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The burden of breast cancer continues to increase worldwide as it remains the
most diagnosed tumor in females and the second leading cause of cancer-related
deaths. Breast cancer is a heterogeneous disease characterized by different
subtypes which are driven by aberrations in key genes such as BRCA1 and
BRCA2, and hormone receptors. However, even within each subtype,
heterogeneity that is driven by underlying evolutionary mechanisms is
suggested to underlie poor response to therapy, variance in disease
progression, recurrence, and relapse. Intratumoral heterogeneity highlights that
the evolvability of tumor cells depends on interactions with cells of the tumor
microenvironment. The complexity of the tumor microenvironment is being
unraveled by recent advances in screening technologies such as high
throughput sequencing; however, there remain challenges that impede the
practical use of these approaches, considering the underlying biology of the
tumor microenvironment and the impact of selective pressures on the evolvability
of tumor cells. In this review, we will highlight the advances made thus far in
defining themolecular heterogeneity in breast cancer and the implications thereof
in diagnosis, the design and application of targeted therapies for improved clinical
outcomes. We describe the different precision-based approaches to diagnosis
and treatment and their prospects. We further propose that effective cancer
diagnosis and treatment are dependent on unpacking the tumor
microenvironment and its role in driving intratumoral heterogeneity.
Underwriting such heterogeneity are Darwinian concepts of natural selection
that we suggest need to be taken into account to ensure evolutionarily informed
therapeutic decisions.

KEYWORDS

breast cancer, breast cancer genetics, signaling pathways, precision medicine, targeted
therapy, tumor evolution, tumor heterogeneity

Introduction

Breast cancer is a disease marked by considerable heterogeneity. Challenges in accurate
diagnosis and effective therapy, even within clinically defined subtypes, is not only affected
by intratumoral heterogeneity but by the interplay between cell types in the tumor
microenvironment (TME) that drives tumor progression and shapes the response to
therapy. Genomic instability is suggested to occur during early-stage neoplastic
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transformation where it may contribute to setting the stage for
evolution (Tarabichi et al., 2013). Within the TME, tumors generate
clones under selective pressures that enhance their capacity to thrive
and change their ecological niche in the TME. These ecological
niches are also spatiotemporally defined, permitting clones to adapt
the TME landscape to enable invasion andmetastasis as they acquire
more aggressive phenotypes (Bechtel, 2019; Bukkuri et al., 2023).
This may reflect the accumulation of gradual microevolutionary
changes or larger shifts that account for macroevolutionary changes,
which while controversial in their mechanism (Gerlinger et al.,
2014), nevertheless result in intratumoral heterogeneity that
highlights the evolvability and adaptability of tumors. This
potentially accounts for poor response to treatment, resistance
and recurrence (Gallaher et al., 2019; Lei, 2020; Boddy, 2022;
Bukkuri et al., 2023). In this review, we will first revisit breast
tumor subtypes that describe intertumoral heterogeneity and are
affected by spatiotemporal dynamics that underlie acquisition of
more aggressive phenotypes. We will then uncover the tumor
microenvironment while considering the concept of intratumoral
heterogeneity as a function of tumor evolution. In identifying the
challenges associated with breast cancer diagnosis and the
underlying impact of genomic heterogeneity, we will present
advancements in technologies for precision diagnoses, and
suggest the need for evolutionarily informed therapeutic decisions.

Breast cancer molecular subtypes and
associated alterations

The burden of breast cancer continues to increase worldwide. Of
an estimated 19.3 million newly diagnosed cancer cases, breast
cancer in females remains the most commonly diagnosed cancer
and a leading cause of cancer-related deaths (Sung et al., 2021).
Studies that have reported a reduction in breast cancer-related
mortality over 20 years have attributed this to improved
screening resulting in early diagnosis, and better treatment
strategies for localized and metastatic disease (Siegel et al., 2015;
Sundquist et al., 2017). Breast cancer incidence in low- and middle-
income countries (29.7 per 100,000) remains lower than that
identified in high-income countries (55.9–>80 per 100,000). The
high incidence of breast cancer in high-income countries has been
associated with hormonal risk factors including early age at
menarche and later age at menopause; an advanced age at the
birth of the first child, fewer children and less breastfeeding
(Sung et al., 2021), compared to African patients from sub-
Saharan Africa (Brandão et al., 2021). In high-income countries,
oral contraceptive use and hormone replacement therapy, as well as
lifestyle risk factors, have also been implicated in the rising incidence
of breast cancer (Sung et al., 2021). Data from developed countries
including the US, Denmark, Ireland and Scotland point to a rise in
estrogen-dependent tumors with a concurrent reduction in
estrogen-independent tumors. This is postulated to accompany
the global obesity issue and also be a result of more sophisticated
mammographic screening better able to detect slow-growing tumors
(Sung et al., 2021). Comparatively, poor resources in low- and
middle-income countries impact access to mammographic
screening, diagnosis and treatment plans (Galukande et al., 2014).
As such, despite a lower incidence of breast cancer in low- and

middle-income countries, there remains a markedly higher
mortality rate (17%), with patients typically presenting with late-
stage tumors (Sung et al., 2021). Moreover, the distribution of
subtypes is difficult to unravel in sub-Saharan Africa, since
profiling of hormone-receptor status is not routine (Galukande
et al., 2014; Sengal et al., 2017), except in some of the Southern
African countries with better healthcare resources including
Namibia and South Africa (Hercules et al., 2022). Despite this
limitation, studies attempting to understand the
immunohistochemical landscape of breast cancer illustrate that a
larger proportion of cases present at a more advanced stage in
younger, pre-menopausal patients (Jedy-Agba et al., 2016; Azubuike
et al., 2018). Although estrogen receptor-positive (ER+) breast
cancer remains a dominant phenotype in Africa (Kakudji et al.,
2021; Popli et al., 2021), a substantive increase in other subtypes,
particularly triple-negative breast cancer or basal-like tumors in
Uganda (Galukande et al., 2014), Eritrea and Sudan (Sengal et al.,
2017), has been found compared to developed countries (Sung et al.,
2021; Hercules et al., 2022). Moreover, triple-negative breast cancer
frequency is high in Caribbean and North American populations
with West African ancestry, indicating a heritable factor that has yet
to be fully delineated (Hercules et al., 2022).

Histologically breast cancer is classified into three main groups
that reflect the bulk of intertumoral heterogeneity: estrogen-
dependent, HER2 over-expressing and triple-negative breast
cancer (TNBC) (Hamdan et al., 2019). Over time an important
distinction has been made to further characterize the histological
classification and use the molecular profile of the tumor to explain
the properties of the tumor, and to an extent, the vast genetic
heterogeneity. Over the years various molecular subtypes for breast
cancer have been defined as Luminal A, Luminal B, HER2-enriched,
the basal-like and normal-like (Sørlie et al., 2001), which reflect to a
large extent, immunohistochemistry-derived clinical categories
(Belizario and Loggulo, 2019). The classification of these tumors
into various molecular subtypes is not only reflected through
immunohistochemical classification of hormone receptor status
but can also be characterized at the genomic and transcriptomic
level. These molecular subtypes of breast cancer consist of a unique
profile that may better describe the underlying biology of these
tumors (Tishchenko et al., 2016).

Luminal subtypes

Hormone-receptor-positive tumors constitute up to 80% of
breast cancer cases (Turashvili and Brogi, 2017). Luminal A and
B tumors phenotypically present with high ER expression, that
reflects underlying molecular subtype classification. For example,
when gene expression in luminal A and luminal B tumors were
compared with the designated PAM50 gene set, differences were
observed in genes involved in the cell cycle and cell proliferation
such as BIRC5, CCNB1, CDC20, CEP55, KIF2C, MELK, MKI67 and
UBE2C (Tishchenko et al., 2016). Pathway enrichment shows that
luminal A tumors amplify pathways associated with extracellular
matrix organization and collagen formation, comtrasting to luminal
B tumors that show enrichment of DNA repair pathways, similar to
that of HER2-enriched tumors (Wang et al., 2022). Phenotypically,
luminal A tumors expressing ER and PR have the lowest
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proliferation potential (Ki-67), and present with the best prognosis
(Goldhirsch et al., 2013). Luminal B tumors express comparatively
lower levels of ER and PR, but have higher proliferative potential and
are more aggressive (Goldhirsch et al., 2013). While
immunohistochemical cut-offs as low as 1% for ER/PR positivity
have been suggested to be responsive to hormone therapy, the latest
American Society of Clinical Oncology/College of American
Pathologists (ASCO/CAP) guidelines recommend a new category,
ER low positive, for samples that have between 1% and 10% ER
positivity (Allison et al., 2023). Such patients may not benefit as
much from hormone therapy due to a reduction in ER-associated
gene signatures implicated in tumor progression (Grant et al., 2019;
Allison et al., 2023). Typical hormone therapies include selective
estrogen receptor modulators such as tamoxifen, selective estrogen
receptor degraders such as fulvestrant, widely used for both pre- and
post-menopausal patients; and aromatase inhibitors such as
letrozole and anastrozole, also used in post-menopausal patients
(Palmieri et al., 2014; Janku et al., 2018; Belizario and Loggulo,
2019). Variations in response to therapy can also be described by
intratumoral heterogeneity concerning the expression of these
hormone receptors (Iwamoto et al., 2016; Turashvili and Brogi,
2017). Moreover, there remains variability in the diagnostic accuracy
of immunohistochemical reporting, dependent on tissue acquisition,
storage and other technical factors, all of which may impact
prognosis (Turashvili and Brogi, 2017; Grant et al., 2019).

Mutational profiles that result in reduced functional activity, for
example, splice variants in the ER, may lead to a positive
immunohistochemical detection, but poor response to hormone
therapy (Groenendijk et al., 2013; Grant et al., 2019), as such
molecular profiling for specific targets is indicated. ESR1
mutations, particularly of residues associated with the ligand
binding domain, while rare in primary breast cancer, have an
increased frequency in metastatic or recurrent disease. Such
mutational acquisitions like ESR1, are clonally selected for
depending on surrounding selective pressures (Ren et al., 2021)
and can permit constitutive activation of the ER and resistance to
treatment (Brett et al., 2021). In addition to ESR1 mutations (loss,
amplification and translocation), endocrine resistance can also be
mediated by changes in pathways including PI3K-AKT-mTORC1,
RAS-MAPK and CDK4/6-RB-E2F (Brett et al., 2021). The luminal A
phenotype is also associated with mutations in phosphatidylinositol-
3-kinase (PIK3CA), mitogen-activated protein kinase (MAP3K1),
GATA binding factor and TP53 (Belizario and Loggulo, 2019), some
of the most commonly detected mutations (Figure 2). Luminal A
tumors are also more likely to retain Rb1 gene signatures (The
Cancer Genome Atlas Network, 2013). The more aggressive luminal
B tumors and HER2-over-expressing tumors typically harbor TP53
mutations (Belizario and Loggulo, 2019). In metastatic breast
cancers, the mutational landscape is even greater than in primary
tumors, evident in driver genes including TP53, AKT1, ESR1,
GATA3, NF1; moreover, greater clonal diversity is evident
(Bertucci et al., 2019), reflecting greater complexity within the
TME. Notably, a recent study using computational multiplex
mapping illustrated that the TME network is a better predictor of
TP53mutations than tumor cell phenotype alone, revealing dynamic
reciprocity between the cell types within the TME (Danenberg et al.,
2022). Genomic heterogeneity illustrated by DNA copy number
profiling also highlights the variability between luminal tumors;

luminal A tumors typically classified as lower grade, have a gain of
function in chromosome 1 (1q) and a loss of function in
chromosome 16 (16q). Thre more aggressive luminal B tumors
are associated with amplification in chromosomes 8p11
(FGFR1 locus), 8q21,11q13, 20q13 and 17q12 (HER2 locus), with
the latter leading to HER2-amplified luminal phenotype
(Tishchenko et al., 2016).

HER2 enriched subtypes

The HER2-enriched subtype, accounting for approximately
15%–20% of breast cancer is characterized by high expression of
the ERBB2 gene, but shows considerable heterogeneity in its
presentation which may also include differences in ER+
expression (ER+/ER-) (Turashvili and Brogi, 2017).
HER2 protein expression scored using immunohistochemistry
(IHC) include: 3+ (complete membrane expression), 2+ (weak to
moderate membrane expression), 1+ (no expression) (Popović et al.,
2023). HER2 positive tumors are defined by IHC score of 2+ and
amplification of ERBB2 gene. In contrast, HER2-tumors (1+) may
have a IHC score of 2+ not associated with ERBB2 gene
amplification or no HER2 expression (0) (Popović et al., 2023).
The HER2-enriched/ER-subtype has also been defined as a
molecular apocrine phenotype, expressing elevated levels of
androgen receptor target genes (Turashvili and Brogi, 2017).
HER2 phosphorylation leads to constitutive activation of
signaling pathways, including the PI3K and MAPK pathways
involved in cell survival, proliferation, and angiogenesis
(Fujimoto et al., 2020); moreover, HER2-enriched tumors also
typically show FGFR2 mutations and amplifications KRAS
(Belizario and Loggulo, 2019). Notably, some tumors show
ERBB2 gene amplification without HER2 protein expression,
which has repercussions for therapeutic response (Turashvili and
Brogi, 2017). HER2-low tumors, although difficult to detect
accurately, are proving increasingly to be a variation of breast
cancer that while showing no benefit from traditional HER2-
based therapies, including Trastuzumab and/or lapatinib
(Belizario and Loggulo, 2019), are responsive to antibody-drug
conjugates (ADC) including Trastuzumab-deruxtecan (T-Dxd)
(Baez-Navarro et al., 2022). Mutations in PIK3CA, common in
approximately 25% of breast cancers, particularly in HER2-
enriched tumors, also confer resistance to targeted HER2-based
therapies (Belizario and Loggulo, 2019). Such findings beg the
question of the existence of tumor clones with intrinsic
resistance, compared to the acquired resistance that tumor cells
may evolve in the TME.

Triple-negative breast cancer (TNBC)
subtypes

The TNBC subtype is characterized with IHC, by a lack of (or
low expression of) ER and PR (≤1%), and HER2 (between 0 and 1+)
according to the ASCO/CAP guidelines, with genomic and
transcriptomic studies additionally providing greater evidence of
its heterogeneity (Burstein et al., 2015; Almansour, 2022). TNBC is
thus ineligible for hormone therapies or HER2-targeting therapies
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but is rather managed with chemotherapy, including taxanes and
anthracycline (Kim et al., 2018). TNBC is regarded as the most
aggressive tumor subtype due to genomic instability, and alterations
in TP53 and DNA-repair genes such as BRCA1, remaining highly
variable in its molecular profile (Perou, 2010). The TNBC subtype
displays heterogeneity depending on TP53 status (Lehmann et al.,
2011) with alterations in PIK3CA, MYC and PTEN dominating the
landscape (Millis et al., 2015). Lehmann and others in their seminal
study identified 6 subtypes of TNBC: androgen-receptor positive,
claudin-low mesenchymal, mesenchymal stem-like,
immunomodulatory, basal-like 1 and basal-like 2. Despite being
regarded as ER-, up to 55% of TNBC can be positive for the
androgen receptor (AR) (Lehmann et al., 2011; Turashvili and
Brogi, 2017), with gene ontologies showing enrichment of
hormonally regulated pathways including steroid synthesis,
incorporating previously described molecular apocrine subtypes
(Lehmann et al., 2011). Corresponding cell line studies showed
that AR + luminal subtype breast cancer cells are resistant to
chemotherapy and more likely to benefit from AR antagonists
(Lehmann et al., 2011). Moreover, while AR + TNBC would be
histologically described as such (TNBC), due to low ER
immunohistochemical detection, these tumors nevertheless
present downstream activation of ER-related genes including
PGR, FOXA, GATA2 and thus may indeed respond to hormone
therapy at optimal concentrations yet to be determined (Burstein
et al., 2015).

TNBCs with altered TP53 present with subtypes which respond
differently to therapy; Basal-like 1 was responsive to chemotherapy,
and Basal-like 2 upregulated the EGFR pathway and was resistant to
chemotherapy (Lehmann et al., 2011). While these findings give
important clinical information; these subtypes are not as readily
distinguishable using other publicly available databases (Burstein
et al., 2015). In dissecting the subtypes of TNBC further, in addition
to Lehmann’s defined immunomodulatory subtype enriched in
genes in the Th1/Th2, NK cell and B cell receptor pathway
(Lehmann et al., 2011), Burstein and others using genomic and
genetic profiling identified a basal-like immune-activated subtype
and a basal-like immune-suppressed subtype, with the former
associated with a better prognosis (Burstein et al., 2015). Both
re-defined subtypes are independent of TP53 mutational profile
(Burstein et al., 2015), which characterizes most TNBC tumors
(Millis et al., 2015). Such work has been extended by Jézéquel and
others (Jézéquel et al., 2019). Cell cycle regulators are also
downregulated in the TNBC mesenchymal-like subtype, which is
enriched with genes facilitating cell motility, ECM-receptor
interactions, and cell differentiation (Lehmann et al., 2011;
Burstein et al., 2015). Lehmann also identified a mesenchymal
stem-like subtype, showing a similar gene profile to that of the
mesenchymal subtype, but additionally containing genes involved
in various growth factor signaling pathways, angiogenesis, immune
signaling, and presenting with low claudin 3, 4 and 7 (Lehmann
et al., 2011). The diversity within these molecular subtypes has led
to variance in descriptions of their presentation and their
prognostic value. This is not restricted to the TNBC, with
increasing evidence highlighting that even the luminal
phenotype breast cancers may be more heterogeneous than
previously thought, impacting prognosis and therapeutic
response (Turashvili and Brogi, 2017).

A better understanding of the genomic landscape will enable
success and improved efficacy in personalized medicines or more
targeted therapies. Databases such as the NCI Genomic Data
Commons (GDC) provide a view into the genomic landscape of
breast cancer (Figure 2) (Grossman et al., 2016). Importantly,
genomic instability is suggested to occur during early-stage
neoplastic transformation where it may contribute to setting the
stage for evolution (Tarabichi et al., 2013). Large-scale datasets have
been developed that illustrate the intersection of genomic profiling
with histologically classified breast cancers, while nevertheless
illustrating the genomic heterogeneity associated with clonal
evolution and adaptations that occur during treatment (Sato
et al., 2016; Yates et al., 2017).

The tumor microenvironment and its
impact on intratumoral heterogeneity

Tumors are dynamic systems, characterized by dysregulation of
proliferation, survival and growth mechanisms in transformed cells.
The cancer stem cell hypothesis speaks to sustaining a pool of
homogenous cells, with distinct stem-like subpopulations that drive
tumor growth (Martellotto et al., 2014; Tuasha and Petros, 2020);
however, there is increasing evidence that transformed cells within
tumors are heterogenous, undergoing stochastic genetic and
epigenetic alterations to enhance the fitness of subpopulations
(Gallaher et al., 2019; Lei, 2020). Evolutionary theories of tumor
growth typically focus on tumor cells themselves; however, the
tumor microenvironment (TME) is being increasingly recognized

FIGURE 1
Diagram illustrating tumor development in the TME. Neoplastic
transformation including the acquisition of genetic mutations,
alterations in gene expression and epigenetic alterations induce the
generation ot tumor clones that under selective pressures within
the TME, undergo further adaptations that lead to intratumoral
heterogeneity. This occurs within microniches, for example, the
necrotic area that results in angiogenesis and an influx of inflammatory
cells that ultimately result in adaptations that drive tumor progression.
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for its capacity to influence tumor progression and response to
therapy. As such, it is necessary to view tumors from an ecological
perspective to better understand the evolutionary dynamics that
drive intratumoral heterogeneity and permit tumor progression
(Figure 1) (Boddy, 2022; Bukkuri et al., 2023).

Under physiological conditions, the microenvironment
supports cellular function, maintains homeostasis and facilitates
metabolic exchange (Sonugür and Akbulut, 2019). The composition
of the TME differs significantly from that of normal tissue, in that a
milieu of cells consisting of non-malignant stromal cells, infiltrating
immune cell populations and other cell types are spatially and
temporally organized to permit dynamic cell-cell and cell-
extracellular matrix interactions. These different cells play an
important role in tumor progression via their interactions with
one another (Zarrilli et al., 2020). Such communication provides
selective pressures that modulate expression of those genes
associated with the cancer hallmarks thereby facilitating tumor
evolution strategies that drive cellular plasticity and tumor
heterogeneity by permitting adaptations that enhance fitness
(Bechtel, 2019; Bukkuri et al., 2023). Ultimately this affects tumor
cell phenotypic changes and mediates interactions with cells of the
TME (Zarrilli et al., 2020; Nagy et al., 2021; Danenberg et al., 2022).
Breast cancers, while not regarded as immune-hot tumors, are
nevertheless infiltrated by tumor-infiltrating lymphocytes (TILs).
Throughout the process of immunoediting, neoplastic cells that
survive elimination by the innate or adaptive immune system,
undergo rapid changes that generate genetic variants with
acquired resistance to elimination that permit the establishment
of a tumor (Li et al., 2021; Salemme et al., 2021; Danenberg et al.,
2022). This results in a switch from immunostimulating, anti-tumor
responses to immunosuppressive, pro-tumor responses,
underwritten by a host of immune cell populations. For example,
T regulatory cells promote an immunosuppressive TME, secreting
cytokines such as IL-10 and TGF-β that prevent anti-tumor function
by cytotoxic T cells and natural killer cells (Esquivel-Velázquez et al.,
2015). These cytokines, also produced by regulatory B cells, are
implicated in driving macrophage polarization into an M2, pro-
tumorigenic phenotype (Tariq et al., 2017; Van Dalen et al., 2019),
that further provides selective pressures, either secreted or via direct
cell-cell contact. The results of such pressures may be genetic
mutations and alterations, epigenetic modifications or biological
adaptations that drive intratumoral heterogeneity by enhancing the
clonal evolution of tumor cells nestled within the TME. This is
accomplished by promoting tumor survival, cellular proliferation
and invasion, and epithelial-mesenchymal transition (EMT)
(Zarrilli et al., 2020; Leong et al., 2022; Tan and Naylor, 2022).
Genes that are associated with driving these biological phenomena
and thus hold clinical utility as biomarkers include: tumor survival
(PIWIL3/4), evasion of cell death and invasion (p53, COX2,MMP9),
EMT (Wnt5A/B), immune response (PD-L1), and growth (Ki67,
survivin) (Turashvili and Brogi, 2017). Intratumoral heterogeneity
will thus reflect as genetically or epigenetically distinct clones, with
co-operative behaviors that manifest as enhanced survival,
proliferation or migration that can be visualized histologically
(Ramón y Cajal et al., 2020), for example, cells at the invasive
front compared to the necrotic core (Tarabichi et al., 2013; Gallaher
et al., 2019). Moreover, tumor subpopulations may also demonstrate
trade-offs between biological processes, for example, between

migration and proliferation (dispersal and fecundity in animal
species), reflective of plasticity and phenotypic variance under the
influence of spatiotemporal and constitutive TME parameters
(Gallaher et al., 2019).

Tumor growth results in a central necrotic region which triggers
an angiogenic switch via the production of hypoxia-inducible factors
1 (HIF-1) and HIF-2 (Sørensen and Horsman, 2020; Zarrilli et al.,
2020). At oxygen levels of 2% and below, HIFs regulate downstream
intracellular pathways by binding to hypoxia-responsive elements
(HREs) at the enhancer and promoter regions of target genes
including those involved in angiogenesis (VEGF), invasion
(C-MET) and apoptosis or autophagy (NOXA) (Sørensen and
Horsman, 2020; Li et al., 2021). At more severe hypoxia, where
there is less than 0.02% oxygen available, tumor cells initiate the
unfolded protein response (UPR) reacting to endoplasmic reticulum
stress. This is accomplished through the PERK and BNIP3 pathways
that modulate autophagic cell survival (Sørensen and Horsman,
2020). The resulting vasculature produced, by its leakiness and
disorganization (Li et al., 2021), also acts as a selective pressure
as different regions of a tumor may be exposed to more, or less
nutritive factors, growth factors and oxygen, that in turn results in a
heterogenous tumor phenotype. Ultimately, while necrosis results in
the death of selected tumor cells, such microniches permit other
tumor cells to adapt under stressors, thereby eliciting intratumoral
heterogeneity and altering the constitution of the TME. Hypoxia
regulates the influx of inflammatory cells including myeloid-derived
suppressor cells, neutrophils and macrophages via the release of
GM-CSF and a host of chemokines including CCL2, CCL18 and
CXCL12 (Lin et al., 2015; Tariq et al., 2017). This enhances the
release of reactive oxygen species (ROS), causing oxidative DNA
damage in stromal and cancer cells. This has been suggested as the
main factor driving genetic instability (Granger and Kvietys, 2015),
thereby providing a foundation on which natural selection may act.
Oxidative stress has been associated with GC-to-TA transversions
which occur following association with 8-oxoG (Nakabeppu, 2014),
and increased prevalence of single-strand breaks (SSBs) and double-
strand breaks (DSBs), with DSBs being proxy for the following
mutations: translocations, deletion and gene amplification (Trenner
and Sartori, 2019). Damage to DNA and cell cycle machinery
promotes genomic instability, a hallmark of cancer (Sonugür and
Akbulut, 2019). It is no wonder DNA repair genes are prevalent
(more than 100 genes) which maintain DNA integrity and prevent
neoplastic transformation (Waters et al., 2013). Tumors additionally
present with genetic instability noted as aneuploidy (Schulze and
Petersen, 2011), chromosomal, intrachromosomal, microsatellite
instability and even epigenetic instability (Sonugür and Akbulut,
2019), which all enhance tumor survival. BRCA2 mutations are, for
example, linked to survival pressures that mediate immune
responses including CD8+ and macrophage infiltration, and
enhance the vascularity of the stroma (Danenberg et al., 2022).
That these phenomena are additionally associated with hypoxia
(Sørensen and Horsman, 2020; Zarrilli et al., 2020), highlights the
importance of selective pressures that drive the innate and adaptive
immune system toward pro-tumor effects.

The hypoxic TME, in addition to acting directly on tumor cells,
can transform stromal cells as identified by the presence of cancer-
associated fibroblasts (CAFs) in breast cancer. These cells are
themselves highly heterogeneous, being derived from multiple
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cell types. Such interaction reflects cooperative, collective behavior,
whereby normal functions of fibroblasts are subverted to facilitate
tumor progression (Tarabichi et al., 2013). Factors derived from
CAFs and cancer-associated adipocytes (CAAs), including IL-6 and
TGF-β, are associated with increased inflammation and remodeling
of the extracellular matrix, EMT and limiting the recruitment of
anti-tumor T lymphocytes while simultaneously shifting
macrophages towards a pro-tumor phenotype (Neuzillet et al.,
2015; Zarrilli et al., 2020; Tan and Naylor, 2022). These paracrine
interactions facilitate disease progression by permitting the
attainment of fitness advantages within the TME, and by
assisting in preparing the pre-metastatic niche for colonization.
The success of circulating tumor cells (CTCs) is predicated on
homing to the pre-metastatic niche and protection within the
harsh landscape of the bloodstream (Tan and Naylor, 2022).

While the make-up of cells within the TME has been unraveled,
the interactions of these cells and their arrangement in space are
neither well characterized nor their influence on response to
therapy, well understood (Danenberg et al., 2022); moreover,
under the influence of transformed cells, the TME itself is
dynamic. The extent of immune cell infiltration and the subtypes
thereof, proximity to tumor cells or stromal cells, association with
invasive front, and vascularity are all parameters that have potential
prognostic significance (Larsson et al., 2020). A study using imaging
mass cytometry (IMC) of breast tumors from 693 patients part of the
METABRIC study, uncovered the relationship between defined
TME “structures,” genomic features and clinical outcomes
(Danenberg et al., 2022). The findings revealed spatial
intratumoral heterogeneity, or microniches, classifying ten main
recurrent TME structures, including quiescent vascularized stroma
and variants of immune active subpopulations, that were distinct
across tumor subtypes (Danenberg et al., 2022). This heterogeneity
is underwritten by phenotypic plasticity and the capacity for tumor
cells to evolve in response to the selective pressures exerted by the
TME. Notably, while single-cell transcriptomics of tumor cells
describe the major molecular subtypes, the TME provides the
most diversity comparatively, thus highlighting its role in
promoting the selection of certain genes, influencing the tumor
phenotype and response to therapy (Padh, 2004; Li et al., 2021;
Danenberg et al., 2022).

Genomic influences and tumor
evolution in breast cancer molecular
subtypes

Genomic rearrangements and driver mutations are shared by
most tumor clones, illustrating that such events may occur early in
the evolutionary process. Adaptations that drive intratumoral
heterogeneity are considered responsible for subtype switches,
and the variance observed between disseminated tumor cells and
those of the primary tumor (Sato et al., 2016). Disease progression of
tumor subtypes is now being further elucidated by multiple studies
that have highlighted the importance of TME constituents
(Danenberg et al., 2022). In line with clinical and histological
findings, ER-, ER+, and HER2-overexpressing breast cancer
subtypes show considerable variability in the spatial organization
and components of the TME (Nagy et al., 2021; Danenberg et al.,

2022). We suggest that this may represent ecological microniches
that permit clonal adaptations under selective pressures, providing a
background on which intratumoral heterogeneity can result. This
concept is further highlighted in luminal A tumors, for example,
where regions of dysfunctional T cells with expression of immune
checkpoint inhibitors, e.g., PDL-1, are depleted compared to other
regions within the tumor (intratumoral heterogeneity); and
compared to other subtypes (intertumoral heterogeneity) where
areas rich in T regulatory lymphocytes and proliferating cells are
abundant, for example, in ER-tumors (Danenberg et al., 2022). Such
regions were also found to have the most abundant mutations in
BRCA1 and Casp8 (Danenberg et al., 2022). BRCA1 mutations play
an important role in facilitating genomic instability by impairing the
repair of double-stranded DNA breaks through homologous
recombination, resulting in a diverse genomic profile and may
also facilitate robust adaptive immune response (Nagy et al.,
2021), echoing its association in areas rich in regulatory T cells,
the drivers of immunosuppression and tumor progression (Van
Dalen et al., 2019; Li et al., 2021). Similarly, Casp8 mutations found
in regions of dysfunctional T cells inhibit Fas/FasL apoptosis driven
by cytotoxic T-cells, further enhancing immunosuppression and
shaping the ecology of the TME for tumor progression (Danenberg
et al., 2022).

In ER+ tumors, a poor prognosis can be predicted by areas of the
TME characterized by granulocyte and APC enrichment, increased
levels of macrophages and T regulatory cells, and dysfunctional
T cells (Danenberg et al., 2022). In contrast, vascular stroma in ER+
tumors is associated with favorable outcomes (Danenberg et al.,
2022), which is of interest, given that factors associated with
angiogenesis and platelet involvement tend to be associated with
aggressive tumor behavior and worse outcomes (Li et al., 2014;
Mezouar et al., 2016). The redefining of spaces within the TME
provides an avenue for the induction of phenotypic heterogeneity in
response to spatiotemporal cues.While Danenberg and others found
no defined structures to be significantly associated with ER-tumors;
this was attributed to lower statistical power (Danenberg et al.,
2022). In ER-tumors, TILs have been shown to modulate
progression, with NK cells associated with good prognosis (Tian
et al., 2016), and regulatory T cells associated with tumor
aggressiveness (Zarrilli et al., 2020; Danenberg et al., 2022).

Predictive modelling based on molecular subtyping and
transcriptomics is further able to illustrate the risk of
tumor recurrence (Belizario and Loggulo, 2019). Integrative
subtyping using the METABRIC dataset is being put forward
as a method by which to predict late relapse. ER-patients
had a higher risk of distant recurrence and mortality within
the first 5 years post-surgical intervention, whereas ER+ patients
had a longer risk period (Rueda et al., 2019). Those groups
at greatest risk of relapse were characterized by enrichment
in genomic-copy-number alterations including CCND1, MYC,
FGFR1 and FGF3, and the mTOR effector S6K1, to name but
a few (Rueda et al., 2019). Not only do such studies illustrate
the limitations in current diagnostic procedures, but also
in predicting recurrence with clinical markers alone;
highlighting possible driver mutations and passenger
mutations that can be therapeutically targeted and further
stressthe need to study interactions between different
components within the TME.
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The diversity in tumor subtypes which arise from intrinsic
molecular heterogeneity and influenced by TME composition has
been reflected in significantly higher mortality rates in Black or
African American women due to the prevalence of HR- or TNBC
(Huo et al., 2017). It has generally been observed that while breast
cancer prevalence is lower in African countries, the mortality rate is
inversely higher; reflecting the prevalent tumor subtypes which are
more aggressive and associated with poor prognosis (Huo et al.,
2017). Among other factors such as late-stage diagnosis and low-
resourced settings, in women from West Africa, the prevalence of
TNBC was associated with the Duff-null allele (DARC/ACKR1) (Lal
et al., 2017), conserved for its role in protection against malaria
(Leong et al., 2022). This shows the intricate co-dependency of
environmental and microenvironmental cues that influence the
natural selection of a marker against one disease (malaria)
predisposing an individual to another disease (cancer) (Leong
et al., 2022). Expression of the CRYBB2 gene and other lipid-
metabolism genes have also been found to differ between people
with African and European ancestry (Huo et al., 2017). Such data
reveals the underlying molecular rationale between disproportionate
mortality rates between population groups; moreover, it indicates
that personalized risk assessment may be key to defining optimal
treatments to reduce breast cancer deaths in black women.

Some precision technologies for the
diagnosis and treatment of breast
cancer

Several emerging technologies have been utilized in the
diagnosis and monitoring of breast cancer patients. We highlight
several of these diverse technologies and their relevancy, describing
recent efforts to assess them in research and the clinic. We suggest to
the reader that the utility and efficacy of these technologies require
contextual consideration of tumor evolutionary dynamics in relation
to the tumor ecosystem—the TME.

Next-generation sequencing

Next-generation sequencing is commonly used to identify genes
and mutation hotspots (Hamdan et al., 2019). Pan-cancer analyses
using NGS are critical in unravelling cancer genes and candidate
cancer genes, with the majority of these having arisen in pre-
metazoan species (Repana et al., 2019). Recently, the emergence
of single-cell NGS has enabled the delineation of the intricate
characteristics of the TME at a molecular level (Ren et al., 2021;
Tan et al., 2022). One study identified 9 “ecotypes” with unique
characteristics resulting in different clinical outcomes (Wu et al.,
2021). This highlights the interdependence of tumor cells on cells of
the TME, with tumor clones capable of creating ecological niches
from which they can enhance their fitness and undergo dispersal
(invasion), dependent on their evolvability. Whole genome and
exome sequencing has been useful in resolving various types of
somatic and germline mutations on a larger scale (Hamdan et al.,
2019). Various types of mutations are detected through whole
genome sequencing including single nucleotide variants (SNV),
indels (insertions or deletions) and structural variants (SV)

(Hamdan et al., 2019). Whole genome sequencing has revealed
heterogeneity among the mutation landscape that defines each
tumor type. Some mutations within a tumor occur in a certain
clone or cells, whereas different types of tumors show distinct
mutational profiles which uniquely identify them, presenting a
further challenge in the clinical management of the disease.
Using mutational signatures and mathematical modeling, coupled
with machine learning techniques, algorithms are being developed
to more accurately predict causative factors, prognosis and
treatment strategies (Davies et al., 2018; Alexandrov et al., 2020).

Next-generation sequencing has led to the identification of
prominent genes such as BRCA1 and BRCA2 involved in breast
cancer initiation and progression. BRCA1, involved in homologous
recombination, is one of the most commonly mutated genes in
hereditary breast cancer and TNBC (75%) (Gonzalez-Angulo et al.,
2010). Constitutional BRCA1 mutations occur in 10% of breast
cancer patients and 20% in younger women (Peto et al., 1999). One
percent of breast cancer present with sporadic mutations in BRCA1
with the promoter region in the gene being hyper-methylated in
11%–14% of cases thus inactivating the gene (Rigakos and Razis,
2012; Leidy et al., 2014). Sophisticated algorithms like the HRDetect
tool can accurately detect BRCA1/BRCA2 deficiencies with
therapeutic potential (Davies et al., 2018). A study conducted on
a small cohort of TNBCs illustrated the utility of single-cell DNA
sequencing showing that genomic-associated resistance to
neoadjuvant chemotherapy was evident in pre-existing clones;
however, the addition of single-cell RNA sequencing highlighted
transcriptional reprogramming as an adaptive response to therapy
(Kim et al., 2018). This highlights how critical it is to use multiple
assays to understand tumor responses in light of evolutionary
mechanisms that impact treatment efficacy. Another study
investigated the efficacy of next-generation sequencing in
detecting mutations in circulating DNA via liquid biopsies and
the corresponding tumor mass in 75 women diagnosed with early-
stage breast cancer (Jiménez-Rodríguez et al., 2023). The findings
showed that mutations commonly occurred in TP53, PIK3CA and
GATA genes, in liquid biopsies and the corresponding biopsies,
corroborating other studies and data in the TCGA database
(Jiménez-Rodríguez et al., 2023). In some cases, there was a lack
of correlation in mutations between plasma samples and
corresponding tumors, thus highlighting intratumoral
heterogeneity (Jiménez-Rodríguez et al., 2023). These findings
showed the efficacy of liquid biopsies with the application of
NGS techniques in detecting the heterogenous nature of the
tumor landscape in early-stage disease and may contribute to the
establishment of better disease management strategies which are
targeted at heterogenous cell populations. However, this also
highlights that temporal adaptations in tumor cells and in the
TME need to be assessed to determine their impact on metastatic
disease, recurrence and relapse.

Assessing NGS technologies using gene
panels/tests

Using NGS technologies, the prevalence of genes associated with
increased risk of breast cancer is well established.With an increase in
the use of sequencing technologies, several novel variants are being
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discovered; however, their significance is yet to be established
(Easton et al., 2015). These variants are frequently being
discovered in high-risk genes, especially with a gradual increase
in testing across different ethnicities and populations. Recently,
77,900 women with breast cancer were tested using a panel for
germline pathogenic variants. It was found that the occurrence of
these variants differed according to ethnicity. For instance, BRCA1
mutations occurred more frequently in Hispanics and Ashkenazi
Jews compared to non-Hispanic white patients (Yadav et al., 2021).
Studies like this highlight the need for a personalized approach to the
diagnosis of patients regarding the development and use of
multigene panels across different ethnicities and population
groups, and the interpretation of the results thereof. For example,
in Africa, there is generally little genomic data from cancer patients.
A study by Rotimi et al found that only 0.329% of cancer genomics
studies have been conducted in African patients. Regarding breast
cancer, most of the work looked at mutations in BRCA1 and BRCA2
with several studies reporting novel variants in these genes (Rotimi
et al., 2021). However, BRCA1/2 mutations constitute but a small
part of breast cancers, approximately 25% of patients with TNBC,
which itself is said to constitute about 15% of all breast cancers
presented (Barchiesi et al., 2021). Population differences have also
been identified in which African Americans were found to have
more TP53mutations and fewer PIK3CAmutations than Americans
of European ancestry. Significant clinical outcomes were found
between population groups, even after controlling for intrinsic
subtype frequency differences, highlighting that further risk
assessments need to be conducted to improve outcomes for black
women (Huo et al., 2017). Therefore, this restates the need for more
population-based studies to be conducted to identify and establish
the potential significance of these variants to better inform genetic
counselling and management of patients.

Clinically relevant gene panels/tests

In recent years, there has been widespread interest in the clinical
utility of gene panels/tests for breast cancer detection and risk
assessment. Several studies have intricately analyzed the utility of
these panels in clinical settings (Easton et al., 2015; Lerner-Ellis et al.,
2015; Catana et al., 2019; Piccinin et al., 2019). Available panels have
been extensively reviewed and it has been found that the occurrence
of pathogenic variants (PVs) was highest in BRCA1 followed by
BRCA2, CHEK2, PALB2 and ATM (Lerner-Ellis et al., 2015). A
multicenter study used a 34multigene panel and screened more than
60,000 women with breast cancer. The authors identified protein-
truncating variants in BRCA1, BRCA2, CHEK2, PALB2 and ATM
that were significantly associated with breast cancer risk (Breast
Cancer Association Consortium et al., 2021). Another study
demonstrated the utility of multigene panels by utilizing
screening samples obtained from 35,409 women with breast
cancer against 25 genes. They observed that using this panel
increased the identification of patients with PVs. Importantly,
they found that 51.5% of the PVs were found in genes, not
including well-known ones (BRCA1, BRCA2, CHEK2, ATM,
PALB2), that are associated with increased risk (Buys et al., 2017).

Some of these panels have been used in theranostics whereby
they have been applied for diagnosis and the identification of

therapeutics to be administered. Some of them have been
developed into commercial tests that can be used in clinical
settings. Their clinical utility can include detection, prediction,
treatment decision-making, monitoring relapse and response to
treatment (Lal et al., 2017). For instance, some of these tests can
quantify specific genes which would predict metastasis relapse and
thus be useful in determining the type of adjuvant chemotherapy in
ER+ and HER2-patients without lymph node involvement (Sotiriou
et al., 2006; Rakha and Green, 2017). Examples of the tests include
MapQuant DX ™ (Genomic Grade Index, GGI) (Sotiriou et al.,
2006), Pro-Signa® (Nielsen et al., 2014; Wallden et al., 2015),
Mammaprint® (Wittner et al., 2008), Oncotype DX® (Paik et al.,
2004), BluePrint® (Mittempergher et al., 2020) Endopredict®
(Filipits et al., 2011). Several ongoing clinical trials are assessing
the efficacy of these gene panels in the diagnosis and prognosis of
breast cancer (Table 1).

Assessing NGS technologies using artificial
intelligence and machine learning

The growing incidence of breast cancer and the accumulation of
data produced by technologies such as NGS and the potential
variability between specialists such as pathologists have
necessitated the use of computational models such as artificial
intelligence (AI) and machine learning to enhance breast cancer
diagnosis (Aruleba et al., 2020; Bhinder et al., 2021). As the
understanding of the TME grows, more emphasis is being placed
on immune-associated genes that could act as prognostic indicators,
as well as other markers associated with the hallmarks of cancer (e.g.,
proliferation, angiogenesis) which may hold genomic information
that may impact therapeutic management (Kudelova et al., 2022; Lin
et al., 2022; Zhao et al., 2023). For example, artificial intelligence is
being used to generate immune signatures of tumors to differentiate
between immune-related breast cancer subtypes (Thomas et al.,
2021). Algorithms such as CIBERSORT and ImmuneScore can
further be used to determine relative immune cell abundance and
define populations that may drive progression or have predictive
value (Lin et al., 2022). Multitiered spatial analysis of tumor samples
is additionally showing how genomics could help stratify patients
and impact care (Danenberg et al., 2022). These ‘big’ datasets reveal
intratumoral heterogeneity, while simultaneously illustrating that
tumors derived from different organs nevertheless may share
underlying features (Bechtel, 2019). Pathway analysis and
network clustering assist in drawing together features that may
be linked to the defined hallmarks of cancer, to assist in explaining
tumor progression, but may be limited by, for example, datasets
derived from primary lesions that cannot fully recapitulate the
adaptations that occur in metastatic clones or locoregional
relapse (Yates et al., 2017; Bechtel, 2019).

Deep convolution neural networks have also been adapted for
use in the identification and classification of tumor-associated
stroma using biopsies obtained from breast cancer patients. For
example, an algorithm was trained to discriminate benign tissues
from cancerous tissue, adequately classifying both groups by
analyzing their stromal content (Ehteshami Bejnordi et al., 2018).
Wu and Hicks, using data obtained from The Cancer Genome Atlas
(TCGA), evaluated 4 different machine learning algorithms and
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observed that utilizing a support vector machine algorithm resulted
in a more accurate classification of triple-negative tumors from
other breast tumors with few errors (Wu and Hicks, 2021). In
another study using data repositories such as TCGA, the authors
accurately differentiated between hormone and HER2 receptor
phenotypes using a median-supplement method with precision
and low false positives (Adabor and Acquaah-Mensah, 2019).

A systematic review over a 5-year period (2015–2019) found
2928 publications based on machine learning for breast cancer
detection, concluding that this area of research is fast-growing
with potential clinical utility (Salod and Singh, 2020).
CAMELYON16 demonstrated that in a time-constrained
environment, deep learning algorithms could outperform
pathologists in the accuracy of detection of metastasis in breast
cancer lymph nodes (Ehteshami Bejnordi et al., 2017). This type of
technology could be especially beneficial in regions with an
increased burden of the disease and few expert pathologists such
as in some low-to-middle-income countries.

Proteomic technologies

Proteomic approaches, especially array and sensor-based
technologies, have been employed in several breast cancer studies
to identify biomarkers, and elucidate tumor heterogeneity. The
identification of the specific protein to be assayed and integrated
into these targeted technologies, are usually a result of studies that
have applied a global approach to proteomic profiling to diverse
biosamples including tissue, blood, urine and tear-fluid. One of the
most widely used technologies for global proteomic profiling is
mass-spectrometry (MS)- based (Neagu et al., 2022). A recent study
used mass-spectrometry to profile 300 FFPE breast cancer tissues
and efficiently characterized heterogenous subtypes including
linking them to clinical outcomes (Asleh et al., 2022). More
targeted proteomic technologies such as IHC, ELISAs, and more
recently antibody arrays including reverse-phase protein array
(RPPA) and immunosensors have been utilized in breast cancer
diagnosis (Neagu et al., 2022). The clinical utility of RPPA have been
demonstrated using FFPE breast cancer tissues, showing it to be a
robust and highly reproducible technique for the identification of
10 well-known biomarkers of breast cancer with results obtained

comparable to IHC (Assadi et al., 2013; Negm et al., 2016). Due to
the growing interest in the use of RPPA for biomarker identification
in breast cancer, extensive workflows have been developed a point-
of-care breast cancer detection technology (Sonntag et al., 2014;
Coarfa et al., 2021). This means that breast cancer diagnosis can be
conducted fast and easily, especially in environments with limited
access to laboratory or research centers. Most of these
immunosensors/arrays were developed to detect multiple tumor
biomarkers which could increase their specificity for the detection of
breast cancer (Hasanzadeh et al., 2017). A novel label-free
electrochemical immunosensor was developed using the tumor
markers CA125, CA15.3, and CEA, and was demonstrated to
exhibit optimal sensitivity, accuracy and reproducibility in
detecting breast cancer (Cotchim et al., 2020). Another fast, easy
and convenient detection method including the same tumor
markers was developed by Ge and others whereby they used a
disposable electrochemical array which could eliminate cross-talk
and does not require deoxygenation (Ge et al., 2012). In another
study, a high-density silicon array was utilized to capture and
quantify EGFR2 (limit of detection = 25 ng/mL); moreover, this
array was designed to be wearable, making it an accessible device and
reiterating its potential to be used as a point-of-care detection tool
(Dervisevic et al., 2021).

Utilizing the principle of multiple sensoring, breast cancer
biomarkers (CA15.3 and HER2), were detected at levels lower
than the accepted cut-off in clinical settings. In human serum,
the biosensor showed higher sensitivity, and selectivity with
reproducible results (Kuntamung et al., 2021). The simultaneous
detection of HER2 and CA15.3 in breast cancer patients has also
been made possible by the development of a voltammetric
immunosensor providing another non-invasive and sensitive
approach to detection (Marques et al., 2018). The detection of
tumor-associated molecules or biomarkers in serum or other
bodily fluids, would provide a rapid, non-invasive method to
track the evolvability of tumor cells, regarding disease stage and
response to treatment. During the metastatic process, vascular
components and the high shear forces within the vasculature, for
example, induce phenotypic alterations in tumor cells as an adaptive
measure to a vastly different and dangerous microenvironment
(McDowell and Quail, 2019; Baghban et al., 2020; Tomita, Kato,
Hiratsuka, 2021). The capacity to monitor a range of biomarkers, in

TABLE 1 Some ongoing clinical trials utilizing various gene panels/tests.

Gene panel/test Number of genes Utility Ongoing (recruiting) clinical trials

PAM-50 (Pro-Signa) Wallden et al. (2015) 50 Prediction and risk
assessment

19- including NCT04344496, NCT03749421, NCT04759248,
NCT03769415, NCT02889874, NCT01560663, NCT04578106,
NCT03904173, NCT02448420, NCT04610528, NCT04759248

MammaPrint® Wittner et al. (2008) 70 Prediction and
prognosis

4- NCT05474391, NCT03053193, NCT03900637, NCT04129216

EndoPredict® Filipits et al. (2011) 12 Prognosis 4- NCT04246606, NCT03503799, NCT03969121, NCT01805271

BluePrint® Mittempergher et al. (2020) 80 Diagnosis 4- NCT03053193, NCT04129216, NCT05252416, NCT03900637

Oncotype DX® Paik et al. (2004) 21 Prediction 11- NCT04852887, NCT03495011, NCT02476786, NCT01560663,
NCT03212170, NCT03961880, NCT03703492, NCT02095184,
NCT04797299, NCT02993159, NCT03220893

Invitae https://www.invitae.com/en/
providers/test-catalog/test-01102

8 different kits with up to
84 genes

Prediction, risk
assessment

2- NCT04354675, NCT04985266
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concert with clinical data, in real-time may permit more effective
patient management.

Microfluidics platforms

Microfluidic technologies provide an avenue to rapidly detect
breast cancer at its early stages thereby potentially improving patient
outcomes (Panesar and Neethirajan, 2016). In one of the first studies
to do so, Kim and others used a microfluidic platform to detect
breast cancer employing the detection of several biomarkers,
accurately and simultaneously in small tissue sections, to provide
a histopathological diagnosis (Kim et al., 2010). A low-cost
microfluidic chip using an electrical double-layer capillary
capacitor showed potential clinical value in diagnosing breast
cancer by detecting CA153 at a low limit of detection of 92 μU/
mL, suggesting its sensitive nature (de Oliveira et al., 2018).

Circulating exosomes and extracellular vesicles (EVs) derived
from tumors in several cancers, including breast cancer, can be
quantified for early detection and evaluation of the risk of metastasis.
The detection, quantification and molecular classification of breast
cancer was demonstrated using a microfluid chip (Fang et al., 2017).
Specifically, EPCAM-positive and HER-positive exosomes were
quantified showing similar expression levels in tissue samples. A
similar study utilizing circulating exosomes also demonstrated the
use of microchip technology in detecting EPCAM showing a 90%
and >95%, sensitivity and specificity, respectively (Chen et al., 2019).
Another study used a microfluidic chip to detect EVs expressing
EPCAM and CD49F, both epithelial and mesenchymal markers,
respectively. Their analysis demonstrated that patients with a high
EMT index of ≥5 detected by the microchip, underwent recurrence
within 5 years (Gwak et al., 2021). EVs-encapsulating microRNAs
can also be detected with a microfluidic chip. MicroRNAs are known
to regulate the expression of crucial genes and thus can be effectively
utilized as disease biomarkers. Using DNA-FET biosensors linked to
a microfluidic system, microRNA-195 and microRNA-126 were
both detected and quantified in breast cancer samples (Huang et al.,
2021). Typically, dysregulation of miRNAs is associated with
neoplastic transformation and may provide a platform for
increased cellular entropy, favoring evolvability and the capacity
for tumor cells to escape physiological controls (Tarabichi et al.,
2013; Pienta et al., 2020). Microfluidics assessment of shed
microvesicles would provide a non-invasive and real-time
assessment of tumor cell adaptation and resistance to therapy.

Therapeutic targets and associated
therapies in breast cancer

The ability to identify the molecular underpinnings of a tumor
allows for precise targeting to increase the chances of effectiveness
and mitigate some adverse effects and collateral tissue damage that
may influence recurrence or resistance to treatment. We propose
that for more effective therapy, consideration must be given to the
concept of speciation in cancer, whereby the generation of distinct
clones predicated on the initial capacity of transformed cells to adapt
to microenvironmental stressors or evolvability, leads to a
heterogenous mass with clones that may either have an intrinsic

resistance or develop an adaptive resistance, to therapies (Pienta
et al., 2020; Bukkuri et al., 2023). Moreover, in the context of the
TME, while therapies may target specific tumor-related antigens,
few therapeutic regimens exist that would prevent evolutionary
rescue of the ‘cells left behind’ that ultimately drive recurrence
and resistance. In this section we note advances in selected targeted
therapies and consider the challenges in their approach.

HER2

Several HER2 monoclonal antibodies have been developed for
use in HER2-enriched breast cancer including trastuzumab and
pertuzumab (Yu et al., 2017). HER2 plays a critical role in driving
tumor formation and progression, by forming homodimers and
heterodimers with members of its receptor tyrosine kinase family
including HER1/EGFR and HER3. Additionally, HER2 initiates
downstream signaling in the PI3K/Akt/mTOR and MAPK
pathways (Yu et al., 2017), which are frequently dysregulated in
breast tumors (Figure 2). Trastuzumab functions through blocking
homodimerization of HER2, whereas pertuzumab blocks
heterodimerization (Yu et al., 2017). This leads to good clinical
response rates, although some patients show de novo and acquired
resistance (Yu et al., 2017). Accurate and repeatable characterization
of HER2 tumors including HER2-low tumors is becoming
increasingly important to determine the most beneficial
treatment (Baez-Navarro et al., 2022). The loss of HER2 is a
mechanism of acquired resistance for treatments targeting this
receptor. The efficacy of Trastuzumab is affected by the immune
cell milieu, with effective therapy requiring a mounted Th1 response
(Costa and Czerniecki, 2020; Li et al., 2021). Such therapy may lead
to antibody-dependent cellular cytotoxicity (ADCC) by natural
killer cells and cytotoxic T lymphocytes, thus advances in drug
development are aimed at enhancing the anti-tumor immune
response (Costa and Czerniecki, 2020). Combined use of
pertuzumab, trastuzumab and paclitaxel is a standard treatment
regimen, but there is considerable risk for the development of
trastuzumab resistance (Yu et al., 2017). This has led to the
development of HER2-bispecific antibodies that have yet to be
fully evaluated clinically.

Antibody-drug conjugates (ADC) comprise a HER2-antibody
coupled with a cytotoxic agent, that following uptake and release by
targeted cells, has a limited capacity to diffuse to antigen-negative
cells and induce cytotoxicity (Costa and Czerniecki, 2020). T-DM1
was the first FDA approved ADC for use in HER2-enriched
tumours, and consists of trastuzumab conjugated to a naturally
occurring microtubule polymerization inhibitor, emtansine (Peddi
and Hurvitz, 2014). Following the EMILIA study, T-DM1 was
approved for use in HER2-enriched breast cancer patients
previously treated with Trastuzumab and a taxane (Hunter et al.,
2020). T-Dxd was the second FDA approved ADC and consists of a
humanised HER2-targeted antibody with similar structure to
trastuzumab, conjugated with a topoisomerase I inhibitor, Dxd.
T-DXd also acts on neighboring cells which may not express
HER2 through the bystander effects, accounting for its efficacy in
HER2-low tumors (Popović et al., 2023). These treatments are
associated with adverse effects including high-grade
thrombocytopenia and interstitial lung disease (Najjar et al.,
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2022). There are several ADC therapies which are in clinical trials as
novel agents or an improvement of existing therapies that have
shown efficacy mostly in metastatic HER2-enriched breast tumors
including SYD985, ZRC-3256, TAA013 all in phase III trials;
MRG002 in phase II trials; A166 and SHR-A1201 in phase I/II
trials; and ALT-P7, ZW49, Bi-CON-02 and B003 in phase I trials
(Najjar et al., 2022; Yu et al., 2022). Certain ADC therapies for
HER2-enriched breast tumors have shown promising efficacy
against HER2-low tumors including trastuzumab-duocarmazin
(SYD 985), disitamab-vedotin (RC48) (Shi et al., 2022) and
durvalumab and T-Dxd (Popović et al., 2023). Other ADCs are
being developed that are considering reduced toxicity profiles as well
as engaging anti-tumor immune cell response via the FcγR (Costa
and Czerniecki, 2020). Several small-molecule tyrosine-kinase
inhibitors (lapatinib, neratinib and pyrotinib) have been
developed aimed at interrupting the HER signaling pathway and
preventing downstream pro-tumor effects (Dong et al., 2021).

Studies have additionally highlighted conversion between
HER2-low subtype and HER2-enriched subtype, with the latter
identified in brain metastasis (Turner et al., 2021); and patients
with luminal A subtypes that differentiate into HER2-enriched
metastatic cancer but remain unresponsive to therapy (Garcia-
Recio et al., 2020). Implicated in such conversions would be
microenvironmental cues that shape the responses of selected
clones to and within colonized tissue, notably with
spatiotemporal evolution at the core of producing heterogenous
variants.

PARP inhibitors

TNBC display considerable heterogeneity with up to 25% of
patients diagnosed carrying germline BRCA1/BRCA2 mutations
(Barchiesi et al., 2021). Patients with BRCA2 variants are also

FIGURE 2
Oncogrid of the top 200 most mutated cases and top 50 mutated genes by simple somatic mutations. Data obtained from NCI Genomic Data
Commons (GDC). Data accessed on the 31st October 2022.
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likely to develop ER+ tumors (Tutt et al., 2021). Tumor cells that
carry BRCA1/2 variants are dysfunctional in the homologous
recombination repair pathway. Poly (ADP-ribose) polymerases
(PARP), are a family of enzymes that play a fundamental role in
base excision repair, by detecting DNA damage and catalyzing the
repair itself (Barchiesi et al., 2021). Furthermore, PARP is involved
in mediating stress response, chromatin remodeling and apoptosis
((Rose et al., 2020). Tumor cells use PARPs to ensure increased
entropy, accumulating genomic alterations that drive genomic
instability that can then be passed down to progeny. PARP
inhibitors (PARPi) exert their anti-tumor function by
competitively displacing NAD + to bind to the catalytic site of
PARP1 and PARP2, thus preventing DNA repair and thereby
driving tumor cell death (Rose et al., 2020). PARPi may also
induce tumor cell death by inhibiting PARylation mechanisms,
effectively trapping DNA on PARP with the resulting
accumulation of damage responsible for the cytotoxic effect
(Barchiesi et al., 2021). The capacity of PARPi to induce cell
death via these modalities differs according to the drug
employed. Currently, PARPi, olaparib (OlympiAD trial) and
talazoparib (EMBRACA trial) have been approved for clinical use
in HER2-, metastatic breast cancer, where patients carry the BRCA1/
2 variants (Tung and Garber, 2022). Additionally, such therapies
allow healthy cells to be spared, a distinct clinical advantage;
however that 50% of patients progressed during treatment. This
highlights the need to investigate the mechanism of either treatment
failure or the development of resistance (Barchiesi et al., 2021).
Implicated in resistance, is the persistence of disparate tumor clones
with intrinsic resistance to a therapy or the development of clones
with acquired resistance that arises due to adaptation to therapy
(Nagelkerke et al., 2014).

Concerns regarding acquired resistance have been noted using
PARPi in breast cancer with BRCA1/2 mutations where the
overexpression of drug-efflux transporters and the occurrence of
reverse mutations may lead to the reactivation of BRCA1/2 function
and the restoration of the homologous recombination repair
pathway (Barchiesi et al., 2021; Tung and Garber, 2022).
Nevertheless, the efficacy of PARPi was also shown in patients
without genomic BRCA1/2mutations and high genome-wide loss of
heterozygosity (LOH) score, albeit in a smaller proportion of
patients (Chopra et al., 2020; Patsouris et al., 2021). Notably,
Davies and others (Davies et al., 2018) developed the HRDetect
predictive tool which detects BRCA1 and BRCA2 deficiencies at a
level of 98% sensitivity, and using mutational signatures to identify a
much greater number of patients (from 1% to 5% previously, up to
22%) who could benefit from PARPi therapy.

PARPi has been tested as part of a combined therapy regimen to
minimize drug resistance. Alkylating agents combined with PARPi
improve patient survival but when combined with topoisomerase I
inhibitors no significant benefit was detected (Rose et al., 2020).
PI3K inhibitors heightened the sensitivity of TNBC to PARPi,
similarly, increased efficiency of radiotherapy was observed when
combined with PARPi and anti-tumor immune response was
evident. This highlights the need for further investigations into
these therapy combinations. In addition, possible adverse drug
metabolism has to be investigated further as PARPi (specifically
Olaparib) are major substrate for CYP34A enzymes in the liver
(Menezes et al., 2022). The efficacy of Olaparib was shown to be

reduced when used concomitantly with other drug agents which are
substrates for CYP3A4 enzymes (Menezes et al., 2022).

Immune checkpoint inhibitors

TILs have been suggested to have predictive and prognostic
values in breast cancer treatment and management (El Bairi et al.,
2021). A study involving 2148 patients with early-stage TNBC from
9 different studies proposed the prognostic utility of TILs and
showed that elevated levels of stromal TILs were linked to
patient survival (Loi et al., 2019). TNBC is regarded as a more
immunogenic breast cancer, highlighted by increased levels of
genomic instability, raised expression of PD-L1 and greater
responsiveness to immune checkpoint inhibitors (Barchiesi et al.,
2021). Breast cancer has a lower mutational load than other tumors,
and thus produces lower quantities of neoantigens than, for
example, melanoma, and is thus less likely to elicit a T cell
immune response. However, in TNBC not only is the T cell
infiltration higher than in HER2-overexpressed and ER+ tumors,
but so too the mutational load (Hammerl et al., 2018). Mutational
load in ER+ BC cancers, is also shown to increase in higher grade
tumors, but whether this is associated with increased
immunogenicity remain to be unraveled (Hammerl et al., 2018).
Nevertheless, even with ER-positive breast cancer patients TILs
score have a strong prognostic value (He et al., 2021), with
subsets thereof being more or less likely to be associated with
good prognosis. For example, high frequencies of CD8 effector
T cells and Th1 helper T cells are correlated with good clinical
outcomes, particularly in ER-tumors. However, while T regulatory
cells are associated with good prognosis in ER-tumors, in ER+
tumors they are linked to poor clinical outcomes (Hammerl et al.,
2018). It is increasingly evident that immune cell subsets, in addition
to TILs require tracking in disease and standard therapy. For
example, after neoadjuvant therapy, the levels of residual disease
TILs were associated with overall survival and recurrence-free
survival (Luen et al., 2019). Due to the observed role of TILs in
breast cancer progression, albeit not completely well-defined, and an
understanding of the immunoediting hypothesis, several immune
checkpoint inhibitors against PD-1, PD-L1 and CTLA-4 have been
tested in the treatment of the disease (Rizzo and Ricci, 2022). These
co-inhibitory signals prevent the engagement of the immunological
synapse and subsequent destruction of target cells (Voutsadakis,
2016). PD-1 is typically expressed on NK cells, T and B lymphocytes
while its corresponding ligand is expressed on APCs. In cancer,
however, PDL-1 and PDL-2 are overexpressed on tumor cells and
postulated to induce anergy or apoptosis of these lymphocytes and
promote T regulatory immunosuppression (Salemme et al., 2021).
This manipulation of the TME shows cooperative behavior between
populations, leading to adaptive responses that enhance fitness, in
the case of the tumor cells at least. Greater PD-L1 expression has
been observed in HER2-enriched tumors and TNBCs, providing
potential targets for these aggressive tumors (Salemme et al., 2021;
Thomas et al., 2021). CTL4, a co-stimulatory receptor on T
lymphocytes, is also upregulated in breast cancer cells. While its
function is not completely known in cancer contexts, it has been
shown to enhance PD-L1 expression, and thus create an
immunosuppressive TME (Salemme et al., 2021).
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A meta-analysis included 3,612 breast cancer patients
encompassing 6 clinical trials, evaluated the efficacy of
Atezolizumab (PD-L1 inhibitor) and Pembrolizumab (PD-
1 inhibitor) in breast cancer treatment. The study concluded
that combination with chemotherapy was best in improving
patient outcomes, especially in PD-L1-positive patients (Latif
et al., 2022). Nivolumab, an approved PD-1 inhibitor, has shown
efficacy in more advanced, unresectable cancers (Gaynor et al.,
2022). A range of PD-L1 inhibitors including Atezolizumab have
been engineered to prevent ADCC while simultaneously
sterically blocking the interaction with its cognate receptor;
and Avelumab which conversely elicits ADCC (Gaynor et al.,
2022). While Atezolizumab is approved to treat TNBC, emerging
therapies including KNO35 in HER2-enriched patients are
underway (Gaynor et al., 2022), which aim to mitigate adverse
immune responses that may result and drive tumor progression.
While there is some indication for the use of PDL-1 inhibitors in
ER+ breast cancers, low response rates have thus far been
indicated in trials such as JAVELIN (Gaynor et al., 2022).
Even in PD-L1+ TNBC the response rate (8%–20%) to PD1/
PD-L1 treatment remains to be improved (Thomas et al., 2021).
Combining PARPi with immune checkpoint inhibitors has been
suggested to enhance anti-tumor efficacy. Ongoing trials include
the TOPACIO trial for niraparib combined with pembrolizumab
and the MEDIOLA trial for Olaparib combined with durvalumab
(Barchiesi et al., 2021). Similarly, inhibiting HER2 signaling
using trastuzumab in combination with pembrolizumab in
patients regardless of PD-L1 presentation is also ongoing
(Swoboda et al., 2018). The anti-CTLA-4 ipilimumab,
approved to treat metastatic melanoma, is under consideration
for use in combined treatments for breast cancer, to prevent T cell
anergy (Voutsadakis, 2016). While studies have shown that
CTLA-4 inhibition improves immune responsiveness and anti-
tumor efficacy, the translational to clinical benefit needs
assessment (Gaynor et al., 2022).

Novel immune checkpoint inhibitors are being assessed at pre-
clinical and early-stage clinical trials. These include using drugs
LAG525 and INCACN02385 to target lymphocyte activation gene-3
(LAG3) and MGD009 to target B7-H3, to prevent T cell exhaustion
(Thomas et al., 2021; Gaynor et al., 2022). Other drugs being
developed are aimed at enhancing immune checkpoint
stimulators, for example, TRX-518 which targets GITR to
stimulate T lymphocyte and NK cell activation (Gaynor et al.,
2022). Challenges to such therapies include inefficient activation
of anti-tumor responses for clinical benefit, and the development of
resistance as tumor cells undergo adaptive changes in response to
selective pressures in the TME.

Akt/MTOR inhibitors

The PI3K/Akt/mTOR pathway is dysfunctional in many
tumors, promoting the biological processes of proliferation,
invasion and evasion of cell death (Miricescu et al., 2021), but
drug resistance in breast cancer (Dong et al., 2021). Genetic
alterations in PIK3CA, PIK3R1, PTEN, AKT, TSC1/2, STK11 and
MTOR can activate this pathway (Janku et al., 2018). Many
inhibitory drugs are currently under development, or in

clinical trials, but few have been indicated for clinical use,
with barriers to translation including toxicity (Janku et al.,
2018). PI3K and mTOR share structural domains, belonging
to the PI3K-related kinase superfamily (PIKK). As such, dual
inhibitors like BEZ235 (Dactolisib), target both active sites
inhibiting events upstream and downstream of Akt
(Dienstmann et al., 2014). Initially driven towards treatment
of ER+ breast tumors, where up to 40% of ER+ HER-present with
mutations in PIK3CA (Vasan et al., 2014), these therapies may
also be promising particularly for TNBC for which there are
fewer targeted therapies; however, given inconsistent results the
clinical development of this drug has been discontinued (Janku
et al., 2018). Pan-PI3K inhibitors, for example, buparlsisib
(BKM120) and pictilisib (GDC-0941), can target the four
different isoforms of class I PI3K (p110α, p110β, p110δ, and
p110γ), are suggested to have greater efficacy in TNBC tumors
which may have multiple PI3K alterations (Dienstmann et al.,
2014). However, reviewed clinical trials showed significant
psychiatric adverse effects with buparlsisib, and no significant
endpoints were met possibly linked with investigators
modulating dose regimens to minimize toxicity (Janku et al.,
2018). Isoform-specific PI3K inhibitors, such as BYL719 that
target the p110α, provide an option to customize therapy rather
than risking cumulative toxicity, especially when considering
synergistic use with other cancer treatments, for example,
fulvestrant for ER+/PR+, HER2-metastatic breast cancer
(Dienstmann et al., 2014; Dong et al., 2021). ER+/PR+, HER2-
breast cancer treated with allosteric mTOR inhibitor, everolimus,
which together with Anastrozole, an aromatase inhibitor, has
shown improved overall response rates (Baselga et al., 2014).
Since Akt can activate mTOR signaling which drives tumor
progression, several allosteric and ATP-competitive Akt
inhibitors are under development, with only MK-2206 further
investigated in breast cancer (Martorana et al., 2021). Similarly,
issues of toxicity, as seen in trials involving the majority of PI3K
and mTOR drugs have been raised, with dose modifications due
to toxicity also linked to poor efficacy (Janku et al., 2018;
Martorana et al., 2021). There is also the challenge of drug
resistance. PI3K and Akt can phosphorylate ERα at Ser167,
activating the ER in the absence of estradiol, as such tumor
cells can circumnavigate hormone therapy, adapting and
undergoing estrogen-dependent growth (Dong et al., 2021).
Activation of the PI3K/Akt/mTOR pathway and the loss of
PTEN, implicated in DNA repair, activity is also linked with
resistance to anti-HER2 therapy, driven by mutations in the
p110α subunit (Dong et al., 2021; Miricescu et al., 2021). As
such, PI3K/Akt inhibitors in combination with tamoxifen, or
aromatase inhibitors are a developing multiplex strategy for ER+
or HER2+ breast cancer (Dong et al., 2021).

Given the importance of the PI3K/Akt/mTOR pathway in breast
tumor progression, further research is required to understand the
impact of such drugs on the TME, which may reduce cytotoxic
effects and enhance the anti-tumor function of other standard
treatment regimens. Consideration must be given to the
activation of such pathways in immune cell populations of the
TME (Goswami et al., 2017), this can in turn enhance cytokine-
mediated crosstalk with tumor cells, thereby providing an
additional, novel therapeutic target.
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Drug sensitivity screening

Drug sensitivity screening may provide an efficient way to
assess the effectiveness of response to chemotherapy (Nweke and
Thimiri Govinda Raj, 2021). These platforms include a panel of
chemotherapeutic drugs and their efficacy against cancer cells can
be assessed as a monotherapy or in combination. In one study,
37 breast cancer patients were screened using the combination
therapy of 5-fluorouracil, epirubicin and cyclophosphamide
(FEC), predicting the patient’s response to the drugs (Villman
et al., 2005). Specifically, patients with locally advanced breast
cancer with reduced drug resistance had better prognoses whereby
their tumor progression was more delayed. By assessing the
chemotherapeutic efficacy of a panel of 14 anticancer drugs on
100 tumor samples including breast cancer, the response of drugs
in vitro was equivalent to the expected clinical performance
(Haglund et al., 2012). The potential of drug screening tools in
improving patient treatment and management has also
necessitated the development of novel technologies. For
example, the development of a 96well plate with built-in-micro
gap demonstrated an optimum IC50 value when breast cancer cell
lines, MCF7 and MDA-MB-231, and primary breast tumors, were
screened against Cisplatin and Docetaxel (Ma et al., 2015).
Another novel technology evaluated the use of CTCs in
effective therapeutic response. This approach, which involved
the integration of microfluidics and tapered microwells were
integrated with microfluidics, could be used to determine
patient prognosis via the evaluation of the formation of CTC
clusters (Khoo et al., 2016).

Discussion

In this article, we presented genomic studies that advanced our
understanding of breast cancer subtypes and additional genetic
studies that uncovered further molecular subtypes. In
highlighting intertumoral heterogeneity, we have also discussed
the importance of the tumor microenvironment in shaping the
intratumoral landscape, and its impact on prognosis. Although high
throughput technologies have widened our knowledge of the
genomic landscape of breast cancer, most of this has been done
on early-stage disease (Vasan et al., 2014; Basho et al., 2016; Bertucci
et al., 2019). More advanced-stage disease may not reflect or rely on
the initial driver mutations, with passenger mutations taking on a
more aggressive role (Gerlinger et al., 2014). Late-stage disease may
reflect the acquisition of more defined roles by selected tumor clones
as a function of intratumoral heterogeneity. This could include a
subpopulation with intrinsic pro-tumorigenic characteristics that
persists, compared to a subpopulation that is selected for based on
characteristics associated with enhanced dispersal and invasion, for
example,. Nevertheless, it has been suggested that the genomic
profile of the primary tumor may reflect somatic mutations in
CTCs and may hold weight in distinguishing what would be
deemed clonally unrelated or independent primary tumors from
relapses (Yates et al., 2017). However, primary tumors, commonly
used to determine the molecular characteristics of a tumor, often
contain a lower proportion of metastatic clones, thus
underrepresenting the metastatic potential of the tumor (Haffner
et al., 2013; Bousquet et al., 2015). Moreover, while ER+ and triple-
negative primary tumors can be differentiated by distinct

FIGURE 3
Mutations in primary andmetastatic tumors. (A) Venn diagramof the number of cases in primary andmetastatic tumors. Only 45metastatic cases are
recorded (B) Venn diagram of the number of mutations in primary and metastatic tumors. Fifty-six mutations are unique to metastasis patients. (C)
Oncogrid of the top 34 mutated cases and top 38 mutated genes by simple somatic mutations that are unique to metastatic patients. Data was obtained
from NCI Genomic Data Commons (GDC). Data assessed 31st October 2022.
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combinations of driver mutations or copy number alterations, the
genomic profile overlaps more as tumors acquire more aggressive
traits (Yates et al., 2017). For example, data obtained from NCI
Genomic Data Commons (GDC) showed a large disparity between
the number of primary cases versus metastatic ones (Grossman
et al., 2016) (Figure 3). Analysis of this data shows that there are
mutations unique to metastasis disease which may play a role in its
pathogenesis.

Typically, clinical trials of repurposed or novel treatments are
conducted on patients with more advanced tumors that may show a
variable mutational profile and definitive alteration in the TME. In
metastatic tumors, extinction events caused by therapy are unlikely and
reflect the acquisition of selective advantages by tumor cells to persist,
disperse and colonize. The resulting tumor clones would hold spatial
and temporal diversity that is only further impacted by ecological
interactions with diverse cell types in the TME. There is a need to
conductmore studies that seek to understandmetastasis, and the role of
the TME therein, in breast cancer patients as it is well-known that
metastatic patients have a poorer diagnosis even with treatment.

Analyzing and interpreting data from mutational analysis tests has
several challenges. For example, applying the principle of significantly
mutated gene (SMG) test in analyzing the cancer genome has not been
effective in identifying novel markers and possible drug targets for
luminal tumors due to the underestimation of the role played by rare
mutations which may act as drivers for tumor progression in certain
cases such as ER-tumors (Ellis, 2013). Considering the high prevalence
of breast cancer, rare mutations in breast cancer may still translate to
many clinical cases being diagnosed. However, cognizance must be
given that routine microarray analysis may not be able to detect splice
variants, for example, the ERα ERΔE7 variant that while dysfunctional,
provides a false positive for ER status and thus results in poor response
to hormone therapy (Groenendijk et al., 2013; Grant et al., 2019).
Another significant issue in identifying mutations in key breast cancer-
associated genes is the discovery of variants whose effects are unknown.
Known as variants of unknown significance (VUS), they can have
implications on decision-making regarding the treatment and
management of the disease (Easton et al., 2015). These variants
reiterate the need for population-based studies to help clarify if these
variants could be ubiquitous or related to the disease. Furthermore,
functional studies are required to delineate the effect of the variants. It is
also important to note the disparity in the available genomic data across
different ethnicities and populations. This presents a critical challenge as
most of the tools being developed for detecting and interpreting genetic
information may be biased towards a specific group. It is pertinent that
more studies are conducted in underrepresented populations to identify
possible novel variants and their clinical relevance.

In considering these novel variants, the impact thereof with cells of
the TME in driving spatiotemporally defined subclones and thus
intratumoral heterogeneity must be considered. We suggest that
such clones follow branched evolutionary trajectories that permit
rapid selection for adaptive features that are ultimately associated
with later stages of the disease. Advances in technologies including
next-generation sequencing show considerable utility in unpacking not
only genome-wide mutations but transcriptomic profiles that highlight
real-time alterations that drive tumor progression. Nevertheless, there is
still a challenge in identifying suitable patients and accessing these
targeted therapies due to the associated cost of sequencing, limited
specimens not fixed in formalin, consolidation of records and variability

in laboratory processing. Intratumoral heterogeneity additionally
impacts the utility of targeted therapy. This is highlighted in
metastatic breast cancer where the mutation frequency is lower than
10% in most genes, thus providing challenging conditions regarding
targeted therapy (Yates et al., 2017). Such data directs us to investigate
the role of the TME in providing selective pressures for adaptation that
may explain poor response to therapies and the acquisition of resistance.
This concept can be further expanded, considering the TME as a fitness
landscape (Phan et al., 2021) with features of microniches that drive the
selection of plastic phenotypes for tumor progression. As proposed by
Pienta and others, we suggest that tumor therapies considermultimodal
mechanisms of drug action, or sequential regimens that limit tumor
evolvability in early stages of the disease, exploiting the concept of
inducing an extinction event and preventing the reconstitution of the
tumor (Pienta et al., 2020). Combination treatment targeting distinct
oncogenic pathwaysmay provide a route to increasing drug efficacy and
overall survival; however, there remain limitations of dose tolerability,
serious adverse effects and toxicity that require investigation. Moreover,
we suggest that not only should tumor cells be targeted by inhibiting
pathways involved in proliferation, survival and invasion, but that the
TME should be targeted by considering the re-activation of the immune
system and other cells of the TME to support anti-tumor functions.We
further propose that an understanding of the underlying evolutionary
principles in shaping the ecology of the TME, driving fitness advantages
in tumor cells and generating heterogenous microniches, will better
inform precision-based approaches for breast cancer management and
treatment.
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