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In high-dimensional data analysis, the bi-level (or the sparse group) variable
selection can simultaneously conduct penalization on the group level and
within groups, which has been developed for continuous, binary, and survival
responses in the literature. Zhou et al. (2022) (PMID: 35766061) has further
extended it under the longitudinal response by proposing a quadratic inference
function-based penalization method in gene–environment interaction studies.
This study introduces “springer,” an R package implementing the bi-level variable
selection within the QIF framework developed in Zhou et al. (2022). In addition, R
package “springer” has also implemented the generalized estimating equation-
based sparse group penalization method. Alternative methods focusing only on
the group level or individual level have also been provided by the package. In this
study, we have systematically introduced the longitudinal penalization methods
implemented in the “springer” package.We demonstrate the usage of the core and
supporting functions, which is followed by the numerical examples and
discussions. R package “springer” is available at https://cran.r-project.org/
package=springer.
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1 Introduction

In gene–environment interaction studies, a central task is to detect important G×E
interactions that are beyond main G and E effects. Although the main environmental factors
are usually preselected and of low dimensionality, in the presence of a large number of G
factors, conducting G×E analysis can be performed in the variable selection framework.
Recently, Zhou et al. (2021a) surveyed the penalized variable selection methods for
interaction analysis, revealing the pivotal role that the sparse group selection played in
G×E studies. Specifically, determining whether a genetic factor, such as the gene expression
or SNP, is associated with the disease phenotype is equivalent to feature selection on the
group level of main G and G×E interactions with respect to that G factor. Further detection
of the main and/or interaction effects demands selection within the group. Such bi-level
variable selection methods have been extensively studies under continuous, binary, and
survival outcomes in G×E studies (Wu et al., 2018a; Ren et al., 2022a; Ren et al., 2022b; Liu
et al., 2022).
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Zhou et al. (2022a) have further examined the sparse group
variable selection for longitudinal studies where measurements on
the subjects are repeatedly recorded over a sequence of units, such as
time (Verbeke et al., 2014). In general, major competitors for the bi-
level selection include LASSO and group LASSO types of
regularization methods that only perform variable selection on
the individual and group levels, respectively (Wu and Ma, 2015).
Zhou et al. (2022a) have also incorporated two alternatives for
comparison under the longitudinal response based on the quadratic
inference functions (QIFs) (Qu et al., 2000). The sgQIF, gQIF, and
iQIF, denoting the penalized QIF methods accommodating sparse
group, group-, and individual-level selections, respectively, have
been thoroughly examined with different working correlation
structures modeling the relatedness among repeated
measurements. All these methods have been implemented in R
package springer.

In this article, we provide a detailed introduction of R package
springer, which has implemented not only the proposed and
alternative regularized QIF methods from Zhou et al. (2022a) but
also their counterparts based on the generalized estimating
equations (GEEs) (Liang and Zeger, 1986). The GEE,
originally proposed by Liang and Zeger (1986), captures the
intra-correlation of repeated measurements using their
marginal distributions and a working correlation matrix
depending on certain nuisance parameters. The QIF has
further improved upon GEE via bypassing the nuisance
parameters, leading to consistent and optimal estimation of
regression coefficients even when the working correlation is
misspecified (Qu et al., 2000).

GEE and QIF have been the two major frameworks for
developing high-dimensional penalization methods, especially
under the main effect models. For example, Wang et al. (2012)
have proposed a regularized GEE with the SCAD penalty. Cho and
Qu (2013) have considered the penalized QIF with penalty functions
including LASSO, adaptive LASSO, and SCAD. More recently, the
high-dimensional longitudinal interaction models have been
developed based on GEE and QIF (Zhou et al., 2019; Zhou et al.,
2022a). In terms of statistical software, R package PGEE, developed
by Inan and Wang (2017), has implemented the penalized GEE
methods from Wang et al. (2012). The package interep features the
mixture of individual- and group-level penalty under the GEE,
where selection on the two levels does not overlap and thus is
not a sparse group penalty (Zhou et al., 2019; Zhou et al., 2022b).

Package springer is among the first of statistical software to
systematically implement bi-level, group-level, and individual-level
regularization under both GEE and QIF. It focuses on the
longitudinal interaction models where the linear G×E interactions
have been assumed (Zhou et al., 2021a). The non-linear G×E
interactions usually demand the varying coefficient models and
their extensions (Wu and Cui, 2013; Wu et al., 2018b; Ren et al.,
2020). In longitudinal studies, Wang et al. (2008) and Tang et al.
(2013) have developed regularized variable selection based on
varying coefficient (VC) models under the least squares and
quantile check loss, respectively. They have assumed
independence for repeated measurements, so the within-subject
correlation has not been incorporated. Chu et al. (2016), on the
other hand, have considered the weighted least squares-based VC
models, where the weights have been estimated from a marginal

non-parametric model to account for intra-cluster interconnections.
R package VariableScreening has provided the corresponding R
codes and examples.

We have made R package springer publicly available on
CRAN (Zhou et al., 2021b). The core modules of the package
have been developed in C++ for fast computation. We organize
the rest of the paper as follows. Section 2 provides a summary of
bi-level penalization in longitudinal interaction studies. The
main and supporting functions in package springer are
introduced in Section 3. To demonstrate the usage of the
package, we present a simulated example in Section 4 and a
case study in Section 5. We conclude the article with discussions
in Section 6.

2 Materials and methods

2.1 The bi-level model for longitudinal G×E
studies

In a typical longitudinal setting with n subjects, the ith subject
(1#i#n) is repeatedly measured over ti time points, which naturally
results in ti repeated measurements that are correlated for the same
subject and are assumed to be independent with the measurements
taken from other subjects. Then, Yij denotes the phenotype measured
for the ith subject at time point j (1#j#ti).Gij � (Gij1, . . . , Gijp)⊤ and
Eij � (Eij1, . . . , Eijq)⊤ represent the p-dimensional vector of genetic
factors and the q-dimensional vector of environmental factors,
respectively. The bi-level G×E model associates the genetic and
environmental main effects and their interactions with the
repeatedly measured phenotypic response as follows:

Yij � μij + ϵij

� αn0 +∑q
h�1

αnhEijh +∑p
k�1

γnkGijk +∑p
k�1

∑q
h�1

unhkEijhGijk + ϵij

� αn0 +∑q
h�1

αnhEijh +∑p
k�1

γnk +∑q
h�1

unhkEijh
⎛⎝ ⎞⎠Gijk + ϵij

� αn0 +∑q
h�1

αnhEijh +∑p
k�1

η⊤nkZijk + ϵij,

(1)

where αn0 is the intercept, and αnh, γnk, and unhk denote the regression
coefficients of environmental and genetic main effects and
their interactions, correspondingly. We also define
ηnk � (γnk, un1k, . . . , unqk)⊤, and Zijk � (Gijk, Eij1Gijk, . . . ,
EijqGijk)⊤. Zijk is a (q + 1)-dimensional vector representing the
main and interaction effects with respect to the kth genetic factor.
For 1#j#ti, the random error ϵij has mean zero and a finite variance.
For convenience, the random error ϵi is assumed to be multivariate
normal as ϵi � (ϵi1, . . . , ϵiti)⊤ ~ Nti(0,Σi), where Σi is the covariance
matrix corresponding to the ith subject. From now on, we let ti = t.
Combined, we can write αn � (αn1, . . . , αnq)⊤, ηn � (η⊤n1, . . . , η⊤np)⊤,
and Zij � (Z⊤

ij1, . . . , Z
⊤
ijp)⊤. The length of the coefficient vector ηn is

p + pq. Then, model (1) can be equivalently expressed as

Yij � αn0 + E⊤
ijαn + Z⊤

ijηn + ϵij.

The (1 + q + p + pq)-dimensional vectors βn � (αn0, α⊤n , η⊤n )⊤ and
Wij � (1, E⊤

ij, Z
⊤
ij)⊤ are denoted, and a concise form of model (1) is

formed as follows:
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Yij � W⊤
ijβn + ϵij.

The aforementioned model provides a general formulation under
the longitudinal design in which both the response variable and
predictors are repeatedly measured. Here, the predictors are G and E
main effects and G×E interactions. It still works when only one or
neither of the G and E factors are repeatedly measured. In the real
data analyzed in Zhou et al. (2022a), both the G and E factors in the
interaction study do not vary across time.

2.2 An overview of interaction studies based
on GEE and QIF

R package springer (Zhou et al., 2021b) includes methods that
account for repeated measurements based on the GEE and QIF,
respectively. Here, we briefly review the two frameworks for
longitudinal interaction studies.

The generalized estimating equation has been proposed by
Liang and Zeger (1986) to account for intra-cluster correlations
using a marginal model by specifying the conditional expectation
and variance of each response, Yij, and the conditional pairwise
within-subject association among the vector of repeatedly measured
phenotypes. In the longitudinal interaction studies, the marginal
expectation of the response is E(Yij) � μij � WT

ijβn, and the
conditional variance of Yij is Var(Yij) = δ(μij), where δ(μij) is a
known function of the mean μij. Then, the score equation for the
longitudinal G×E model is defined as

∑n
i�1

zμi βn( )
zβn

V−1
i Yi − μi βn( )( ) � 0,

where Yi � (Yi1, . . . , Yit)⊤ and the covariance matrix for the intra-
subject association Vi is defined as Vi � A

1
2
i Ri(])A

1
2
i . Here, for the ith

subject, the diagonal matrix Ai is defined as Ai = diag{Var(Yi1), . . .,
Var(Yit)}, and the “working” correlation matrix Ri(]) depends on a
finite dimensional parameter vector ], characterizing the within-
subject association. We have μi(βn) � (μi1(βn), . . . , μit(βn))⊤. The
ratio term in the aforementioned score equation is equivalent to
Wi � (Wi1, . . . ,Wit)⊤. Then, the GEE estimator, β̂n, is the
corresponding solution.

The term “working” correlation in GEE is adopted to distinguish
Ri(]) from the true underlying correlation among intra-subject
measurements. Liang and Zeger (1986) have shown that when ]
is consistently estimated, the GEE estimator is consistent even if the
correlation structure is not correctly specified. However, there is a
cost under such misspecification, that is, the GEE estimator is no
longer efficient, and ] cannot be consistently estimated.

The quadratic inference function overcomes the disadvantage
of GEE by avoiding the direct estimation of ] (Qu et al., 2000). It has
also been shown that even when the correlation structure is
misspecified, the QIF estimator is still optimal. With the bi-level
modeling of G×E interactions under the longitudinal response, the
inverse of R(]) can be calculated by a linear combination of basis
matrices within the QIF framework. Specifically,
R(])−1 ≈ ∑m

k�1ckBk, where B1 is an identity matrix and B2, . . . ,
Bm are symmetric basis matrices with unknown coefficients c1, . . .
cm. The specifications of these basis matrices are dependent on the

types of working correlation (Qu et al., 2000). The score equations
can be rewritten as

∑n
i�1

W⊤
i A

−1
2

i c1B1 +/ + cmBm( )A−1
2

i Yi − μi βn( )( ). (2)

Accordingly, for the ith subject, we define the extended score
vector, ϕi (βn), for the bi-level G×E model as

ϕi βn( ) �
W⊤

i A
−1
2

i B1A
−1
2

i Yi − μi βn( )( )
.

.

.

W⊤
i A

−1
2

i BmA
−1
2

i Yi − μi βn( )( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

We then denote the extended score for all subjects as
ϕn(βn) � 1

n∑n
i�1ϕi(βn). The linear combination of all components

in ϕn(βn) directly leads to the estimation functions in Eq. 2. The
quadratic inference function based on the extended score ϕn(βn) is
defined as

Qn βn( ) � ϕn

⊤
βn( )Ωn βn( )−1ϕn βn( ),

where the sample covariance matrix of ϕi (βn) is
Ωn(βn) � 1

n∑n
i�1ϕi(βn)ϕi(βn)⊤. Minimizing the aforementioned

quadratic inference function yields β̂n, i.e., β̂n � argmin
βn

Qn(βn).
It should be noted that the minimization does not involve the
coefficients c1, . . . cm in Eq. 2.

2.3 Penalized QIF for the bi-level
longitudinal G×E interaction studies

R package springer (Zhou et al., 2021b) can perform penalized
sparse group variable selection based on both the GEE and QIF
framework in order to identify an important subset of main and
interaction effects that are associated with the longitudinal
phenotype. As QIF is an extension of GEE, we focus on the
penalized bi-level QIF in the main text and introduce GEE-based
methods in the Supplementary Appendix. The following regularized
bi-level QIF has been proposed in Zhou et al. (2022a):

U βn( ) � Q βn( ) +∑p
k�1

ρ ‖ηnk‖Σk; λ1, γ( ) +∑p
k�1

∑q+1
h�1

ρ |ηnkh|; λ2, γ( ), (4)

where the minimax concave penalty is ρ(t; λ, γ) � λ∫t

0
(1 − x

γλ)+dx
on [0,∞) with the tuning parameter λ and regularization parameter
γ (Zhang, 2010). The group-level penalty ρ(‖ηnk‖Σk

; λ1, γ) is imposed
on ‖ηnk‖Σk

, which is the empirical norm of ηnk, to determine whether
the kth SNP has any contribution to the variation in the repeatedly
measured phenotype. We define the empirical norm as ‖ηnk‖Σk

�
(ηnkΣkηnk)1/2 with Σk � n−1B⊤

k Bk, where Bk is the subset of the
design matrix corresponding to the interactions between the kth
genetic factor and all the E factors. If ηnk is estimated as a zero vector,
the kth SNP is not associated with the phenotypic response.
Otherwise, the individual-level penalty ρ(|ηnkh|; λ2, γ) further
selects the main and interaction effects that are associated with
the phenotype.
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Our choice of the baseline penalty function is the MCP, and the
corresponding first derivative function of MCP is defined as
ρ′(t; λ, γ) � (λ − t

γ)I(0≤ t≤ γλ).
The penalized QIF in (4) is the extension of bi-level variable

selection to longitudinal studies, which conducts selections of
important groups and individual members within the group
simultaneously. It is worth noting that the penalized GEE model
proposed by Zhou et al. (2019) does not perform within-group
selection. The shrinkage has been imposed on the individual level (G
main effect) and group level (G×E interactions) separately. Unlike
the model in (4), the terms selected on the individual level in the
study by Zhou et al. (2019) are not members of the group. Therefore,
it is not the sparse group selection, although in a loose sense, it can be
treated as a bi-level variable selection method.

A general form for the objective function of regularization
methods is “unpenalized objective function + penalty function”
(Wu and Ma, 2015). QIF and GEE are widely adopted
unregularized objective functions for repeated measurement
studies. LASSO and SCAD have been considered the penalty
functions in longitudinal studies, where selection of the main
effects are of interest (Wang et al., 2012; Cho and Qu, 2013;
Ma et al., 2013). To accommodate more complicated structured
sparsity incurred by interaction effects, the shrinkage components
in Eq. 4 adopts MCP as the baseline penalty to perform individual-
and group-level penalization simultaneously. It is commonly
recognized that the structure-specific regularization functions
are needed to accommodate different sparsity patterns. For
example, to account for strong correlations among predictors,
network-based variable selection methods have been developed
(Ren et al., 2019; Huang et al., 2021). The penalty functions have
been implemented in a diversity of R packages. For example, under
generalized linear models, the package glmnet has included LASSO and
its extensions, such as the ridge penalty and elastic net (Friedman et al.,
2010a). R package regnet has been developed for network-based
penalization under continuous, binary, and survival responses with
possible choices on robustness (Ren et al., 2017; Ren et al., 2019). With
the longitudinal response, R package PGEE has adopted SCAD penalty
for penalized GEE to select main effects (Inan and Wang, 2017), and
package interep has been designed in interaction studies based onMCP
(Zhou et al., 2022b).

2.4 The bi-level selection algorithm based
on QIF

Optimization of the penalized QIF in (4) demands the
Newton–Raphson algorithm that can update β̂n iteratively.
Specifically, the estimated coefficient vector β̂

g+1
n can be obtained

based on β̂
g

n at the gth iteration as follows:

β̂
g+1
n � β̂

g

n + V β̂
g

n( ) + nH β̂
g

n( )[ ]−1 P β̂
g

n( ) − nH β̂
g

n( )β̂gn[ ], (5)

where P(β̂gn ) and V(β̂gn ) can be obtained as

P β̂
g

n( ) � −zQ β̂
g

n( )
zβn

� −2 zϕn

⊤

zβn
Ωn

−1
ϕn β̂

g

n( ),
and

V β̂
g

n( ) � z2Q β̂
g

n( )
z2βn

� 2
zϕn

⊤

zβn
Ωn

−1zϕn

zβn
.

Moreover, H(β̂gn ) is a diagonal matrix consisting of derivatives of
both the individual-and group-level penalty functions, which is
defined as

H β̂
g

n( )�diag(0,...,0︸��︷︷��︸
1+q

,
ρ′ ‖η̂gn1‖Σ1 ;

����
q+1√

λ1 ,γ( )
ϵ+‖η̂gn1‖Σ1

,...,
ρ′ ‖η̂gn1‖Σ1 ;

����
q+1√

λ1 ,γ( )
ϵ+‖η̂gn1‖Σ1︸���������������������︷︷���������������������︸

1+q

,...,

ρ′ ‖η̂gnp‖Σp ;
����
q+1√

λ1 ,γ( )
ϵ+‖η̂gnp‖Σp

,...,
ρ′ ‖η̂gnp‖Σp;

����
q+1√

λ1,γ( )
ϵ+‖η̂gnp‖Σp︸���������������������︷︷���������������������︸

1+q

)+diag(0,...,0︸��︷︷��︸
1+q

,

ρ′ |η̂gn11|;λ2,γ( )
ϵ+|η̂gn11|

,...,
ρ′ |η̂g

n1 q+1( )|;λ2 ,γ( )
ϵ+|η̂g

n1 q+1( )|︸����������������︷︷����������������︸
1+q

,...,
ρ′ |η̂gnp1|;λ2 ,γ( )

ϵ+|η̂gnp1|
,...,

ρ′ |η̂g
np q+1( )|;λ2 ,γ( )

ϵ+|η̂g
np q+1( )|︸����������������︷︷����������������︸

1+q

),

where the small positive fraction ϵ is set to 10–6 to guarantee the
numerical stability when the denominator approaches zero. Since
the intercept and the environmental factors are not subject to
shrinkage selection, the first (1 + q) entries on the main diagonal of
the matrix are zero accordingly. With fixed tuning parameters,
β̂
g+1
n is updated iteratively following Eq. 5. The update stops when

the convergence criterion has been reached, that is, the difference
between the L1 norm of β̂

g+1
n and β̂

g

n is less than a cutoff (e.g.,
0.001). Numerical studies have shown that only a small to
moderate number of iterations are required upon convergence
(Zhou et al., 2022a).

The sparse group penalty (4) incorporates two tuning
parameters, λ1 and λ2, to determine the amount of shrinkage on
the group and individual level, correspondingly. An additional
regularization parameter γ further balances the unbiasedness and
convexity of MCP. The performance of the proposed regularized
QIF is insensitive under different choices of γ (Zhou et al., 2022a).
The best pair of (λ1, λ2) can be searched over the two-dimensional
grid through K-fold cross-validation. We first split the dataset into K
non-overlapping portions of roughly the same size and held out the
kth (k = 1, . . . ,K) fold as the testing dataset. The rest of the data are
used as training data to fit a regularized QIF by giving a specific pair
of (λ1, λ2). nk and n−k denote the index sets of subjects as training and
testing samples, respectively. We can compute the prediction error
on testing data as

PE−k λ1, λ2( ) � 1
|n−k| ∑

i∈n−k
Yi − μi β̂nk( )( )2,

where |n−k| is the size of testing data, and β̂nk is the regularized
coefficient obtained using the training data. The computation cycles
through each of the K fold for k = 1, 2. ., K, yielding the following
cross-validation error:

CV λ1, λ2( ) � 1
K

∑K
k�1

PE−k λ1, λ2( ). (6)

The cross-validation value with respect to each pair of (λ1, λ2) can be
retrieved across the entire two-dimensional grid. The optimal pair of
tunings is corresponding to the smallest CV value. Details of the
algorithm are given as follows:
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1 The two-dimensional grid of (λ1, λ2) is provided with an
appropriate range.
2 Under the fixed (λ1, λ2),

(a) β̂
0

n is initialized using LASSO
(b) at the (g + 1)th iteration, V(β̂gn ), H(β̂gn ), P(β̂

g

n ) is
computed and

(c) β̂
d+1
n is updated according to Eq. 5.

(d) The cross-validation error is calculated using Eq. 6.
3 Step 2 is repeated for each pair of (λ1, λ2) until convergence.
4 The optimal (λ1, λ2) is found under the smallest cross-
validation error. The corresponding β̂n is reported.

The validation approach is a popular alternative of tuning
selection to bypass the computational intensity of cross-
validation. When the data-generating model is available, the
independent testing data with much larger size can be readily
generated. Then, the prediction performance of the fitted sparse
group PQIF model under (λ1, λ2) can be assessed on the testing data
directly. On the contrary, in cross-validation, the prediction error
can only be obtained after cycling through all the K folds as shown
by Equation 6.

3 R package springer

Package springer includes two core functions, namely,
springer and cv.springer. The function springer can
fit both GEE- and QIF-based penalization models under
longitudinal responses in G×E interaction studies. The function
cv.springer computes the prediction error in cross-validation.
Moreover, the package also includes supporting functions
reformat, penalty, and dmcp, which have been developed
by the authors. To speed up computation, we have implemented the
Newton–Raphson algorithms in C++. The package is thus
dependent on R packages Rcpp and RcppArmadillo

(Eddelbuettel and François, 2011; Eddelbuettel, 2013;
Eddelbuettel and Sanderson, 2014).

3.1 The core functions

In package springer, the R function for computing the penalized
estimates under fixed tuning parameters is

springer (clin = NULL,e, g, y, beta0, func, corr, structure, lam1,
lam2, maxits = 30,tol = 0.001).

The clinical covariates and environmental and genetic factors
can be specified by the input arguments clin, e, and g,
respectively. This is different from packages conducting feature
selection for the main effects, such as glmnet and PGEE, where
the entire design matrix should be used an input (Friedman et al.,
2010a; Inan and Wang, 2017). In interaction studies, the design
matrix has a much more complicated structure. Our package is user
friendly in that users only need to provide the clinical, g, and e
factors, and then the function springer will automatically
formulate the design matrix tailored for interaction analysis. The
clinical covariates are not involved in the interactions with G factors
and are not subject to selection. The argument beta0 denotes the
initial value of β̂

0

n, which is used at the first iteration of the

Newton–Raphson algorithm. Typical choices of beta0 include
the LASSO or ridge estimates under the cross-sectional
phenotype measured at one of the time points or the average of
the within-subject phenotypic measurements.

The character string argument func specifies one of the two
frameworks (GEE and QIF) to be used for regularized estimation.
One of the three working correlations fromAR-1, exchangeable, and
independence can be called through the input argument corr. For
example, corr = “exchangeable,” corr = “AR-1,” and
corr = “independence” denote exchangeable, AR-1, and
independent correlation, respectively. In addition to the bi-level
structure, this package has also included sparsity structures on the
group and individual level, respectively. To use the bi-level PQIF
under the exchangeable working correlation proposed by Zhou et al.
(2022a), we need to specify func = ”QIF,” structure = ”bi-

level,” and corr = ”exchangeable” at the same time. It is
worthwhile noting that the bi-level selection requires two tuning
parameters to impose sparsity. When structure = ”group” or
structure = ”individual,” only one of the two tuning
parameters lam1 and lam2 is needed.

The Newton–Raphson algorithms implemented in the package
springer proceed in an iterative manner. The input argument
maxits provides the maximum number of iterations
determined by the users. We can supply the small positive
fraction ϵ that is used to ensure the stability of the algorithm
through argument tol.

In package springer, function cv.springer performs cross-
validation based on the regularized coefficients provided by
springer. The R code is

cv.springer (clin = NULL,e, g, y, beta0, lambda1, lambda2,
nfolds, func, corr, structure, maxits = 30,tol = 0.001).

The function cv.springer calls springer to conduct
cross-validation over a sequence of tuning parameters and report
the corresponding cross-validation error. Therefore, it is not
surprising to observe that the two functions share a common
group of arguments involving the input of data and specifications
on the penalizationmethod used for estimation. Unlike the scalars of
lam2 and lam2 in function springer, the arguments lambda1
and lambda2 are user-supplied sequences of tuning parameters.
For bi-level selection, cv.springer calculates the prediction
error across each pair of tunings determined by lambda1 and
lambda2. The number of folds used in cross-validation is specified
by nfolds.

3.2 Additional supporting functions

Package springer also provides multiple supporting functions in
addition to the core functions. As MCP is the baseline penalty
adopted in all the penalized variable selection methods implemented
in the package, the function dmcp denotes its first-order derivative
function used in the formulation under the Newton–Raphson
algorithm. The function penalty determines the type of sparse
structure (individual-, group-, or bi-level) imposed for variable
selection. Both the group- and bi-level penalizations involve the
empirical norm ‖ηnk‖Σk

. In practice, the form of Σk is not unique. For
example, Σk can be chosen as an identity matrix, and then ‖ηnk‖Σk

reduces to an L2 norm. While the alternatives might be equally
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applicable, the default choice of Σk in package Springer is in the form
discussed in Section 2.3.

It is assumed that repeated measurements on the response are
given in the wide format with the dimension of 100 by 5, where
100 is the sample size and 5 is the number of time points, then we
can use function reformat to convert the wide format to long
format with dimension 500 by 1. Similarly, the design matrix under
sample size 100 and 50 main and interaction effects has a
dimensionality of 100 by 50, if they do not vary across time.
Then, reformat will return a 500 by 51 wide format matrix
including the column of intercept. An “id” column will also be
generated by reformat to show the time points corresponding to
500 columns. Moreover, a simulated dataset, dat, is provided to
demonstrate the penalized selection in the proposed longitudinal
study. We describe more details in the next section.

4 Simulation example

In this section, we demonstrate the fit of bi-level selection using
package Springer based on simulated datasets. Although model (1) is
general in the sense that both the response and predictors are
repeatedly measured, it can be reduced to the case where the
predictors, consisting of the clinical covariates and environmental
and genetic factors, are cross-sectional under the longitudinal
response. Model (1) is flexible in which the predictors can have a
mixture of cross-sectional and longitudinal measurements. For
instance, the repeated measurements are only taken on E factors
and not on clinical or G factors.

The motivating dataset for the sparse group variable selection
developed in Zhou et al. (2022a) can be retrieved from the
Childhood Asthma Management Program (CAMP) in our case
study where the clinical, E, and G factors are not repeatedly
measured (Childhood Asthma Management Program Research
Group, 1999; Childhood Asthma Management Program Research
Group Szefler et al., 2000; Covar et al., 2012). Therefore, the current
version (version 0.1.7) of package springer only accounts for such a
case. It is worth noting that technically it is not difficult to extend the
package to repeatedly measured predictors because the only
difference lies in using time-specific measurements rather than
repeating the cross-sectional measurements across all the time
points in the estimation procedure. We will discuss potential
extensions of the package at the end of this section. In the
following simulated example, the longitudinal responses are
generated together with cross-sectional predictors. The data-
generating function is provided as follows:

Data <- function (n,p,k,q)
{
y = matrix (rep (0,n*k),n,k)
sig = matrix (0,p,p)
for (i in 1: p) {
for (j in 1: p) { sig [i,j] = 0.8̂abs (i-j) }
}
# Generate genetic factors
g = mvrnorm (n,rep (0,p),sig)
sig0 = matrix (0,q,q)
for (i in 1: q) {
for (j in 1: q) { sig0 [i,j] = 0.8̂abs (i-j) }

}
# Generate environmental factors
e = mvrnorm (n,rep (0,q),sig0)
E0 = as.numeric (g [,1]<=0)
E0 = E0+1
e = cbind (E0,e [,-1])
e.out = e
e1 = cbind (rep (1,dim(e)[1]),e)
for (i in 1:p) { e = cbind (e,g [,i]*e1) }
x = scale(e)
ll = 0.3
ul = 0.5
coef = runif (q+25,ll,ul)
mat = x [,c (1:q, (q+1), (q+2), (q+6), (q+4), (2*q+2),

(2*q+3), (2*q+7),
(2*q+5), (3*q+3), (3*q+4), (3*q+8), (3*q+6),
(4*q+4), (4*q+5), (4*q+9), (4*q+7), (5*q+5),
(5*q+6), (5*q+10), (5*q+8), (6*q+6), (6*q+7),
(6*q+11), (6*q+9), (7*q+7))]
for (u in 1:k){ y [,u] = 0.5 + rowSums (coef*mat) }
#Exchangable correlation for repeated measurements
sig1 = matrix (0,k,k)
diag (sig1) = 1
for (i in 1: k) {
for (j in 1: k) { if (j != i){sig1 [i,j] = 0.8} } }
error = mvrnorm (n,rep (0,k),sig1)
y = y + error
dat = list (y = y,x = x,e = e.out, g = g, coef = c (0.5,coef))
return (dat)
}
In the aforementioned codes, n, p, and q represent the sample

size, dimension of the genetic factors, and environmental factors,
respectively. The number of repeated measurements is k. Now, we
simulate a dataset with 400 subjects, 100 G factors, and 5 E factors.
The number of repeated measurements is set to 5. The correlation
coefficient ρ of the compound symmetry working correlation
assumed for longitudinal measurements is 0.8. In the data-
generating function, coef represents the vector of non-zero
coefficients, and mat is the part of design matrix corresponding
to the main and interaction effects associated with non-zero
coefficients. With (n, p, q) = (400, 100, 5), coef is a vector of
length 30, and mat is a 400-by-30 matrix. The R code coef*mat
denotes element-wise multiplication by multiplying the non-zero
coefficient to the corresponding main or interaction effects.
Therefore, rowSums(coef*mat) returns a 400-by-1 vector.
The code “0.5 + rowSums(coef*mat)” stand for the
combined effects from those important main and interaction
effects, and the intercept, with 0.5 being the coefficient multiplied
to the intercept. We listed the R codes and output in the following
section:

library (MASS)
library (glmnet)
library (springer)
set.seed (123)
n.train = n = 400
p = 100; k = 5; q = 5
dat.train = Data(n.train,p,k,q)
y.train = dat.train$y
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x.train = dat.train$x
e.train = dat.train$e
g.train = dat.train$g
> dim(y.train)
[1] 400 5
> dim(x.train)
[1] 400 605
> dim(e.train)
[1] 400 5
> dim(g.train)
[1] 400 100
In addition, the R codes dat.train$coef saves the non-zero

coefficients used in the data-generating model. By setting the seed,
we can reproduce the data generated through calling the Data. A
total of 100 genetic factors and 5 environmental factors lead to a total
of 605 main and interaction effects, excluding the intercept. We first
obtain the initial value of the coefficient vector β̂0 by fitting ridge
regression under the univariate response taken from a single time
point. Other choices of initial values include fitting ridge regression
or LASSO under the average of within-subject measurements, which
accommodate the case of unbalanced data, where a proper single
point might be difficult to determine. In general, the regularized
estimates remain relatively insensitive to different choices of initial
value β̂0, as long as β̂0 is reasonable, in other words, not extremely far
away from the optimal solution.

x.train1 = cbind (data.frame (rep (1,n)),x.train)
x.train1 = data.matrix (x.train1)
lasso.cv = cv.glmnet (x.train1,y.train [,1],alpha = 0,nfolds = 5)
alpha = lasso.cv$lambda.min/2
lasso.fit = glmnet (x.train1,y.train [,1],
family = "gaussian",alpha = 0,nlambda = 100)
beta0 = as.matrix (as.vector (predict (lasso.fit,
s = alpha, type = "coefficients"))[-1])
With the initial value obtained previously, we call function

cv.springer to calculate cross-validation errors
corresponding to the pair of tuning parameters (lambda1 and
lambda2). The number of fold is 5 by setting nfolds to 5 in the
following codes. Then, a penalized bi-level QIF model with an
independence correlation has been fitted to the simulated data
with the optimal tunings. The fitted regression coefficients are
saved in fit.beta.

lambda1 = seq (0.025,0.1,length.out = 5)
lambda2 = seq (1,1.5,length.out = 3)
tunning = cv.springer (clin = NULL, e.train, g.train, y.train,

beta0,
lambda1, lambda2, nfolds = 5, func = "QIF",
corr = "independence",structure = "bilevel",
maxits = 30, tol = 0.1)
lam1 = tunning$lam1
lam2 = tunning$lam2
> lam1
[1] 0.0625
> lam2
[1] 1
> tunning$CV

[,1] [,2] [,3]
[1,] 14.873142 15.37916 16.02844
[2,] 12.282850 13.23239 13.81465

[3,] 9.663655 10.62635 11.96531
[4,] 10.133435 11.00219 12.25365
[5,] 11.237012 11.79566 13.17813
fit.beta = springer (clin = NULL, e.train, g.train, y.train, beta0,
func = "QIF",corr = "independence",
structure = "bilevel",lam1,lam2,maxits = 30,tol = 0.1)
To assess the model’s performance, we will compare the

fitted coefficient vector fit.beta with the true coefficient
vector, which is used to simulate the response variable in
Data. Since the codes dat.train$coef only report the
true non-zero coefficient, the resulting vector has a length
much less than fit.beta, which includes zero coefficient.
Therefore, we first retrieve locations of non-zero effects in the
coefficient vector used to generate the longitudinal response. In
the following codes, tp, tp.main, and tp.interaction

represent the locations for all the non-zero effects, that is, the
column number of the corresponding effects in the design
matrix. Although the coefficients are randomly generated
from uniform distributions, the locations of the non-zero
effects are fixed. In total, there are 30 non-zero effects,
consisting of 5 environmental factors, 7 genetic factors, and
18 gene–environment interactions.

## non-zero effects without intercept
tp = c(1:q, (q+1), (q+2), (q+6), (q+4), (2*q+2), (2*q+3),

(2*q+7), (2*q+5),
(3*q+3), (3*q+4), (3*q+8), (3*q+6), (4*q+4), (4*q+5),

(4*q+9), (4*q+7),
(5*q+5), (5*q+6), (5*q+10), (5*q+8), (6*q+6), (6*q+7),

(6*q+11),
(6*q+9), (7*q+7))+1
## non-zero main effects
tp.main = c((q+2), (2*q+3), (3*q+4), (4*q+5), (5*q+6),

(6*q+7), (7*q+8))
## non-zero interaction effects
tp.interaction = c((q+2), (q+6), (q+4), (2*q+3),

(2*q+7), (2*q+5),
(3*q+4), (3*q+8), (3*q+6), (4*q+5), (4*q+9), (4*q+7), (5*q+6),

(5*q+10),
(5*q+8), (6*q+7), (6*q+11), (6*q+9))+1
We run the codes in R console to evaluate the accuracy in

parameter estimation. The precision in estimating the regression
coefficients has been assessed based on TMSE, MSE, and NMSE,
respectively. The mean squared error of the fitted coefficient vector
fit.beta with respect to the true one, denoted as TMSE, is
defined as

TMSE � 1
1 + p + q + pq

‖β̂n − βn‖,

where β̂n corresponds to fit.beta and βn is the true regression
coefficient vector used to generate the response in the data-
generating function. In this simulation example, there are
100 genetic factors (p = 100) and 5 environmental factors (q = 5),
resulting in a coefficient vector of length 606, including the intercept. To
observe the estimation accuracy on a finer scale, we further dissect βn
into the component corresponding totp and calculate themean square
error with respect to the counterpart from fit.beta, denoted as MSE.
Themean square error is computed based on the rest of fit.beta, and
βn is defined as NMSE. The R codes and output are listed as follows:
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coeff = matrix (fit.beta, length (fit.beta),1)
coeff.train = rep (0,length (coeff))
coeff.train [tp] = dat.train$coef[-1]
TMSE = mean ((coeff-coeff.train)̂2)
MSE = mean ((coeff [tp]-coeff.train [tp])̂2)
NMSE = mean ((coeff [-tp]-coeff.train [-tp])̂2)
> TMSE
[1] 0.003455488
> MSE
[1] 0.06563788
> NMSE
[1] 0.0002168221
The dat.train$coef only consists of the non-zero

coefficients used to generate longitudinal responses in the data-
generating model; therefore, its dimension is not the same as
fit.beta as the estimated regression coefficient vector is sparse
and includes zero coefficient, thus having a much larger dimension.
In regularized variable selection, the non-zero coefficients from
fit.beta will not be identical to those in dat.train$coef

due to the shrinkage estimation in order to achieve variable
selection. The aforementioned output shows the estimation errors
in terms of TMSE, MSE, and NMSE, respectively. The NMSE is much
smaller than the MSE since it computes the MSE with respect to zero
coefficients.

In addition to evaluating the accuracy in parameter
estimation, we also examine the performance in identification
in terms of number of true- and false-positive effects.
Specifically, by comparing the locations of the non-zero
components in fit.beta and the true coefficient vector used
in the data-generating model, we can report the total number of
true- and false-positive effects, such as TP and FP. The
identification results have also been summarized for the main
genetic effects (TP1 and FP1) and G×E interactions (TP2 and
FP2). The locations of important effects saved in tp obtained
from the chunk of R codes previously also include the
environmental main effects that are not subject to selection.
When calculating the number of true and false positives in the
next section, we only count the effects that are under selection,
corresponding to the 7 G factors and 18 G×E interactions. The
output is provided in the following section.

coeff [abs (coeff) < 0.1] = 0
coeff [1: (1 + q)] = 0
ids = which (coeff != 0)
TP = length (intersect (tp,ids))
res = ids [is.na (pmatch (ids,tp))]
FP = length (res)
coeff1 = rep (0,length (coeff))
coeff1 [1: (1 + q)] = coeff [1: (1 + q)]
for (i in (q+2):length (coeff)) {
if ( i%%(q+1)==1) coeff1 [i]= coeff[i]

}
ids1 = which (coeff1 != 0)
TP1 = length (intersect (tp.main,ids1))
res1 = ids1 [is.na (pmatch (ids1,tp.main))]
FP1 = length (res1)
coeff2 = coeff
coeff2 [1: (1 + q)] = 0
for (i in (q+2):length (coeff)) {

if ( i%%(q+1)==1) coeff2[i] = 0

}
ids2 = which (coeff2 != 0)
TP2 = length (intersect (tp.interaction,ids2))
res2 = ids2 [is.na (pmatch (ids2,tp.interaction))]
FP2 = length (res2)
> TP
[1] 21
> FP
[1] 3
> TP1
[1] 6
> FP1
[1] 0
> TP2
[1] 15
> FP2
[1] 3
Results on true and false positives indicate that six out of the

seven important main effects have been identified, and 15 out
of the 18 interactions used in the data-generating model have
been detected. The number of identified false-positive effects is
three.

In addition to extensive simulation studies that demonstrate the
merit of the proposed sparse group variable selection in longitudinal
studies, Zhou et al. (2022a) have also considered scenarios in the
presence of missing measurements (Rubin, 1976; Little and Rubin,
2019). Under the pattern of missing completely at random (MCAR),
the penalized QIF procedure can still be implemented by using a
transformation matrix to accommodate missingness. Such a data-
transformation procedure will be incorporated in the release of
package springer in the near future.

The current version of package springer (version 0.1.7) has
implemented three working correlation matrices, independence,
AR-1, and exchangeable, for individual-, group-, and bi-level
variable selection under continuous longitudinal responses in
both the GEE and QIF frameworks. The future improvement
includes incorporating other working correlations, such as the
unstructured working correlation. A question worth exploring is
the computational feasibility of unstructured working correlation
under QIF as the large number of covariance parameters will
potentially lead to much more complicated extended score
vectors, incurring prohibitively heavy computational cost for
high-dimensional data. We will also consider extensions to
discrete responses such as binary, count, and multinomial
responses, and longitudinally measured clinical,
environmental, and genetic factors, especially after these data
are available.

5 Case study

We adopt package springer to analyze the high-dimensional
longitudinal data from the Childhood Asthma Management
Program (Childhood Asthma Management Program Research
Group, 1999; Childhood Asthma Management Program Research
Group Szefler et al., 2000; Covar et al., 2012). Children with age
between 5 and 12 years, who are diagnosed with chronic asthma
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have been included in the study and monitored through follow-up
visits over 4 years. The response variable is the forced expiratory
volume in one second (FEV1), which indicates the amount of air one
can expel from the lungs in one second. We focus on FEV1 that has
been repeatedly measured during the 12 visits after the application of
treatment ( budesonide, nedocromil, and Control). For our
gene–environment interaction analysis, the G factors are the
single nucleotide polymorphisms, and E factors consist of
treatment, age, and gender. For the demonstration purpose, we
target SNPs based on the genes from chromosome 6 and the Wnt
signaling pathway at the same time, resulting in a total of 203 SNPs.
Following the NIH guideline, we cannot share the data publicly or
disclose them in the R output. The data can be applied from dbGap
through the accession number phs000166.v2.p1.

# the longitudinal FEV1
> dim(ylong)
[1] 438 12
# environmental factors (treatment, age, gender)
> dim(e)
[1] 438 3
# genetic factos (SNP)
> dim(X)
[1] 438 203
Both the environmental and genetic factors are cross-sectional.

For example, as shown previously, each of the three E factors is a
438-by-1-column vector, forming a 438-by-3 matrix. We obtained
the optimal tuning parameters using function cv.springer. One
can start the process by defining a grid interval for each tuning
parameter. We applied the cv.springer function with
estimating function type func = ”QIF” and working
correlation matrix type corr = ”exchangeable” as follows:

> library (springer)
> #define input arguments
> lambda1 = seq (0.5,1,length.out = 5)
> lambda2 = seq (3,3.5,length.out = 5)
> #run cross-validation
> tunning = cv.springer (clin = NULL, e, X, ylong, beta0,

lambda1,

TABLE 1 Identified main and interaction effects based on the genes from the
Wnt signaling pathway on chromosome 6.

SNP Gene Treatment Age Gender

rs10948011 TAF8 0 0 0 −0.020

rs33954419 USP49 −0.012 0 0 0

rs12194513 TAF8 0.005 0 0 0

rs205339 MAP3K7 0.016 0 0 0

rs11970772 CCND3 0 0.102 0 0.069

rs1018155 DAAM2 0 0 −0.169 0

rs913574 DAAM2 0 −0.020 0 0

rs13191407 MAP3K7 0 0 −0.009 −0.023

rs2475802 MOCS1 0.095 0 0 0

rs805300 BAG6 −0.110 0 0 0

rs1475114 MOCS1 −0.047 0 0 0

rs1018156 DAAM2 −0.045 0 0 0

rs4607417 CCND3 0 −0.108 0 0

rs284513 MAP3K7 0 0.040 0.075 0.011

rs17812916 RSPO3 0 0.021 0 0.208

rs2077102 BAG6 0 0 −0.266 −0.016

rs3218100 CCND3 0.003 0 0 0

rs2242655 C6orf47 −0.046 0 0 0

rs2493835 TAF8 0.056 0 0 0

rs9491700 RSPO3 0.009 0 0 0

rs3008819 MOCS1 −0.021 0 0 0

rs2255741 PRRC2A 0.066 −0.021 0 0

rs3003931 DAAM2 0.004 0 0 0

rs791048 MAP3K7 0 0.080 0 0

rs9285458 RSPO3 0 0 −0.049 −0.078

rs3008801 DAAM2 −0.072 0 0 0

rs9462082 PPARD 0.026 0 0 0

rs166920 MAP3K7 −0.009 0 0 0

rs1144159 MAP3K7 0.091 0 0 0

rs284512 MAP3K7 0 −0.101 0 0

rs719726 RSPO3 0 −0.028 0.020 0.130

rs6916203 DAAM2 0 0 0 0.010

rs2504097 DAAM2 0 0 0 −0.034

rs4713858 FANCE 0 0 −0.139 0.157

rs1936789 RSPO3 0 −0.030 −0.044 0.072

rs1923084 MAP3K7 0 −0.163 0 0.315

rs9462769 C6orf132 0 0 −0.094 −0.138

rs11759168 DAAM2 0.173 0.027 0 −0.174

(Continued in next column)

TABLE 1 (Continued) Identified main and interaction effects based on the
genes from the Wnt signaling pathway on chromosome 6.

SNP Gene Treatment Age Gender

rs707917 ABHD16A −0.096 0 0.196 0.001

rs9267531 CSNK2B −0.141 0 0 0

rs9394630 DAAM2 0.116 0 0 0

rs2504790 DAAM2 −0.133 0 0 0

rs2750456 MAP3K7 −0.052 0 0 0

rs3003933 DAAM2 −0.073 0 0 0

rs2984659 MOCS1 0.004 0 0 0

rs282065 MAP3K7 0.076 0 0 0

rs2504805 DAAM2 0 0 0 0.122

rs1046080 PRRC2A 0 0 −0.184 0
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+ lambda2, nfolds = 5, func = "QIF”, corr = "exchangeable",
+ structure = "bilevel”, maxits = 30, tol = 0.001)
> #print the results
> print (tuning)
$lam1
[1] 0.5
$lam2
[1] 3
$CV

[,1] [,2] [,3] [,4] [,5]
[1,] 0.2827513 0.2838438 0.2846629 0.2855799 0.2865723
[2,] 0.2858653 0.2867847 0.2877162 0.2885925 0.2894861
[3,] 0.2884425 0.2897974 0.2906588 0.2916546 0.2925146
[4,] 0.2919309 0.2927759 0.2936686 0.2945191 0.2954699
[5,] 0.2948042 0.2954983 0.2962844 0.2971886 0.2979241
The optimal tuning parameters within the range have been

selected as 0.5 and 3 for lambda1 and lambda2, respectively. We
have then applied the springer function to the dataset using the
optimal tuning parameters as follows:

> #fit the bi-level selection model
> beta = springer (clin = NULL, e, X, ylong, beta0, func = "QIF",
+ corr = "exchangeable”, structure = "bilevel”, lam1, lam2,
+ maxits = 30, tol = 0.001)
The springer function returns the estimated

coefficients for the intercept, environmental factors, genetic
factors, and G×E interactions. We organized the output to
show the identified genetic main effects and G×E interactions
in Table 1. The selected SNPs and the corresponding genes are
listed in the first two columns. The last four columns contain the
estimated coefficients of the main effects for each SNP and the
corresponding interactions between the SNPs and environmental
factors .

6 Discussion

Before the formulation of the bi-level (or sparse group)
selection in high-dimensional statistics (Friedman et al.,
2010b), the relevant statistical models have already been
extensively studied in genetic association studies (Lewis,
2002; Wu et al., 2012), which involve the simultaneous
selection of important pathways (or gene sets) and
corresponding genes within the pathways (or gene sets)
(Schaid et al., 2012; Wu and Cui, 2014; Jiang et al., 2017).
For G×E interaction studies, the bi-level selection has served as
the umbrella model and led to a wide array of extensions (Zhou
et al., 2021a).

Package springer cannot be applied directly on the ultra-
high-dimensional data (Fan and Lv, 2008), which is essentially
due to the limitation of regularization methods. A more viable
path is to conduct marginal screening first and then apply
regularization methods on a smaller set of features suitable
for penalized selection (Jiang et al., 2015; Li et al., 2015; Wu
et al., 2019). In fact, such an idea on screening has motivated the

migration of joint analyses to marginal penalization in recent
G×E studies (Chai et al., 2017; Lu et al., 2021; Wang et al., 2022).
It is marginal in the sense that only the main and interaction
effects with respect to the same G factor are considered in the
model. Thus, marginal penalization is of a parallel nature and
suitable for handling the ultra-high-dimensional data. To use
our R package conducting marginal regularization on the ultra-
high-dimensional longitudinal data, we just need to set the
argument g in function springer to one genetic factor at a
time, which will return the regression coefficients for all the
clinical and environmental factors and main G and G×E
interactions with respect to that G factor. The magnitude of
the coefficients corresponding to the effects subject to the
selection will be used as the measure for ranking and
selecting important effects.

Robust penalization methods have drawn increasing
attention in recent years (Freue et al., 2019; Hu et al., 2021;
Chen et al., 2022; Sun et al., 2022). In high-dimensional
longitudinal studies, incorporation of robustness is more
challenging. The corresponding variable selection methods
are expected to be insensitive to not only the outliers and
data contaminations but also to misspecification of working
correlation structure capturing the correlations among
repeated measurements. It has been widely recognized that
GEE is vulnerable to long-tailed distributions in the response
variable, even though it yields consistent estimates when
working correlations are misspecified (Qu and Song, 2004).
Therefore, the more robust QIF emerges as a powerful
alternative for developing variable selection methods. Our R
package springer can facilitate further understanding of
robustness in bi-level selection models.
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