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Unveiling how genetic variations lead to phenotypic variations is one of the key
questions in evolutionary biology, genetics, and biomedical research. Deep
mutational scanning (DMS) technology has allowed the mapping of tens of
thousands of genetic variations to phenotypic variations efficiently and
economically. Since its first systematic introduction about a decade ago, we have
witnessed the use of deep mutational scanning in many research areas leading to
scientific breakthroughs. Also, themethods in each step of deepmutational scanning
have become much more versatile thanks to the oligo-synthesizing technology,
high-throughput phenotypingmethods and deep sequencing technology. However,
each specific possible step of deep mutational scanning has its pros and cons, and
some limitations still await further technological development. Here, we discuss
recent scientific accomplishments achieved through the deep mutational scanning
and describewidely usedmethods in each step of deepmutational scanning.We also
compare these different methods and analyze their advantages and disadvantages,
providing insight into how to design a deep mutational scanning study that best suits
the aims of the readers’ projects.
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Introduction

Since Mendel’s experiments with peas (Mendel, 1865) laid the foundation of modern genetics
about 150 years ago, our ability to read, write, and rewrite genetic information has grown
prominently. In comparison, our ability to understand genetic information—i.e., mapping
genetic variations to phenotypic variations—is very limited. For instance, the effects of the vast
majority of human genetic variations are unknown (Riesselman et al., 2018; Frazer et al., 2021;
Lappalainen andMacArthur, 2021). In light of this challenge, deep mutational scanning (DMS) was
developed to systematically quantify the effects of genetic variations on a large scale, with high
efficiency and relatively low cost (Fowler et al., 2011; Hietpas et al., 2012). DMS, also known as
massively parallel mutagenesis (Fowler et al., 2011; Fowler and Fields, 2014), involves making a
comprehensive mutant library followed by high-throughput phenotyping and deep-sequencing of
the mutant libraries before and after selection (Figure 1A).

DMS has been widely used in many biological systems, allowing breakthroughs in biological
and biomedical research since its first introduction (Fowler et al., 2010; Fowler and Fields,
2014). For example, many human disease-related genetic variants with unknown significance
have been classified as either benign or detrimental systematically (Majithia et al., 2016; Findlay
et al., 2018; Matreyek et al., 2018; Mighell et al., 2018; Bridgford et al., 2020; Mighell et al., 2020;
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Hanna et al., 2021; Seuma et al., 2021). Genetic interaction patterns
and the underlying biophysical mechanisms have been revealed for
both between genes (Diss and Lehner, 2018; Lite et al., 2020; Faure
et al., 2022) and within the same gene (Olson et al., 2014; Li et al., 2016;
Puchta et al., 2016; Sarkisyan et al., 2016; Baeza-Centurion et al., 2019;
Yoo et al., 2020; Faure et al., 2022). Also, using the positional genetic
interaction scores generated from DMS experiments, protein
structures can be accurately predicted (Rollins et al., 2019;
Schmiedel and Lehner, 2019). The release of the DMS data on
SARS-Cov2 spike protein RBD within a year of the SARS-Cov2
outbreak (Starr et al., 2020) demonstrates that DMS is a powerful
technique to address pressing questions in a relatively short period.
The data accurately captured some SARS-Cov2mutations that became
prevalent in the later stage of the pandemic (Starr et al., 2020; Starr
et al., 2022). Furthermore, DMS data on immune-escape mutants of
various SARS-Cov2 variants (Greaney et al., 2021a; Greaney et al.,
2021b; Javanmardi et al., 2022) guides better vaccine design.

A typical DMS experiment involves three steps: 1) generating a
genetic mutant library; 2) performing a high-throughput phenotyping
assay; 3) and deep sequencing and data analysis. Several good reviews on
designing DMS experiments were published (Fowler and Fields, 2014;

Shin andCho, 2015; Starita and Fields, 2015;Matuszewski et al., 2016; Cao
et al., 2022) in the early days of DMS. However, many more technical
options became available in DMS thanks to the fast-developing
technology in gene synthesis, sequencing technologies and high-
throughput phenotyping methods since the reviews. The recent
reviews (Weile and Roth, 2018; Kemble et al., 2019; Kinney and
McCandlish, 2019; Narayanan and Procko, 2021; Hanning et al.,
2022) in light of the DMS boom mostly focus on specific biological
insights—for example, how the technique enabled breakthroughs in
human genetics (Weile and Roth, 2018), on transcriptional factors
(TF) and cis-regulatory elements (CRE) (Kinney and McCandlish,
2019), on viral protein and receptors (Narayanan and Procko, 2021)
or therapeutic antibody engineering (Hanning et al., 2022). Kemble et al.
gave a comprehensive overview of genotype-phenotype mapping
(Kemble et al., 2019) enabled by DMS technology. While the DMS
strategy is straightforward, each step of the technique can be tricky and
complicated to generate clean and meaningful data, as it involves various
synthetic biology and massive parallel assays. In addition, genetic variants
fromDMS experiments are of low complexity but are of a big amount that
needs special attention for statistical analysis.We notice a lack of such up-
to-date reviews on the insights in technical aspects.

FIGURE 1
An overview of the DMS procedure (A) A mutant DNA library is transformed into cell types of interest to generate a mutant cell library. Then, the mutant
cell library goes through high-throughput phenotypingwhere cells carrying functional variants are enriched (cells filledwith blue) while thosewith detrimental
variants are depleted (cells filled with red or purple). Genetic variants are extracted and sequenced to calculate the relative enrichment changes before and
after selection. Finally, the enrichment scores are analysed as the functional scores ofmutations (B) Protein-Fragment Complementation Assay (PCA) (C)
The underlying assumption is that the concentrations of functional DHFR are linearly related to cell survival (fitness) (D) BindingPCA captures mutational
effects on both stability and protein-protein interactions without distinguishing them (E) AbundancePCA captures mutational effects on stability (F) ddPCA
combines BindingPCA and AbundancePCA and enables the inference of the bbphysical effects ofmutations by quantifying and comparing phenotypic effects.
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In this review, we give an up-to-date overview of the DMS
experiment (Figure 1A) with a specific focus on recently developed
techniques in mutation library generation, high-throughput methods,
and data analysis. Our motivation is to guide the readers on selecting
the most appropriate techniques for a DMS project aim. Finally, we
will discuss the ongoing efforts and challenges in improving DMS
accuracy and scope.

Generating a genetic mutant library

A genetic mutant library is often first synthesized as a pool of
oligos and amplified as a library of linear gene blocks. Then the
amplified dsDNA is ligated to the expression vector backbones to
substitute the wild-type region of the gene to be mutated. The ligation
mix is introduced to the cloning cell lines to be amplified and extracted
as a plasmid mutant library, which will be introduced to the
destination cells (i.e., via transformation) for the next step—high
throughput phenotyping assay. While most of the steps mentioned
above follow regular molecular cloning procedures, mutagenesis in the
very first step is not trivial and requires careful design. In this section,
we will discuss the most widely used methods in designing and
creating mutant libraries so that the readers can determine the
optimal method to suit their research needs.

Error-prone PCR

Error-prone PCR is relatively cheap and easy to perform. It uses low-
fidelity DNA polymerases to incorporate mistakes during the DNA
amplification, and mutation rates can be modified by PCR conditions
like different concentrations of manganese chloride and dNTP (Lin-
Goerke et al., 1997; Shafikhani et al., 1997). The technique has beenwidely
used in making random mutations for directed evolution experiments
(Giver et al., 1998; Moore et al., 2000) and recently for DMS studies
(Sarkisyan et al., 2016; Seuma et al., 2021; Faure et al., 2022). However,
mutations generated via error-prone PCR are not completely randomdue
to mutation biases of polymerases. For example, Taq polymerase-based
mutation rates from A/T are much higher than from C/G (Shafikhani
et al., 1997; Wan et al., 1998). Nowadays, error-prone PCR is made easier
using commercial kits with mixes of engineered polymerases (Vanhercke
et al., 2005), generating reduced biases. However, judging from the DMS
data (Faure et al., 2022), mutation biases are only partially removable even
with commercial kits. To be noted, error-prone PCR is suitable for
generating comprehensive nucleotide-level mutations but not for all
possible single amino acid substitutions for each codon. To achieve all
possible 19 amino acid substitutions per codon, two consecutive
nucleotides of a codon must often be mutated simultaneously. But
such a mutation rate will likely hit two or more codons
simultaneously, creating a mutation library mixed with single amino
acid substitutions and multiple amino acid substitutions.

PCR with oligonucleotides containing
mutations

Another commonly used method is a DMS library with a pool of
oligos containing different mutations. Compared to the error-prone
PCR, it is more costly but can generate a customized library with fewer

biases. Oligonucleotides containing random mutations can be
synthesized as a pool of doped oligos (Matteucci and Heyneker,
1983; Araya et al., 2012; Li et al., 2016; Puchta et al., 2016; Li et al.,
2019; Wu et al., 2022) or oligos containing NNN triplets (sometimes
NNS or NNK) (Hietpas et al., 2012; McLaughlin et al., 2012; Stiffler
et al., 2015; Starr et al., 2017; Diss and Lehner, 2018; Hartman et al.,
2018; Ahler et al., 2019; Starr et al., 2020; Park et al., 2022), where N
represents any of the four nucleotide bases, S for G/C and K for G/T)
targeting each codon. This strategy, combined with oligo pool
synthesis technology like DropSynth (Plesa et al., 2018), allows
construction of user-defined, scalable, and low-cost mutant libraries
with comprehensive nucleotide or amino acid substitutions.

These oligos can be designed as doped oligos with each position
incorporating a defined percentage of mutations (Starita and Fields,
2015) during the oligo synthesis. The pool of the long mutant oligos
(up to 300 nt) can be used as DNA templates. These long oligos need
to contain flanking wild-type sequences for primer binding, so they
can be amplified and replace the wild-type sequences. On the other
hand, short oligos with user-defined mutations or NNN triplets serve
as primers. Mutations are introduced to the gene in a manner that is
similar to site-directed mutagenesis. The oligos containing NNN
triplets are more suited to create mutant libraries covering all
possible single amino acid substitutions, while this doped oligo
method also targets nucleotide-level mutations as error-prone PCR
does. The disadvantage of using oligos with NNN triplets is that it
often requires at least two consecutive PCR reactions to generate
double amino acid substitutions.

Another popular primer-based method is the nicking mutagenesis
(Wrenbeck et al., 2016; Faure et al., 2022), which is developed from a
method called Pfunkle (Firnberg and Ostermeier, 2012). Both
methods use the circular dsDNA as the template and incorporate
mutations using a mix of phosphorylated primers. To remove
excessive wild-type template, thymidine in the template is replaced
with uracil and degraded after the mutagenesis using the uracil DNA
glycosylase and exonuclease III (Exo III) (Firnberg and Ostermeier,
2012). For the same purpose, nicking mutagenesis uses a pair of
endonucleases (NtBbvCl and NbBbvCl) that nick one strand of the
template dsDNA at a time.

Firstly, a 5’ phosphorylated mutant oligo pool as primers is applied
to the NtBbvCI-treated ssDNA template to generate the second-strand
DNA with mutations. Then, a second phosphorylated primer without
mutations will synthesize the complementary strand for each mutated
genetic variant, using the PCR-derived strand with mutations as
templates. While other primer-based mutagenesis methods require
a pair of primers per mutant, both Pfunkle and nicking mutagenesis
requires only one primer per mutant, greatly reducing the cost of oligo
synthesis. But to perform Pfunkle or nicking mutagenesis, one needs
to ensure high-quality circular DNA and careful design of the primer
libraries with a freshly phosphorylated state. Nevertheless, nicking
mutagenesis has been rising in popularity for achieving codon-level
saturation mutagenesis recently.

Generating a library with mutations at the
endogenous genetic loci

For DMS studies aimed at endogenous genetic loci, CRISPR-based
technologies (Doudna and Charpentier, 2014; Rees and Liu, 2018) are
used. The mutant library can be designed as a sgRNA library targeting
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intended genetic loci (Wang et al., 2014; Hart et al., 2015; Sadhu et al.,
2018; Hanna et al., 2021) or as a donor DNA mutant library for
homology-directed repair (HDR) template (Findlay et al., 2014;
Sharon et al., 2018; Choudhury et al., 2020; Shen et al., 2022). The
donor DNA mutant library can be generated using the methods
mentioned above and combined into the backbone flanked by the
recombination arms and necessary components. Simultaneous use of
two gRNAs also enables multiplexedmutagenesis (Campa et al., 2019).
Yet, compared to the ectopic expression of a mutation library, there
are much fewer DMS studies performed at the endogenous loci due to
additional technical limitations—including sgRNA-dependent uneven
editing efficiencies (Wang et al., 2014; Bassalo et al., 2018; Choudhury
et al., 2020), low HDR efficiency (Findlay et al., 2014), and high
incidences of undetected off-target mutations and editing biases (Cui
and Bikard, 2016; Zerbini et al., 2017). The challenges are even more
prominent when the mammalian cell genome is the target of
saturation mutagenesis (Rees and Liu, 2018).

To sum up, different methods of generating mutation libraries
have their own pros and cons (Table 1). The choice of the method
should be determined primarily by the purpose. For instance, should
the experiment target nucleotide or codon level, single or
combinations of mutations? How extensive the mutant library
should be, and should the mutations be ectopically expressed or
integrated into the genome?

High-throughput phenotyping

After obtaining the mutant plasmid library or gene blocks via
various molecular cloning steps, including amplification, ligation, etc.,
the library is delivered (via transformation, transfection, or
transduction) to the cell types of interest for high-throughput
quantification of the phenotypes coupled by the deep sequencing.
These phenotyping assays are usually designed to enrich functional
genetic variants while depleting the detrimental variants in a bulk
experiment (Fowler and Fields, 2014; Olson et al., 2014;
Bandyopadhyay et al., 2020) or via reporter-based cell sorting
(Starr et al., 2017; Matreyek et al., 2018; Li et al., 2019; Park et al.,
2022).

Measured phenotypes can be divided into two main categories: 1)
Fitness based on the reproduction rate of cells (Li et al., 2016; Puchta
et al., 2016; Domingo et al., 2018) or 2) measurement of the molecular
function (abundance, binding, or activity) (Araya et al., 2012; Olson
et al., 2014; Sarkisyan et al., 2016; Matreyek et al., 2018; Li et al., 2019;
Tack et al., 2021; Faure et al., 2022). In this section, we will describe
and compare techniques used in these two categories and another
recently developed method that can decompose molecular functions
via the fitness-based assay.

Fitness assays

Fitness competition is the most straightforward and economical
approach for a high-throughput functional selection. Its logic is that if
the gene product is required for cell survival or reproduction, cells
carrying functional genetic variants will enrich. In contrast,
detrimental variants will deplete over time in a culture medium. As
a result, frequency changes of genetic variants can be calculated as
fitness scores (Domingo et al., 2018). This strategy does not require
special equipment, making it easy to conduct. However, the obtained
fitness scores may not necessarily be linearly related to the molecular
mechanisms of the mutations, making it complicated to acquire
mechanistic insight into the mutational effects on the molecular
level (Stein et al., 2019). Besides, marginally detrimental effects on
molecular functions may be masked due to the non-linear relationship
between fitness and molecular function (Soskine and Tawfik, 2010;
Stiffler et al., 2015). It also needs to be noted that mutational effects
often alter in different environments (Stiffler et al., 2015; Domingo
et al., 2018; Chen et al., 2022).

Therefore, it is essential to select an optimal condition that either
reflects the physiological situation best (Starita et al., 2015; Braun et al.,
2018; Cantor et al., 2018; Hartman et al., 2018; Staller et al., 2018; Ahler
et al., 2019; Matreyek et al., 2020; Mighell et al., 2020) to unveil disease-
causing mutations or evolutionary paths of mutations. On the other
hand, to easily infer biophysical effects, the fitness assay conditions
should be selected to be linearly related to the molecular function
(Domingo et al., 2018; Li et al., 2019; Leander et al., 2020; Starr et al.,
2020; Faure et al., 2022).

TABLE 1 Mutant library construction.

— Targeted
mutations

Number of mutations Pros Cons

Error-prone PCR Nucleotide (nt) level A distribution of single and multiple
changes, by modifying the PCR conditions

Economical; Easy to perform Mutation bias

Doped oligo Nucleotide (nt) level A distribution of single and multiple
changes, designed as an error rate per
position (i.e., 1.2% error rate/position)

Economical; Customized mutation
distribution

Oligo size is limited by the coupling
efficiency. The longer the oligos are, the
lower the oligo pool qualities are. It is

limited up to 300 nt

NNN (NNE or NNS)
oligos

Amino acid (AA)
level

All possible single AA per codon Comprehensive protein residue
substitution effects; Can be designed as

primers or PCR templates

Two or more rounds of PCR required to
achieve multi-codon mutants

Gene blocks for
Homology- Directed

Repair (HDR)

Nucleotide or
amino acid (AA)

level

A distribution of single and multiple
changes

Endogenous expression of the mutant
variants

Delivery and HDR efficiency limit the
library size

sg-RNA library Nucleotide (nt) level Single mutants but with possible off-target
mutations

Endogenous expression of the mutant
variants

Off-target issues
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Functional assays

Using the protein stability or binding affinity as a phenotype
(Araya et al., 2012; Olson et al., 2014; Starr et al., 2020; Faure et al.,
2022) is another widely used method to evaluate mutational effects for
a protein-coding gene. This approach can capture essential biophysical
effects of mutations and give more mechanistic insights into
mutations.

Stability assays often involve tagging the target protein to a
reporter, like the green fluorescent protein (GFP) as an indicator of
the protein stability (Li et al., 2019; Leander et al., 2020; Matreyek et al.,
2020; Park et al., 2022). Cells can be sorted based on the fluorescence
levels into several bins, followed by deep sequencing of each sorted
subpopulation (Peterman and Levine, 2016; Matreyek et al., 2018).
Then, each mutant’s mean fluorescence level is calculated based on the
frequencies of each genetic variant in each sorted bin.

In vitro display methods, such as phage display (Araya et al., 2012),
yeast display (Klesmith et al., 2017; Starr et al., 2017; Cao et al., 2022),
and mRNA display (Olson et al., 2014), detect frequency changes of
genetic variants based on the binding affinity of the protein to its
ligands. Although the experimental results from such an approach
reveal the functional effects of mutations, it does not immediately
indicate whether mutations affect the function by changing the protein
stability or binding affinity, which is termed biophysical ambiguity
hereafter. Nevertheless, it is crucial to resolve the biophysical
ambiguity of mutations if we want to predict the combined effects
of mutations (Otwinowski et al., 2018; Li and Lehner, 2020) accurately.
To overcome this, approaches like combining the binding affinity-
based functional assay and the stability-based assay (Starr et al., 2020),
or predicting mutants’ biophysical effects by analyzing how mutations
combine based on a single assay (Otwinowski et al., 2018) have been
shown.

Performing two sets of different experiments (Starr et al., 2020) are
often troublesome while predicting folding and binding energy
changes based on the protein structures (Capriotti et al., 2005;
Schymkowitz et al., 2005; Zhang et al., 2020) is not as accurate as
experiment results. Recently, a method called ddPCA (Faure et al.,
2022) that uses a relatively simple experimental approach to solve the
biophysical ambiguity has been developed, which we will discuss in the
following part.

ddPCA: Untangling biophysical parameters
with the fitness assays

The method called Double Deep Protein-Fragment
Complementation Assay (ddPCA) (Faure et al., 2022) is based on
the protein-fragment complementation (PCA) assay (Tarassov et al.,
2008). In ddPCA, the expression ratios of dihydrofolate reductase
(DHFR) fragments are tweaked into two sets so that one assay can
detect mutational effects on the stability of the protein
(AbundancePCA) while the other detects both stability and
protein-protein interactions (BindingPCA) (Figures 1B–F).

BindingPCA uses the traditional PCA method in which two
interacting partners are each tagged with interacting partners are
each tagged with DHFR[1,2] and DHFR[3] fragments (Figure 1D).
Mutations that affect the binding affinity to the ligand and/or the
protein stability will reduce the functional DHFR concentration inside
the cells and therefore minimize cell survival (fitness) (Figures 1B, C).

AbundancePCA, on the other hand, only has one protein-coding gene
tagged to one fragment of DHFR (DHFR[3]) while overexpressing the
other fragment DHFR[1,2]. This allows the cellular fitness to be solely
determined by the limiting concentration of the protein tagged with
DHFR fragment (i.e., DHFR [1,2], which reflects the protein stability
(Figure 1E). The combination of the BindingPCA and the
AbundancePCA serves to determine biophysical effects and resolve
biophysical ambiguities (Figure 1F). Compared to other experimental
approaches, ddPCA is a much simpler approach to unveil stability and
binding affinity of mutations because both AbundancePCA and
BindingPCA use the same fitness selection system. ddPCA has
been applied to several allosteric proteins and resolves the
‘biophysical ambiguities’, as well as pinpointing allosteric sites
systematically (Faure et al., 2022; Weng et al., 2022).

Besides the methods mentioned above, enzyme kinetics can be
measured in a dynamic system using microfluidics technology. For
instance, the High-Throughput Microfluidic Enzyme Kinetics (HT-
MEK) in a DMS experiment allows the systematic investigation of
enzymes in an automatically valved microfluidics expression system
(Markin et al., 2021).

Deep sequencing and data analysis

Deep-sequencing of the genetic variants for both the input (before
phenotyping) and the output (after phenotyping) follows the high-
throughput phenotyping. Samples from a DMS experiment are special
in that there are up to tens of thousands of genetic variants. Yet, they
are with a low frequency of mutations at each position (sometimes as
low as 0.1%) in an overall very homogenous sequence. Considering
that genotype-phenotype mapping depends on frequencies of each
genetic variant that are often only one or two hamming distances away
from each other, choosing a high-throughput sequencing platform
with high accuracy is especially important for a DMS study.

Sequencing platforms

The most widely used platform in DMS studies has been the
Illumina HiSeq platforms for their relatively lower error rates
compared to the third-generation sequencing platforms (PacBio or
Nanopore sequencing) and the higher cost-effectiveness (cost/base
pair) compared to IlluminaMiSeq (Shendure et al., 2017; Pfeiffer et al.,
2018). However, the HiSeq platforms have a sequencing read length
limitation to 300 nt. This makes the identification of long-range
epistatic interactions challenging if the mutated region exceeds the
length limit. To overcome this, barcoding genetic variants can be
applied, first to associate genetic variants with barcodes usingMiseq or
PacBio sequencing (Puchta et al., 2016; Starr et al., 2020; Wu et al.,
2022) and then to perform deep sequencing of the barcodes using
HiSeq.

Recently, UMI-based Nanopore sequencing (Zurek et al., 2020)
and new circular consensus sequencing (CCS) method using PacBio
(Wenger et al., 2019) were developed to increase the accuracies of
long-read sequencing platforms to >99.5% (Zurek et al., 2020; Karst
et al., 2021). This suggests that Nanopore or PacBio may completely
substitute HiSeq for DMS studies in the future.

Experiment design and library preparation for sequencing are
utterly important to obtain high-quality data, regardless of the
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sequencing platforms used. One should always 1) start with a sufficient
number of molecules per variant in each mutant library; 2) have
multiple independent biological replicates; and 3) avoid experimental
bottlenecks, over-sequencing or under-sequencing. Especially, it is
essential not to over-sequence as that would impactfully hinder
accurate prediction of the variant frequencies (Faure et al., 2020).
Read-depths should not be more than that of total expected molecule
numbers before generating sequencing libraries but also need to be
sufficiently bigger than the expected unique counts of genetic variants.

Data analysis

The phenotype of each genetic variant is often quantified as the
normalized relative enrichment scores from the aggregated count data
(i.e., after versus before selection) compared to that of the wild type, as
shown in Eq. 1 below.

Ev � log 2
Fv,output

Fv,input
− log 2

Fwt,output

Fwt,input
(1)

Fv,output and Fv,input are the frequencies of a given variant v after
selection (output) and before selection (input) respectively, and Ev is
the normalized enrichment score of the variant to the wild type. When
the phenotype is based on the reporter fluorescence intensity and cell
sorting (Starr et al., 2020), functional scores as the mean fluorescence
signals are estimated based on the variant counts in each sorted bin
and the bin fluorescence parameters (Peterman and Levine, 2016).

To estimate mutants’ phenotypes from the sequencing data
accurately and to obtain enough statistical power, correct error
detection and propagation are essential. However, it is not a simple
task as there are many sources of errors in the typical DMS dataset,
including sequencing error, Poisson error, errors from the replicates,
and stochastic error (Rubin et al., 2017). Enrich2 (Rubin et al., 2017)
and a more recent software DiMSum (Faure et al., 2020) are two good
statistical frameworks developed for DMS sequencing data to help
users reliably quantify the data and perform error estimation.
Enrich2 and DiMSum are both based on the Poisson-based
sequence count distribution, and they both integrate the empirical
variance into account to estimate the errors. However, the way they
handle the empirical variance is different. For instance, Enrich2 takes
the mix-effects from the empirical variance, while DiMSum
introduced replicate-specific additive and multiplicative modifier
terms from empirical variance. Thus, the error estimated from the
two models differs (Faure et al., 2020). The only available and direct
comparisons between the two statistical software are from Faure and
others who developed DiMSum. Based on the 12 datasets examined,
Enrich2 and DiMSum performed similarly well on the datasets with
little overdispersion, but Enrich2 underestimates errors on the dataset
with a lot of overdispersion (Faure et al., 2020). Still, DiMSum is not as
widely used as Enrich2 in DMS data analysis, likely because it is still a
relatively newly developed pipeline. Either error models from
Enrich2 or DiMSum cannot capture systematic errors arising from
the experiments, which need to be identified and judged by the
researchers using diagnostic plots. After this step, one could
select only reliable data based on the error thresholds for further
analysis.

Relative mutational effects are often presented in a 2D map, with
each x- and y-axis representing mutation position and substitution
respectively, and the phenotype in a gradient of filled color as a

heatmap (Figure 1). With such a descriptive figure giving an overview
of the data, one can quickly judge which positions are more sensitive to
mutations and whether certain types of substitutes are more
acceptable than others. There are also tools developed to visualize
both published and own DMS data. MaveVis, developed as part of the
MaveDB (Esposito et al., 2019), allows users to generate heatmaps
integrating the protein structural information for each position. It is
available for both web-based interfaces and as an R package. Another
web-based tool called dms-view (Hilton et al., 2020) can provide a
quick exploration of the DMS data to look for specific mutations per
site and in the context of protein 3D structure in an interactive
manner. Compared to MaveVis, the advantage of dms-view is the
integration of the protein 3D structure and logo generation based on
mutational effects. However, local users cannot use the software as it is
only web-based.

To obtain mechanistic insights into genotype-phenotype maps,
machine-learning algorithms (Wang et al., 2014; Hart et al., 2015;
Majithia et al., 2016; Klesmith et al., 2017; Rocklin et al., 2017; Weile
et al., 2017; Gray et al., 2018; Staller et al., 2018; Song et al., 2021; Faure
et al., 2022; Hsu et al., 2022; Leander et al., 2022) and deep learning
algorithms (Sarkisyan et al., 2016; Gelman et al., 2021; Faure et al.,
2022; Tareen et al., 2022; Vaishnav et al., 2022) are frequently used.
Especially, a recently developed python package called MAVE-NN
(Tareen et al., 2022) can unveil the one-dimensional latent phenotypes
(i.e., a hidden type of biophysical parameter values) that are non-
linearly linking genotypes to phenotypes, based on the neural-network
algorithm. MAVE-NN has its limitations. For example, it cannot
analyse DMS data with only single mutations or mutations affecting
more than one type of expected biophysical parameters to reveal the
latent phenotypes.

Discussion

Recent years have witnessed a boom in DMS applied to various
coding and non-coding genes from many organisms, including
viruses, bacteria, yeast, and mammalian cells. In this review, we
presented an overview of DMS that combines synthetic biology,
high-throughput phenotyping methods, and deep sequencing
technology. We also showed the main steps in the DMS technique
and compared different choices of designing mutation libraries,
phenotyping assays, and sequencing platforms. Finally, by
comparing different techniques, we gave brief guidance on selecting
the most appropriate strategy according to different scientific
questions and experimental models.

A high-quality DMS dataset not only provides important
information on genotype-phenotype mapping for biomedical
research, but also guides other research fields including structural
biology, biophysics, and protein engineering. For instance, the very
comprehensive single and double-mutant GB1 DMS dataset (Olson
et al., 2014) enabled accurate prediction of the protein 3D structure
(Schmiedel and Lehner, 2019) and biophysical effects of eachmutation
without doing the painstaking experiments (Gelman et al., 2021;
Tareen et al., 2022). Also, the technology provides mechanistic
insights into understanding and predicting mutational effects (Hsu
et al., 2022), contributing to protein engineering and structure
prediction (Rollins et al., 2019; Schmiedel and Lehner, 2019),
biomedicine (Braun et al., 2018; Baeza-Centurion et al., 2019;
Bridgford et al., 2020; Livesey and Marsh, 2020; Frazer et al., 2021)
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and evolution (Aakre et al., 2015; Li et al., 2016; Puchta et al., 2016;
Starr et al., 2017; Domingo et al., 2018; Starr et al., 2020; Park et al.,
2022; Starr et al., 2022). In light of accumulating DMS datasets and the
challenge of reproducibility and source-data compilation, several
pioneering labs in the field of massive parallel assays made an
open-source platform called MaveDB (Esposito et al., 2019)
available for DMS experiment data. By now (December 2022),
more than a hundred DMS datasets have been listed in MaveDB
that are available for download and analyse. An alliance called Atlas of
Variant Effects (https://www.varianteffect.org) is also formed to
maximise collaboration, benefits, and the influence of mutational
scanning.

Still, there are limitations in DMS technology. Firstly, each DMS
experiment could handle up to tens of thousands of mutations but
not more. One of the limiting factors in scaling mutation libraries is
transformation (transfection or transduction) efficiencies, as one
does not want to generate a bottleneck by randomly sampling genetic
variants that go into the destination cells. The number of successfully
transformed (transfected or transduced) cells should be sufficiently
higher than the library sizes to minimize the loss of some genetic
variants during the transformation step. Secondly, performing DMS
at the endogenous genomic loci of cells is still a big challenge.
Nevertheless, endogenous DMS will become available soon with
improved precision in genome editing technologies and
transformation/transfection efficiencies. While DMS has been
applied to various organisms, including humans, viruses, bacteria
and yeast, interestingly, there is no DMS research on plant genes,
even though mapping genotypes to phenotypes on the plant is both
important and challenging (Voichek and Weigel, 2020; Deng et al.,
2021). The reason could be the technical challenges in developing a
high throughput phenotyping assay with the designed mutation
pools.

To sum up, our ability to interpret genotypes is still lacking due
to the complication of the genotype-phenotype maps (Domingo
et al., 2019; Kinney and McCandlish, 2019). While sequencing
technology is becoming more advanced and economical, ‘reading’
genetic codes has become the routine of many labs. We believe that
DMS will become a laboratory routine in the near future together

with further development in synthetic biology and sequencing
technologies.

Author contributions

HW and XL wrote the manuscript together. This work is
supported by the Young Scientists Fund of the National Natural
Science Foundation of China (NSFC Grant No. 32100478).

Funding

XL is supported by the Young Scientists Fund of National Natural
Science Foundation of China (NSFC Grant No.32100478). The study
is also supported by the department (Zhejiang University-University
of Edinburgh Institute) start-up funding and the seed-fund.

Acknowledgments

We thank members of the Li lab for comments on the manuscript.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Aakre, C. D., Herrou, J., Phung, T. N., Perchuk, B. S., Crosson, S., and Laub, M. T. (2015).
Evolving new protein-protein interaction specificity through promiscuous intermediates.
Cell 163, 594–606. doi:10.1016/j.cell.2015.09.055

Ahler, E., Register, A. C., Chakraborty, S., Fang, L., Dieter, E. M., Sitko, K. A., et al.
(2019). A combined approach reveals a regulatory mechanism coupling src’s kinase
activity, localization, and phosphotransferase-independent functions. Mol. Cell 74,
393–408. e20. doi:10.1016/j.molcel.2019.02.003

Araya, C. L., Fowler, D. M., Chen, W., Muniez, I., Kelly, J. W., and Fields, S. (2012). A
fundamental protein property, thermodynamic stability, revealed solely from large-scale
measurements of protein function. Proc. Natl. Acad. Sci. U. S. A. 109, 16858–16863. doi:10.
1073/pnas.1209751109

Baeza-Centurion, P., Miñana, B., Schmiedel, J. M., Valcárcel, J., and Lehner, B. (2019).
Combinatorial genetics reveals a scaling law for the effects of mutations on splicing. Cell
176, 549–563. doi:10.1016/j.cell.2018.12.010

Bandyopadhyay, S., Bhaduri, S., Örd, M., Davey, N. E., Loog, M., and Pryciak, P. M.
(2020). Comprehensive analysis of G1 cyclin docking motif sequences that control CDK
regulatory potency in vivo. Curr. Biol. 30, 4454–4466. doi:10.1016/j.cub.2020.08.099

Bassalo, M. C., Garst, A. D., Choudhury, A., Grau, W. C., Oh, E. J., Spindler, E., et al.
(2018). Deep scanning lysine metabolism in Escherichia coli. Mol. Syst. Biol. 14, e8371.
doi:10.15252/msb.20188371

Braun, S., Enculescu, M., Setty, S. T., Cortés-López, M., de Almeida, B. P., Sutandy, F. X.
R., et al. (2018). Decoding a cancer-relevant splicing decision in the RON proto-oncogene

using high-throughput mutagenesis. Nat. Commun. 9, 3315–3318. doi:10.1038/s41467-
018-05748-7

Bridgford, J. L., Lee, S. M., Lee, C. M. M., Guglielmelli, P., Rumi, E., Pietra, D., et al.
(2020). Novel drivers and modifiers of MPL-dependent oncogenic transformation
identified by deep mutational scanning. Blood. Am. Soc. Hematol. 135, 287–292.
doi:10.1182/blood.2019002561

Campa, C. C., Weisbach, N. R., Santinha, A. J., Incarnato, D., and Platt, R. J. (2019).
Multiplexed genome engineering by Cas12a and CRISPR arrays
encoded on single transcripts. Nat. Methods 16, 887–893. doi:10.1038/s41592-
019-0508-6

Cantor, A. J., Shah, N. H., and Kuriyan, J. (2018). Deep mutational analysis reveals
functional trade-offs in the sequences of EGFR autophosphorylation sites. Proc. Natl.
Acad. Sci. 115, E7303–E7312. doi:10.1073/pnas.1803598115

Cao, L., Coventry, B., Goreshnik, I., Huang, B., Sheffler, W., Park, J. S., et al. (2022).
Design of protein-binding proteins from the target structure alone. Nature 605, 551–560.
doi:10.1038/s41586-022-04654-9

Capriotti, E., Fariselli, P., and CasadioI-Mutant2, R. (2005). I-Mutant2.0: Predicting
stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res.
33, W306–W310. doi:10.1093/nar/gki375

Chen, J. Z., Fowler, D. M., and Tokuriki, N. (2022). Environmental selection and
epistasis in an empirical phenotype–environment–fitness landscape. Nat. Ecol. Evol. 6,
427–438. doi:10.1038/s41559-022-01675-5

Frontiers in Genetics frontiersin.org07

Wei and Li 10.3389/fgene.2023.1087267

https://www.varianteffect.org
https://doi.org/10.1016/j.cell.2015.09.055
https://doi.org/10.1016/j.molcel.2019.02.003
https://doi.org/10.1073/pnas.1209751109
https://doi.org/10.1073/pnas.1209751109
https://doi.org/10.1016/j.cell.2018.12.010
https://doi.org/10.1016/j.cub.2020.08.099
https://doi.org/10.15252/msb.20188371
https://doi.org/10.1038/s41467-018-05748-7
https://doi.org/10.1038/s41467-018-05748-7
https://doi.org/10.1182/blood.2019002561
https://doi.org/10.1038/s41592-019-0508-6
https://doi.org/10.1038/s41592-019-0508-6
https://doi.org/10.1073/pnas.1803598115
https://doi.org/10.1038/s41586-022-04654-9
https://doi.org/10.1093/nar/gki375
https://doi.org/10.1038/s41559-022-01675-5
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1087267


Choudhury, A., Fenster, J. A., Fankhauser, R. G., Kaar, J. L., Tenaillon, O., and Gill, R. T.
(2020). CRISPR/Cas9 recombineering-mediated deep mutational scanning of essential
genes in Escherichia coli. Mol. Syst. Biol. 16, e9265. doi:10.15252/msb.20199265

Cui, L., and Bikard, D. (2016). Consequences of Cas9 cleavage in the chromosome of
Escherichia coli. Nucleic Acids Res. 44, 4243–4251. doi:10.1093/nar/gkw223

Deng, Z., Zhang, J., Li, J., and Zhang, X. (2021). Application of deep learning in
plant–microbiota association analysis. Front. Genet. 12, 697090. doi:10.3389/fgene.2021.697090

Diss, G., and Lehner, B. (2018). The genetic landscape of a physical interaction. Elife 7,
e32472. doi:10.7554/eLife.32472

Domingo, J., Baeza-Centurion, P., and Lehner, B. (2019). The causes and consequences
of genetic interactions (epistasis). Annu. Rev. Genomics Hum. Genet. 20, 433–460. doi:10.
1146/annurev-genom-083118-014857

Domingo, J., Diss, G., and Lehner, B. (2018). Pairwise and higher-order genetic
interactions during the evolution of a tRNA. Nature 558, 117–121. doi:10.1038/
s41586-018-0170-7

Doudna, J. A., and Charpentier, E. (2014). Genome editing. The new frontier of genome
engineering with CRISPR-Cas9. Science 346, 1258096. doi:10.1126/science.1258096

Esposito, D., Weile, J., Shendure, J., Starita, L. M., Papenfuss, A. T., Roth, F. P., et al. (2019).
MaveDB: An open-source platform to distribute and interpret data from multiplexed assays of
variant effect. Genome Biol. 20, 223. doi:10.1186/s13059-019-1845-6

Faure, A. J., Domingo, J., Schmiedel, J. M., Hidalgo-Carcedo, C., Diss, G., and Lehner, B.
(2022). Mapping the energetic and allosteric landscapes of protein binding domains.
Nature 604, 175–183. doi:10.1038/s41586-022-04586-4

Faure, A. J., Schmiedel, J. M., Baeza-Centurion, P., and Lehner, B. (2020). DiMSum:An error
model and pipeline for analyzing deep mutational scanning data and diagnosing common
experimental pathologies. Genome Biol. 21, 207–223. doi:10.1186/s13059-020-02091-3

Findlay, G. M., Boyle, E. A., Hause, R. J., Klein, J. C., and Shendure, J. (2014). Saturation
editing of genomic regions by multiplex homology-directed repair. Nature 513, 120–123.
doi:10.1038/nature13695

Findlay, G. M., Daza, R. M., Martin, B., Zhang, M. D., Leith, A. P., Gasperini, M., et al.
(2018). Accurate classification of BRCA1 variants with saturation genome editing. Nature
562, 217–222. doi:10.1038/s41586-018-0461-z

Firnberg, E., and Ostermeier, M. (2012). PFunkel: Efficient, expansive, user-defined
mutagenesis. PLoS One 7, e52031. doi:10.1371/journal.pone.0052031

Fowler, D. M., Araya, C. L., Fleishman, S. J., Kellogg, E. H., Stephany, J. J., Baker, D., et al.
(2010). High-resolution mapping of protein sequence-function relationships. Nat.
Methods 7, 741–746. doi:10.1038/nmeth.1492

Fowler, D. M., Araya, C. L., Gerard, W., and Fields, S. (2011). Enrich: Software for
analysis of protein function by enrichment and depletion of variants. Bioinformatics 27,
3430–3431. doi:10.1093/bioinformatics/btr577

Fowler, D. M., and Fields, S. (2014). Deep mutational scanning: A new style of protein
science. Nat. Methods. 11, 801–807. doi:10.1038/nmeth.3027

Frazer, J., Notin, P., Dias, M., Gomez, A., Min, J. K., Brock, K., et al. (2021). Disease
variant prediction with deep generative models of evolutionary data. Nature 599, 91–95.
doi:10.1038/s41586-021-04043-8

Gelman, S., Fahlberg, S. A., Heinzelman, P., Romero, P. A., and Gitter, A. (2021). Neural
networks to learn protein sequence–function relationships from deep mutational scanning
data. Proc. Natl. Acad. Sci. 118, e2104878118. doi:10.1073/pnas.2104878118

Giver, L., Gershenson, A., Freskgard, P. O., and Arnold, F. H. (1998). Directed evolution
of a thermostable esterase. Proc. Natl. Acad. Sci. U. S. A. 95, 12809–12813. doi:10.1073/
pnas.95.22.12809

Gray, V. E., Hause, R. J., Luebeck, J., Shendure, J., and Fowler, D. M. (2018). Quantitative
missense variant effect prediction using large-scale mutagenesis data. Cell Syst. 6, 116–124.
doi:10.1016/j.cels.2017.11.003

Greaney, A. J., Starr, T. N., Barnes, C. O., Weisblum, Y., Schmidt, F., Caskey, M., et al.
(2021). Mapping mutations to the SARS-CoV-2 RBD that escape binding by different
classes of antibodies. Nat. Commun. 12, 4196. doi:10.1038/s41467-021-24435-8

Greaney, A. J., Starr, T. N., Gilchuk, P., Zost, S. J., Binshtein, E., Loes, A. N., et al. (2021).
Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that
escape antibody recognition. Cell Host Microbe 29, 44–57.e9. doi:10.1016/j.chom.2020.11.007

Hanna, R. E., Hegde, M., Fagre, C. R., DeWeirdt, P. C., Sangree, A. K., Szegletes, Z., et al.
(2021). Massively parallel assessment of human variants with base editor screens. Cell 184,
1064–1080.e20. doi:10.1016/j.cell.2021.01.012

Hanning, K. R., Minot, M., Warrender, A. K., Kelton, W., and Reddy, S. T. (2022). Deep
mutational scanning for therapeutic antibody engineering. Trends Pharmacol. Sci. 43,
123–135. doi:10.1016/j.tips.2021.11.010

Hart, T., Chandrashekhar, M., Aregger, M., Steinhart, Z., Brown, K. R., MacLeod, G.,
et al. (2015). High-Resolution CRISPR screens reveal fitness genes and genotype-specific
cancer liabilities. Cell 163, 1515–1526. doi:10.1016/j.cell.2015.11.015

Hartman, E. C., Jakobson, C. M., Favor, A. H., Lobba,M. J., Álvarez-Benedicto, E., Francis, M.
B., et al. (2018). Quantitative characterization of all single amino acid variants of a viral capsid-
based drug delivery vehicle. Nat. Commun. 9, 1385–1395. doi:10.1038/s41467-018-03783-y

Hietpas, R., Roscoe, B., Jiang, L., and Bolon, D. N. A. (2012). Fitness analyses of all
possible point mutations for regions of genes in yeast. Nat. Protoc. 7, 1382–1396. doi:10.
1038/nprot.2012.069

Hilton, S. K., Huddleston, J., Black, A., North, K., Dingens, A. S., Bedford, T., et al.
(2020). dms-view: Interactive visualization tool for deep mutational scanning data. J. open
source Softw. 5, 2353. doi:10.21105/joss.02353

Hsu, C., Nisonoff, H., Fannjiang, C., and Listgarten, J. (2022). Learning protein fitness
models from evolutionary and assay-labeled data. Nat. Biotechnol. 40, 1114–1122. doi:10.
1038/s41587-021-01146-5

Javanmardi, K., Segall-Shapiro, T. H., Chou, C-W., Boutz, D. R., Olsen, R. J., Xie, X., et al.
(2022). Antibody escape and cryptic cross-domain stabilization in the SARS-CoV-
2 Omicron spike protein. Cell Host Microbe 30 (9), 1242–1254.e6. doi:10.1016/j.chom.
2022.07.016

Karst, S. M., Ziels, R. M., Kirkegaard, R. H., Sørensen, E. A., McDonald, D., Zhu, Q., et al.
(2021). High-accuracy long-read amplicon sequences using unique molecular identifiers
with Nanopore or PacBio sequencing.Nat. Methods 18, 165–169. doi:10.1038/s41592-020-
01041-y

Kemble, H., Nghe, P., and Tenaillon, O. (2019). Recent insights into the
genotype–phenotype relationship from massively parallel genetic assays. Evol. Appl. 12,
1721–1742. doi:10.1111/eva.12846

Kinney, J. B., and McCandlish, D. M. (2019). Massively parallel assays and quantitative
sequence-function relationships. Annu. Rev. Genomics Hum. Genet. Aug 31, 99–127.
doi:10.1146/annurev-genom-083118-014845

Klesmith, J. R., Bacik, J. P., Wrenbeck, E. E., Michalczyk, R., and Whitehead, T. A.
(2017). Trade-offs between enzyme fitness and solubility illuminated by deep mutational
scanning. Proc. Natl. Acad. Sci. U. S. A. 114, 2265–2270. doi:10.1073/pnas.1614437114

Lappalainen, T., and MacArthur, D. G. (2021). From variant to function in human
disease genetics. Sci. Am. Assoc. Adv. Sci. 373, 1464–1468. doi:10.1126/science.
abi8207

Leander, M., Liu, Z., Cui, Q., and Raman, S. (2022). Deep mutational scanning
and machine learning reveal structural and molecular rules
governing allosteric hotspots in homologous proteins. Elife 11, e79932. doi:10.
7554/eLife.79932

Leander, M., Yuan, Y., Meger, A., Cui, Q., and Raman, S. (2020). Functional plasticity
and evolutionary adaptation of allosteric regulation. Proc. Natl. Acad. Sci. U. S. A. 117,
25445–25454. doi:10.1073/pnas.2002613117

Li, C., Qian, W., Maclean, C. J., and Zhang, J. (2016). The fitness landscape of a tRNA
gene. Science 352, 837–840. doi:10.1126/science.aae0568

Li, X., Lalić, J., Baeza-Centurion, P., Dhar, R., and Lehner, B. (2019). Changes in gene
expression predictably shift and switch genetic interactions. Nat. Commun. 10, 3886.
doi:10.1038/s41467-019-11735-3

Li, X., and Lehner, B. (2020). Biophysical ambiguities prevent accurate genetic
prediction. Nat. Commun. 11, 4923. doi:10.1038/s41467-020-18694-0

Lin-Goerke, J. L., Robbins, D. J., and Burczak, J. D. (1997). PCR-based random
mutagenesis using manganese and reduced dNTP concentration. Biotechniques 23,
409–412. doi:10.2144/97233bm12

Lite, T-L. V., Grant, R. A., Nocedal, I., Littlehale, M. L., Guo, M. S., and Laub, M. T.
(2020). Uncovering the basis of protein-protein interaction specificity with a
combinatorially complete library. Elife 9, e60924. doi:10.7554/eLife.60924

Livesey, B. J., and Marsh, J. A. (2020). Using deep mutational scanning to benchmark
variant effect predictors and identify disease mutations. Mol. Syst. Biol. 16, e9380. doi:10.
15252/msb.20199380

Majithia, A. R., Tsuda, B., Agostini, M., Gnanapradeepan, K., Rice, R., Peloso, G., et al.
(2016). Prospective functional classification of all possible missense variants in PPARG.
Nat. Genet. 48, 1570–1575. doi:10.1038/ng.3700

Markin, C. J., Mokhtari, D. A., Sunden, F., Appel, M. J., Akiva, E., Longwell, S. A.,
et al. (2021). Revealing enzyme functional architecture via high-
throughput microfluidic enzyme kinetics. Science 373, eabf8761. doi:10.1126/
science.abf8761

Matreyek, K. A., Starita, L. M., Stephany, J. J., Martin, B., Chiasson, M. A., Gray, V. E.,
et al. (2018). Multiplex assessment of protein variant abundance by massively parallel
sequencing. Nat. Genet. 50, 874–882. doi:10.1038/s41588-018-0122-z

Matreyek, K. A., Stephany, J. J., Chiasson, M. A., Hasle, N., and Fowler, D. M. (2020). An
improved platform for functional assessment of large protein libraries in mammalian cells.
Nucleic Acids Res. 48, e1. doi:10.1093/nar/gkz910

Matteucci, M. D., and Heyneker, H. L. (1983). Targeted random mutagenesis: The
use of ambiguously synthesized oligonucleotides to mutagenize sequences
immediately 5‘ of an ATG initiation codon. Nucleic Acids Res. 11, 3113–3121.
doi:10.1093/nar/11.10.3113

Matuszewski, S., Hildebrandt, M. E., Ghenu, A-H., Jensen, J. D., and Bank, C. (2016). A
statistical guide to the design of deep mutational scanning experiments. Genetics 204,
77–87. doi:10.1534/genetics.116.190462

McLaughlin, R. N., Jr, Poelwijk, F. J., Raman, A., Gosal, W. S., and Ranganathan, R.
(2012). The spatial architecture of protein function and adaptation. Nature 491, 138–142.
doi:10.1038/nature11500

Mendel, G. (1865). Versuche über Plflanzen-hybriden. Verhandlungen des
naturforschenden Vereines 4, 3–47.

Mendel, G. (1941). Versuche über Pflanzen-Hybriden. Zauchter Z. fur Theor Angew
Genet 13, 221–268. doi:10.1007/bf01804628

Frontiers in Genetics frontiersin.org08

Wei and Li 10.3389/fgene.2023.1087267

https://doi.org/10.15252/msb.20199265
https://doi.org/10.1093/nar/gkw223
https://doi.org/10.3389/fgene.2021.697090
https://doi.org/10.7554/eLife.32472
https://doi.org/10.1146/annurev-genom-083118-014857
https://doi.org/10.1146/annurev-genom-083118-014857
https://doi.org/10.1038/s41586-018-0170-7
https://doi.org/10.1038/s41586-018-0170-7
https://doi.org/10.1126/science.1258096
https://doi.org/10.1186/s13059-019-1845-6
https://doi.org/10.1038/s41586-022-04586-4
https://doi.org/10.1186/s13059-020-02091-3
https://doi.org/10.1038/nature13695
https://doi.org/10.1038/s41586-018-0461-z
https://doi.org/10.1371/journal.pone.0052031
https://doi.org/10.1038/nmeth.1492
https://doi.org/10.1093/bioinformatics/btr577
https://doi.org/10.1038/nmeth.3027
https://doi.org/10.1038/s41586-021-04043-8
https://doi.org/10.1073/pnas.2104878118
https://doi.org/10.1073/pnas.95.22.12809
https://doi.org/10.1073/pnas.95.22.12809
https://doi.org/10.1016/j.cels.2017.11.003
https://doi.org/10.1038/s41467-021-24435-8
https://doi.org/10.1016/j.chom.2020.11.007
https://doi.org/10.1016/j.cell.2021.01.012
https://doi.org/10.1016/j.tips.2021.11.010
https://doi.org/10.1016/j.cell.2015.11.015
https://doi.org/10.1038/s41467-018-03783-y
https://doi.org/10.1038/nprot.2012.069
https://doi.org/10.1038/nprot.2012.069
https://doi.org/10.21105/joss.02353
https://doi.org/10.1038/s41587-021-01146-5
https://doi.org/10.1038/s41587-021-01146-5
https://doi.org/10.1016/j.chom.2022.07.016
https://doi.org/10.1016/j.chom.2022.07.016
https://doi.org/10.1038/s41592-020-01041-y
https://doi.org/10.1038/s41592-020-01041-y
https://doi.org/10.1111/eva.12846
https://doi.org/10.1146/annurev-genom-083118-014845
https://doi.org/10.1073/pnas.1614437114
https://doi.org/10.1126/science.abi8207
https://doi.org/10.1126/science.abi8207
https://doi.org/10.7554/eLife.79932
https://doi.org/10.7554/eLife.79932
https://doi.org/10.1073/pnas.2002613117
https://doi.org/10.1126/science.aae0568
https://doi.org/10.1038/s41467-019-11735-3
https://doi.org/10.1038/s41467-020-18694-0
https://doi.org/10.2144/97233bm12
https://doi.org/10.7554/eLife.60924
https://doi.org/10.15252/msb.20199380
https://doi.org/10.15252/msb.20199380
https://doi.org/10.1038/ng.3700
https://doi.org/10.1126/science.abf8761
https://doi.org/10.1126/science.abf8761
https://doi.org/10.1038/s41588-018-0122-z
https://doi.org/10.1093/nar/gkz910
https://doi.org/10.1093/nar/11.10.3113
https://doi.org/10.1534/genetics.116.190462
https://doi.org/10.1038/nature11500
https://doi.org/10.1007/bf01804628
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1087267


Mighell, T. L., Evans-Dutson, S., and O’Roak, B. J. (2018). A saturation mutagenesis
approach to understanding PTEN lipid phosphatase activity and genotype-phenotype
relationships. Am. J. Hum. Genet. 102, 943–955. doi:10.1016/j.ajhg.2018.03.018

Mighell, T. L., Thacker, S., Fombonne, E., Eng, C., and O’Roak, B. J. (2020). An integrated
deep-mutational-scanning approach provides clinical insights on PTEN genotype-phenotype
relationships. Am. J. Hum. Genet. 106, 818–829. doi:10.1016/j.ajhg.2020.04.014

Moore, G. L., Maranas, C. D., Gl, M., and Cd, M. (2000). Modeling DNA mutation and
recombination for directed evolution experiments. J. Theor. Biol. 205 (3), 483–503. doi:10.
1006/jtbi.2000.2082

Narayanan, K. K., and Procko, E. (2021). Deep mutational scanning of viral
glycoproteins and their host receptors. Front. Mol. Biosci. 8, 636660. doi:10.3389/
fmolb.2021.636660

Olson, C. A., Wu, N. C., and Sun, R. (2014). A comprehensive biophysical description of
pairwise epistasis throughout an entire protein domain. Curr. Biol. 24, 2643–2651. doi:10.
1016/j.cub.2014.09.072

Otwinowski, J., McCandlish, D. M., and Plotkin, J. B. (2018). Inferring the shape of global
epistasis. Proc. Natl. Acad. Sci. U. S. A. 115, E7550–E7558. doi:10.1073/pnas.1804015115

Park, Y., Metzger, B. P. H. H., and Thornton, J. W. (2022). Epistatic drift causes gradual decay
of predictability in protein evolution. Science 376, 823–830. doi:10.1126/science.abn6895

Peterman, N., and Levine, E. (2016). Sort-seq under the hood: Implications of design
choices on large-scale characterization of sequence-function relations. BMC Genomics 17,
206–217. doi:10.1186/s12864-016-2533-5

Pfeiffer, F., Gröber, C., Blank, M., Händler, K., Beyer, M., Schultze, J. L., et al. (2018).
Systematic evaluation of error rates and causes in short samples in next-generation
sequencing. Sci. Rep. 8, 10950. doi:10.1038/s41598-018-29325-6

Plesa, C., Sidore, A. M., Lubock, N. B., Zhang, D., and Kosuri, S. (2018). Multiplexed
gene synthesis in emulsions for exploring protein functional landscapes. Sci. Am. Assoc.
Adv. Sci. 359, 343–347. doi:10.1126/science.aao5167

Puchta, O., Cseke, B., Czaja, H., Tollervey, D., Sanguinetti, G., and Kudla, G. (2016).
Network of epistatic interactions within a yeast snoRNA. Science 352, 840–844. doi:10.
1126/science.aaf0965

Rees, H. A., and Liu, D. R. (2018). Base editing: Precision chemistry on the genome and
transcriptome of living cells.Nat. Rev. Genet. 19, 770–788. doi:10.1038/s41576-018-0059-1

Riesselman, A. J., Ingraham, J. B., and Marks, D. S. (2018). Deep generative models of
genetic variation capture the effects of mutations. Nat. Methods 15, 816–822. doi:10.1038/
s41592-018-0138-4

Rocklin, G. J., Chidyausiku, T. M., Goreshnik, I., Ford, A., Houliston, S., Lemak, A., et al.
(2017). Global analysis of protein folding using massively parallel design, synthesis, and
testing. Science 357, 168–175. doi:10.1126/science.aan0693

Rollins, N. J., Brock, K. P., Poelwijk, F. J., Stiffler, M. A., Gauthier, N. P., Sander, C., et al.
(2019). Inferring protein 3D structure from deep mutation scans. Nat. Genet. 51,
1170–1176. doi:10.1038/s41588-019-0432-9

Rubin, A. F., Gelman, H., Lucas, N., Bajjalieh, S. M., Papenfuss, A. T., Speed, T. P., et al.
(2017). A statistical framework for analyzing deep mutational scanning data. Genome Biol.
18, 150–164. doi:10.1186/s13059-017-1272-5

Sadhu, M. J., Bloom, J. S., Day, L., Siegel, J. J., Kosuri, S., and Kruglyak, L. (2018). Highly
parallel genome variant engineering with CRISPR-Cas9. Nat. Genet. 50, 510–514. doi:10.
1038/s41588-018-0087-y

Sarkisyan, K. S., Bolotin, D. A., Meer, M. V., Usmanova, D. R., Mishin, A. S., Sharonov,
G. V., et al. (2016). Local fitness landscape of the green fluorescent protein. Nature 533,
397–401. doi:10.1038/nature17995

Schmiedel, J. M., and Lehner, B. (2019). Determining protein structures using deep
mutagenesis. Nat. Genet. 51, 1177–1186. doi:10.1038/s41588-019-0431-x

Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., and Serrano, L. (2005). The FoldX
web server: An online force field. Nucleic Acids Res. 33, W382–W388. doi:10.1093/nar/gki387

Seuma, M., Faure, A., Badia, M., Lehner, B., and Bolognesi, B. (2021). The genetic
landscape for amyloid beta fibril nucleation accurately discriminates familial Alzheimer’s
disease mutations. Elife 10, e63364–e63382. doi:10.7554/eLife.63364

Shafikhani, S., Siegel, R. A., Ferrari, E., and Schellenberger, V. (1997). Generation of large
libraries of random mutants in Bacillus subtilis by PCR-based plasmid multimerization.
Biotechniques 23, 304–310. doi:10.2144/97232rr01

Sharon, E., Chen, S. A. A., Khosla, N. M., Smith, J. D., Pritchard, J. K., and Fraser, H. B.
(2018). Functional genetic variants revealed by massively parallel precise genome editing.
Cell 175, 544–557. doi:10.1016/j.cell.2018.08.057

Shen, X., Song, S., Li, C., and Zhang, J. (2022). Synonymous mutations in representative
yeast genes are mostly strongly non-neutral. Nature 606, 725–731. doi:10.1038/s41586-
022-04823-w

Shendure, J., Balasubramanian, S., Church, G. M., Gilbert, W., Rogers, J., Schloss, J. A.,
et al. (2017). DNA sequencing at 40: Past, present and future. Nature 550, 345–353. doi:10.
1038/nature24286

Shin, H., and Cho, B-K. (2015). Rational protein engineering guided by deep mutational
scanning. Int. J. Mol. Sci. 16, 23094–23110. doi:10.3390/ijms160923094

Song, H., Bremer, B. J., Hinds, E. C., Raskutti, G., and Romero, P. A. (2021). Inferring
protein sequence-function relationships with large-scale positive-unlabeled learning. Cell
Syst. 12, 92–101.e8. doi:10.1016/j.cels.2020.10.007

Soskine, M., and Tawfik, D. S. (2010). Mutational effects and the evolution of new
protein functions. Nat. Rev. Genet. 11, 572–582. doi:10.1038/nrg2808

Staller, M. V., Holehouse, A. S., Swain-Lenz, D., Das, R. K., Pappu, R. V., and Cohen, B.
A. (2018). A high-throughput mutational scan of an intrinsically disordered acidic
transcriptional activation domain. Cell Syst. 6, 444–455. doi:10.1016/j.cels.2018.01.015

Starita, L. M., and Fields, S. (2015). Deep mutational scanning: Library construction,
functional selection, and high-throughput sequencing. Cold Spring Harb. Protoc. 2015,
777–780. doi:10.1101/pdb.prot085225

Starita, L. M., Young, D. L., Islam, M., Kitzman, J. O., Gullingsrud, J., Hause, R. J., et al.
(2015). Massively parallel functional analysis of BRCA1 RING domain variants. Genetics
200, 413–422. doi:10.1534/genetics.115.175802

Starr, T. N., Greaney, A. J., Hannon, W. W., Loes, A. N., Hauser, K., Dillen, J. R., et al.
(2022). Shifting mutational constraints in the SARS-CoV-2 receptor-binding domain
during viral evolution. Science 377, 420–424. doi:10.1126/science.abo7896

Starr, T. N., Greaney, A. J., Hilton, S. K., Ellis, D., Crawford, K. H. D., Dingens, A. S., et al.
(2020). Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints
on folding and ACE2 binding. Cell 182, 1295–1310. doi:10.1016/j.cell.2020.08.012

Starr, T. N., Picton, L. K., and Thornton, J.W. (2017). Alternative evolutionary histories in the
sequence space of an ancient protein. Nature 549, 409–413. doi:10.1038/nature23902

Stein, A., Fowler, D. M., Hartmann-Petersen, R., and Lindorff-Larsen, K. (2019).
Biophysical and mechanistic models for disease-causing protein variants. Trends
Biochem. Sci. 44, 575–588. doi:10.1016/j.tibs.2019.01.003

Stiffler, M. A., Hekstra, D. R., and Ranganathan, R. (2015). Evolvability as a function of
purifying selection in TEM-1 β-lactamase. Cell 160, 882–892. doi:10.1016/j.cell.2015.01.035

Tack, D. S., Tonner, P. D., Pressman, A., Olson, N. D., Levy, S. F., Romantseva, E. F., et al.
(2021). The genotype-phenotype landscape of an allosteric protein. Mol. Syst. Biol. 17,
e10847. doi:10.15252/msb.202110847

Tarassov, K., Messier, V., Landry, C. R., Radinovic, S., Molina, M. M. S., Shames, I., et al.
(2008). An in vivo map of the yeast protein interactome. Science 320, 1465–1470. doi:10.
1126/science.1153878

Tareen, A., Kooshkbaghi, M., Posfai, A., Ireland, W. T., McCandlish, D. M., and Kinney,
J. B. (2022). MAVE-NN: Learning genotype-phenotype maps from multiplex assays of
variant effect. Genome Biol. 23, 98–27. doi:10.1186/s13059-022-02661-7

Vaishnav, E. D., de Boer, C. G., Molinet, J., Yassour, M., Fan, L., Adiconis, X., et al.
(2022). The evolution, evolvability and engineering of gene regulatory DNA. Nature 603,
455–463. doi:10.1038/s41586-022-04506-6

Vanhercke, T., Ampe, C., Tirry, L., and Denolf, P. (2005). Reducing mutational bias in
random protein libraries. Anal. Biochem. 339, 9–14. doi:10.1016/j.ab.2004.11.032

Voichek, Y., and Weigel, D. (2020). Identifying genetic variants underlying phenotypic
variation in plants without complete genomes. Nat. Genet. 52, 534–540. doi:10.1038/
s41588-020-0612-7

Wan, L., Twitchett, M. B., Eltis, L. D., Mauk, A. G., and Smith, M. (1998). In vitro
evolution of horse heart myoglobin to increase peroxidase activity. Proc. Natl. Acad. Sci. U.
S. A. 95, 12825–12831. doi:10.1073/pnas.95.22.12825

Wang, T., Wei, J. J., Sabatini, D. M., and Lander, E. S. (2014). Genetic screens in human
cells using the CRISPR-Cas9 system. Science 343, 80–84. doi:10.1126/science.1246981

Weile, J., and Roth, F. P. (2018). Multiplexed assays of variant effects contribute to a growing
genotype–phenotype atlas. Hum. Genet. 137, 665–678. doi:10.1007/s00439-018-1916-x

Weile, J., Sun, S., Cote, A. G., Knapp, J., Verby, M., Mellor, J. C., et al. (2017). A
framework for exhaustively mapping functional missense variants.Mol. Syst. Biol. 13, 957.
doi:10.15252/msb.20177908

Weng, C., Faure, A., and Lehner, B. (2022). The energetic and allosteric landscape for
KRAS inhibition. bioRxiv 12, 840–844. doi:10.1101/2022.12.06.519122

Wenger, A. M., Peluso, P., Rowell, W. J., Chang, P-C., Hall, R. J., Concepcion, G. T., et al.
(2019). Accurate circular consensus long-read sequencing improves variant detection and
assembly of a human genome. Nat. Biotechnol. 37, 1155–1162. doi:10.1038/s41587-019-
0217-9

Wrenbeck, E. E., Klesmith, J. R., Stapleton, J. A., Adeniran, A., Tyo, K. E. J., and
Whitehead, T. A. (2016). Plasmid-based one-pot saturation mutagenesis. Nat. Methods 13,
928–930. doi:10.1038/nmeth.4029

Wu, Z., Cai, X., Zhang, X., Liu, Y., Tian, G., Yang, J-R., et al. (2022). Expression level is a
major modifier of the fitness landscape of a protein coding gene. Nat. Ecol. Evol. 6,
103–115. doi:10.1038/s41559-021-01578-x

Yoo, J. I., Daugherty, P. S., and O’Malley, M. A. (2020). Bridging non-overlapping reads
illuminates high-order epistasis between distal protein sites in a GPCR. Nat. Commun. 11,
690. doi:10.1038/s41467-020-14495-7

Zerbini, F., Zanella, I., Fraccascia, D., König, E., Irene, C., Frattini, L. F., et al. (2017).
Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in
Escherichia coli. Microb. Cell Fact. 16, 68. doi:10.1186/s12934-017-0681-1

Zhang, N., Chen, Y., Lu, H., Zhao, F., Alvarez, R. V., Goncearenco, A., et al. (2020).
MutaBind2: Predicting the impacts of single and multiple mutations on protein-protein
interactions. iScience 23, 100939. doi:10.1016/j.isci.2020.100939

Zurek, P. J., Knyphausen, P., Neufeld, K., Pushpanath, A., and Hollfelder, F. (2020).
UMI-linked consensus sequencing enables phylogenetic analysis of directed evolution.
Nat. Commun. 11, 6023. doi:10.1038/s41467-020-19687-9

Frontiers in Genetics frontiersin.org09

Wei and Li 10.3389/fgene.2023.1087267

https://doi.org/10.1016/j.ajhg.2018.03.018
https://doi.org/10.1016/j.ajhg.2020.04.014
https://doi.org/10.1006/jtbi.2000.2082
https://doi.org/10.1006/jtbi.2000.2082
https://doi.org/10.3389/fmolb.2021.636660
https://doi.org/10.3389/fmolb.2021.636660
https://doi.org/10.1016/j.cub.2014.09.072
https://doi.org/10.1016/j.cub.2014.09.072
https://doi.org/10.1073/pnas.1804015115
https://doi.org/10.1126/science.abn6895
https://doi.org/10.1186/s12864-016-2533-5
https://doi.org/10.1038/s41598-018-29325-6
https://doi.org/10.1126/science.aao5167
https://doi.org/10.1126/science.aaf0965
https://doi.org/10.1126/science.aaf0965
https://doi.org/10.1038/s41576-018-0059-1
https://doi.org/10.1038/s41592-018-0138-4
https://doi.org/10.1038/s41592-018-0138-4
https://doi.org/10.1126/science.aan0693
https://doi.org/10.1038/s41588-019-0432-9
https://doi.org/10.1186/s13059-017-1272-5
https://doi.org/10.1038/s41588-018-0087-y
https://doi.org/10.1038/s41588-018-0087-y
https://doi.org/10.1038/nature17995
https://doi.org/10.1038/s41588-019-0431-x
https://doi.org/10.1093/nar/gki387
https://doi.org/10.7554/eLife.63364
https://doi.org/10.2144/97232rr01
https://doi.org/10.1016/j.cell.2018.08.057
https://doi.org/10.1038/s41586-022-04823-w
https://doi.org/10.1038/s41586-022-04823-w
https://doi.org/10.1038/nature24286
https://doi.org/10.1038/nature24286
https://doi.org/10.3390/ijms160923094
https://doi.org/10.1016/j.cels.2020.10.007
https://doi.org/10.1038/nrg2808
https://doi.org/10.1016/j.cels.2018.01.015
https://doi.org/10.1101/pdb.prot085225
https://doi.org/10.1534/genetics.115.175802
https://doi.org/10.1126/science.abo7896
https://doi.org/10.1016/j.cell.2020.08.012
https://doi.org/10.1038/nature23902
https://doi.org/10.1016/j.tibs.2019.01.003
https://doi.org/10.1016/j.cell.2015.01.035
https://doi.org/10.15252/msb.202110847
https://doi.org/10.1126/science.1153878
https://doi.org/10.1126/science.1153878
https://doi.org/10.1186/s13059-022-02661-7
https://doi.org/10.1038/s41586-022-04506-6
https://doi.org/10.1016/j.ab.2004.11.032
https://doi.org/10.1038/s41588-020-0612-7
https://doi.org/10.1038/s41588-020-0612-7
https://doi.org/10.1073/pnas.95.22.12825
https://doi.org/10.1126/science.1246981
https://doi.org/10.1007/s00439-018-1916-x
https://doi.org/10.15252/msb.20177908
https://doi.org/10.1101/2022.12.06.519122
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1038/nmeth.4029
https://doi.org/10.1038/s41559-021-01578-x
https://doi.org/10.1038/s41467-020-14495-7
https://doi.org/10.1186/s12934-017-0681-1
https://doi.org/10.1016/j.isci.2020.100939
https://doi.org/10.1038/s41467-020-19687-9
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1087267

	Deep mutational scanning: A versatile tool in systematically mapping genotypes to phenotypes
	Introduction
	Generating a genetic mutant library
	Error-prone PCR
	PCR with oligonucleotides containing mutations
	Generating a library with mutations at the endogenous genetic loci

	High-throughput phenotyping
	Fitness assays
	Functional assays
	ddPCA: Untangling biophysical parameters with the fitness assays

	Deep sequencing and data analysis
	Sequencing platforms
	Data analysis

	Discussion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


