRNA genes can code for micropeptides,
polypeptides with a length of less than 100 amino acids essential for
cellular growth (Chen et al., 2020). Other small peptides produced from
lncRNAs have also been reported in functional studies (Odermatt et al.,
1997; MacLennan and Kranias 2003; Slavoff et al., 2013; Ruiz-Orera et al.,
2014; Pang,Mao, and Liu 2018;Wang J et al., 2019; Hartford Corrine and
Lal, 2020; Nita et al., 2021; Mise et al., 2022). Eukaryotic lncRNA genes
are usually composed of multiple exons with an average of 2.49 exons per
human lncRNA gene (Khan, Wellinger, and Laurent 2021). LncRNA
transcripts are efficiently spliced with a very similar distribution of AS-
type events to that of protein-coding transcripts (Khan, Wellinger, and
Laurent 2021). Hence, lncRNAs also generate multiple splice variants
whose functional relevance can be associated with RNA-based differential
functions (Khan,Wellinger, and Laurent 2021). Although the majority of
alternatively spliced lncRNAs are likely non-functional, some of them can
produce micropeptides. Indeed, specific splice variants of lncRNAs have
the unique capability to produce functional micropeptides that are not
encoded by the lncRNA of reference, that is, HOXB-AS3 lncRNA
(Huang et al., 2017), LINC00948 lncRNA (Anderson et al., 2015),
and LINC00665 lncRNA (Guo et al., 2020). Therefore, the proteomic
diversity also depends onAS of lncRNAs.With a total of 354,855 lncRNA
genes identified in 17 different species, the exact contribution of lncRNA
splice variants to the proteomic complexity remains to be precisely
determined and will be a major challenge in the field.

Circular RNAs (circRNAs) are produced from the back-splicing of
linear RNAs where upstream splice-acceptor sites are covalently
linked to downstream splice-donor sites to form an RNA loop
structure (Kristensen et al., 2019). CircRNAs can be conserved
during evolution and exhibit a tissue- or cell-specific expression
(Kristensen et al., 2019; Santer, Bär, and Thum 2019). CircRNAs
are functionally important as they act as microRNA decoys or
scaffolds that sequester specific proteins (Chen et al., 2020). Due to
their circular shape, circRNAs were not predicted to be translated, but
there is growing evidence that circRNAs containing small ORFs can
produce micropeptides that have a functional relevance (Legnini et al.,
2017; Pamudurti et al., 2017; Liang et al., 2019; Lei et al., 2020; Sinha
et al., 2022). It has been hypothesized that AS, particularly exon
skipping, drives the formation of circRNAs. However, in silico analyses
of AS and circRNA production in the human heart revealed that only
10% of circRNAs are produced from alternatively spliced exons, while
90% of circRNAs come from constitutive exons (Aufiero et al., 2018).
Therefore, it is possible that AS can also impact the proteomic
composition via circRNAs containing small ORFs, even though
this contribution probably remains limited since circRNAs are
described to largely be non-functional products of splicing errors
(Xu and Zhang 2021). Future studies on circRNA translation will help
uncover the circRNA-driven hidden proteome and enlighten on the
functional importance of these novel proteins.

Perspectives

Although MS combined with long-read sequencing and ribosome
profiling data has significantly improved the identification of new
isoform proteins, many MS fragment spectra still remain unidentified
and could potentially result from alternative proteins, micropeptides
translated from lncRNAs, circRNAs, or other RNAs (Makarewich and
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Olson 2017). Moreover, identifying isoform proteins or small proteins
using “bottom–up”MS is challenging. An alternative form of a protein
must have a tryptic peptide with more than eight amino acids in the
region that differs from the canonical protein to be identified correctly.
In addition, this peptide must be suitable for ionization and
fragmentation. For small proteins with less than 100 amino acids,
the chance to have unique detected peptides is strongly reduced
compared to large proteins. Size selection, enrichment of small-size
proteins, and careful selection of proteases may improve detection of
low abundant proteins andmicropeptides. Furthermore, matchingMS
spectra with custom databases will also help successfully identify novel
isoform proteins or small-size micropeptides. “Top–down”
proteomics, which characterizes intact proteins in complex
mixtures without prior digestion, could be a good alternative
approach. However, this method requires long ion accumulation,
activation, and detection times and has not been achieved on a
large scale due to lack of methods integrated with tandem MS.
Despite significant advances, identifying new isoform proteins in
the proteome complexity remains a challenge, and further
improvements (e.g., methodology, filtering criteria, and database)
will be required to substantially improve this situation in the future.

Determining which alternatively spliced transcripts produce proteins
with important biological functions (i.e., isoform proteins, alternative
proteins, and micropeptides) is the key to confirm the real impact of AS
on proteomic complexity. To date, relatively few isoform and alternative
proteins have been studied at the functional level, and the biological
significance of AS-derived proteome remains obscure. For some AS
events, functional consequences can be easily inferred based on changes
in the protein sequence. Some alternatively spliced transcripts can
encode protein isoforms, which lose or gain specific domains.
Interestingly, 50% of AS events in the human transcriptome preserve
the ORF and 65% of these frame-preserving splice variants are detected
in polysome fractions and, hence, are likely translated (Weatheritt,
Sterne-Weiler, and Blencowe 2016). This observation indicates that
alternatively spliced transcripts with no frame preservation are
potentially eliminated by quality control processes such as NMD.
Indeed, some AS events can lead to the inclusion of highly conserved
“poison” exons, which contain a premature truncation codon (Leclair
et al., 2020). Although these exons do not contribute to the protein-
coding capacity, their AS coupled to NMD plays an autoregulatory role
in gene expression and protein abundance. Hence, the functional
consequences of AS are not always obvious, and many studies failed
to detect any differences in the activity of isoform proteins. However, the
absence of functional relevance does not mean that there are no
functional differences. Therefore, determining the biological function
of a single AS event or anAS-derived product will be amajor challenge of
the proteomic era in the upcoming years.

AS also has a strong clinical relevance since dysregulations of AS
have been associated with many chronic diseases including cancer
(Ouyang et al., 2021; Zhang et al., 2021). It is, therefore, critical to
advance the functional characterization of the AS-derived proteome, but
the identification of AS events without regard to their contribution to
proteomic diversity is also essential. Indeed, it is key to further study any
potential AS alterations in diseases or pathological conditions as they
could be valuable prognostic and diagnostic biomarkers. Such
investigations could also provide tools for the development of
therapeutics. Two splicing-based therapeutic agents are currently
tested in clinical trials: small-molecule splicing modulators and
antisense oligonucleotides (ASOs). Small-molecule drugs modulate

the splicing activity by directly targeting the spliceosome and splicing
factors. Surprisingly, these compounds do not induce global splicing
inhibition but rather selective changes in AS for genes related to cell
proliferation and apoptosis (Folco, Coil, and Reed 2011; Vigevani et al.,
2017). However, potential problems of off-target effects require that AS
mechanisms are fully understood before further clinical use. In contrast,
ASOs are emerging as more secure therapeutic agents to modulate
splicing. ASOs can specifically neutralize splice sites, inhibit the
recruitment of specific RNA-binding proteins or inhibit the
expression of specific splice variants (Rinaldi and Wood 2018). For
instance, clinical applicability of ASO-based strategies has been successful
in the treatment of patients with spinal muscular atrophy (Hua et al.,
2008). ASOs could be used to specifically target specific disease-related
splice variants, but advancing knowledge on the functional roles of
isoform proteins is, hence, critical for efficient clinical interventions.
Regardless of its contribution to proteomic diversity, targeting AS is now
recognized an important area for clinical intervention.

Conclusion

On the contentious question “Does alternative splicing really expand
proteomic diversity?,” we can hereby affirm that AS indeed participates to
proteomic complexity in many ways, that is, isoform proteins, alternative
proteins, andmicropeptides. In the light of this re-evaluation, theAS-related
ghost proteome fills a gap and enlarges our vision of the current proteome.
Importantly, the remaining limitations on the original question should be
taken in consideration in future research endeavors. To continue assessing
AS contribution to proteomic complexity, deeper ORF annotation and
improvement of technologies and methodologies will be key to functional
proteomic discoveries. With a repertoire of alternatively spliced transcripts
now significantly expanded,more extensive functional studies onAS and its
related proteome are necessary to unravel their unexpected implications in a
variety of biological processes.
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