
Development and validation of a
genomic nomogram based on a
ceRNA network for
comprehensive analysis of
obstructive sleep apnea

Wang Liu1†, Xishi Sun2†, Jiewen Huang1, Jinjian Zhang1,
Zhengshi Liang1, Jinru Zhu1, Tao Chen1, Yu Zeng1, Min Peng1,
Xiongbin Li1, Lijuan Zeng1, Wei Lei2* and Junfen Cheng1*
1The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China, 2Affiliated Hospital of
Guangdong Medical University, Zhanjiang, China

Objectives: Some ceRNA associated with lncRNA have been considered as
possible diagnostic and therapeutic biomarkers for obstructive sleep apnea
(OSA). We intend to identify the potential hub genes for the development of
OSA, which will provide a foundation for the study of the molecular mechanism
underlying OSA and for the diagnosis and treatment of OSA.

Methods: We collected plasma samples from OSA patients and healthy controls
for the detection of ceRNA using a chip. Based on the differential expression of
lncRNA, we identified the target genes of miRNA that bind to lncRNAs. We then
constructed lncRNA-related ceRNA networks, performed functional enrichment
analysis and protein-protein interaction analysis, and performed internal and
external validation of the expression levels of stable hub genes. Then, we
conducted LASSO regression analysis on the stable hub genes, selected
relatively significant genes to construct a simple and easy-to-use nomogram,
validated the nomogram, and constructed the core ceRNA sub-network of key
genes.

Results: We successfully identified 282 DElncRNAs and 380 DEmRNAs through
differential analysis, and we constructed an OSA-related ceRNA network
consisting of 292 miRNA-lncRNAs and 41 miRNA-mRNAs. Through PPI and
hub gene selection, we obtained 7 additional robust hub genes, CCND2, WT1,
E2F2, IRF1, BAZ2A, LAMC1, andDAB2. Using LASSO regression analysis, we created
a nomogramwith four predictors (CCND2,WT1, E2F2, and IRF1), and its area under
the curve (AUC) is 1. Finally, we constructed a core ceRNA sub-network composed
of 74 miRNA-lncRNA and 7 miRNA-mRNA nodes.

Conclusion: Our study provides a new foundation for elucidating the molecular
mechanism of lncRNA in OSA and for diagnosing and treating OSA.
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1 Introduction

Obstructive sleep apnea (OSA) is the repeated partial or
complete collapse of the upper airway during sleep, resulting in
intermittent hypoxemia, which influences the onset and progression
of the disease (Duarte et al., 2020; Zhou et al., 2021). OSA may be
associated with multiple system diseases over time, including
hypertension, coronary heart disease, type 2 diabetes, cerebral
infarction, Alzheimer’s disease, Parkinson’s disease, and non-
alcoholic fatty liver disease (Floras, 2015; Salman et al., 2020;
Zhou et al., 2021). OSA affects at least 2%–4% of the adult
population, and the prevalence of OSA in patients aged 65 and
older exceeds 30% (Ekin et al., 2021). In clinical practice, weight loss
therapy, positive airway pressure ventilation therapy, surgical
therapy, oral appliance therapy, and drug therapy are frequently
used, but the results are not satisfactory (Kendzerska et al., 2021).
High prevalence and ineffective treatment will have a negative
impact on the quality of life of patients. Therefore, there is an
urgent need to identify new biomarkers and treatment targets for
OSA that are more effective.

Non-coding RNA (ncRNA) is a functional RNA molecule that is
not translated into protein, such as microRNA (miRNA), long non-
coding RNA (lncRNA), circular RNA (circRNA), intronic RNA, small
interfering RNA (siRNA), small nucleolar RNA (snoRNA), and piwi-
interacting RNA (piRNA), among others (Matsui and Corey, 2017).
Long non-coding RNAs (lncRNAs) are a class of transcripts with a
length of >200 nucleotides that are incapable of encoding proteins but
play a crucial role in gene regulation, biological processes, and a variety
of diseases (Zhou et al., 2021). Recent studies have found that lncRNA
XIST promotes the occurrence and development of OSAHS by
downregulating the expression of GRα in the adenoids of OSAHS
children, which may provide a potential therapeutic target for OSAHS
(Zhou et al., 2021). MicroRNA (miRNA) is a non-coding, single-
stranded molecule of approximately 22 nucleotides that fine-tunes
the expression of its target genes after transcription by interfering
with the 3′-UTR region of mRNA (Haenisch et al., 2015; Li and
Yuan, 2020). This interference results in mRNA degradation or
inhibition of protein translation. Therefore, misregulation of miRNA
will result in changes in protein expression, leading to disease
development (Li and Yuan, 2020). Overexpression of miR-107
inhibits the expression of hypoxia-inducible factor 1 (HIF-1b) and
hypoxia signaling [10] (Li et al., 2017); conversely, overexpression of
miR-107 increases the expression of hypoxia-inducible factor 1 (HIF-
1a) and hypoxia signaling.

There is evidence that the activities of lncRNA and miRNA are
intertwined through a variety of complex mechanisms (Yamamura
et al., 2018), as a result of the advancement of research. Among the
mechanisms is the function of lncRNA as competing endogenous
RNA (ceRNA), which compete with mRNAs for binding to miRNA
binding sites, thereby negatively regulating miRNA and its target
genes (Xu et al., 2021). In mice, cardiac apoptosis-related lncRNA
CARL can acquire miR-539, which indirectly upregulates its target
PHB2 and regulates apoptosis and mitochondrial fission (Rey et al.,
2021). The highly expressed lncRNA-Adi in rat adipocytes interacts
with miR-449a, which enhances the expression of the miRNA target
CDK6, and then participates in the regulation of the formation of
beige cellular tissue (Hou et al., 2018; Chen et al., 2020). The lncRNA
MALAT1 can play a regulatory role by acting on miR-224-5p,

thereby regulating the hippocampal NLRP3/IL-1β pathway and
inhibiting the hippocampus inflammatory response in type
2 diabetic patients with OSA (Du et al., 2020).

In this study, plasma samples were collected fromOSA patients and
a normal control group, plasma RNA was extracted, and ceRNA chip
detection was performed. Based on the differential expression of
lncRNA, we identified the target genes of miRNA that bind to
lncRNAs. We then constructed lncRNA-related ceRNA networks,
performed functional enrichment analysis and protein-protein
interaction analysis, and performed internal and external validation
of the expression levels of stable hub genes. Then, we performed LASSO
regression analysis on the stable hub genes, selected relatively significant
genes to construct a simple and easy-to-use nomogram, validated the
nomogram, and constructed the core ceRNA sub-network of key genes.
This study identified potential target genes of miRNA that may be
involved in the combination of lncRNA inOSA, providing a foundation
for the study of the pathogenesis of OSA and the diagnosis and
treatment of OSA.

2 Methods

2.1 Study subjects

In this study, 54 participants were recruited between December
2020 and May 2021. Patients who met the inclusion and exclusion
criteria were selected, and the final sample consisted of 9 volunteers;
6 OSA patients and 3 healthy volunteers who served as the control
group. All participants were subjected to a Watch-PAT examination
(the specification model is Watch-PAT 200, and the manufacturer is
Israel Ita), in addition to anthropometric measurements, blood pressure
measurements, and blood biochemical tests. According to the inclusion
and exclusion criteria, eligible patients were selected. Inclusion criteria:
1) The experimental group was comprised of volunteers whose Watch-
PAT test result indicatedOSA; 2) Patients aged between 28 and 36 years
old (including 28 and 36 years old); 3) Patients with the capacity to act
independently and consent to sign the informed consent form; and 4)
Patients with a total sleep time>4 h5)Healthy volunteers were recruited
for the control group. Exclusion criteria: 1) Patients with coronary heart
disease, hypertension, diabetes, kidney disease, chronic pulmonary
disease, or cerebrovascular disease; 2) patients with severe organ
failure; 3) a history of brain tumors or epilepsy; 4) patients with
various mental and psychological diseases who were taking sedatives
and sleeping drugs; 5) OSA patients who had previously received
treatment: The Medical Ethics Committee of the Second Affiliated
Hospital of Guangdong Medical University approved this study (ethics
number: GDEFEY2020LS030).

2.2 Basic data collection

In our study, we collected the patient’s name, age, gender, neck
circumference, waist circumference, weight, height, and blood
pressure. We then calculated the patient’s body mass index
(BMI) using the formula: weight (kg)/height (m)2 (BMI = kg/
m2). The researchers then modify the NoSAS score using general
information. NoSAS (Marti-Soler et al., 2016) includes 5 questions:
The first issue is that a neck circumference ≥40 cm is worth 4 points;
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the second issue is the BMI value range: 25 ≤ BMI <30 kg/m2 is
worth 3 points, BMI ≥30 kg/m2 is worth 5 points, and snoring is
worth 2 points. The answer to the fourth question is that age ≥55 is
worth 4 points; the score for the fifth question for male patients is 2.
If the NoSAS score is ≥ 8, it indicates that OSA patients are at
high risk.

2.3 Watch-PAT detection

The primary function of the Watch-PAT sleep monitoring
device is to detect sleep-disordered breathing. On the day of the
examination, participants were instructed to abstain from alcohol,
caffeine, and sleep aids. The Watch-PAT sleep monitoring device
primarily monitors PAT, heart rate, blood oxygen saturation,
snoring, body position, and additional sleep or waking stage
parameters. The software analyzes the changes in the PAT signal
throughout the entire sleep process. The sleep time of all patients
should be monitored for at least 7 h. The diagnostic criteria for OSA
were defined as apnea hypopnea index (AHI) ≥5 times/h, but the
criteria were further subdivided into mild OSA (5 ≤ AHI <15 times/
h), moderate OSA (15 ≤ AHI <30 times/h), and severe OSA
(AHI ≥30 times/h).

2.4 Blood sample collection

Our study participants were divided into three groups: the normal
group, the training cohort (obese OSA), and the internal validation
cohort (non-obese OSA). There were three members in each group. All
participants provided two blood samples at 8:00 a.m., following a full
night of Watch-PAT sleep monitoring and overnight fasting. Then, we
collected the blood into EDTA purple anticoagulant tubes; one was sent
for blood glucose and blood lipid detection, while the other was used for
ceRNA chip detection.Within 60 min of blood collection, the bloodwas
centrifuged for 10 min at 3,000 g to separate plasma. The supernatant
was transferred to an RNase-free Eppendorf tube and stored at −80°C
until RNA extraction.

2.5 ceRNA expression profile

Total RNA was isolated using RNeasy Total RNA Isolation Kit
(Qiagen, GmBH, Germany)/TRIzol reagent (Life technologies,
Carlsbad, CA, United States) per the manufacturer’s instructions,
purified using an RNeasy Mini Kit (Qiagen, GmBH, Germany), and
quantified using Nanodrop. Using the Agilent Bioanalyzer 2,100
(Agilent technologies, Santa Clara, CA, United States), the fragment
distribution of total RNA was analyzed. The RNA from each group
was then used to generate biotinylated cRNA targets for the Sino
Human ceRNA array V3.0. cRNA targets that were biotinylated
were then hybridized with the slides. The Agilent Microarray
Scanner was used to scan the slides after hybridization (Agilent
technologies, Santa Clara, CA, United States). Using Feature
Extraction software 10.7, data was extracted (Agilent
technologies, Santa Clara, CA, United States). Quantile algorithm,
R package “Limma” were used to normalize the raw data (Ritchie
et al., 2015). At Sinotech Genomics Corporation, the microarray

experiments were conducted according to the protocol developed by
Agilent technologies Inc. Genes exhibiting a fold change of at least
1 were chosen for further examination.

2.6 Identification of differentially expressed
lncRNA and mRNA between OSA group and
normal group

The “limma” package in R is used to identify differentially
expressed lncRNA and mRNA between OSA and normal groups,
an efficient bioinformatics analysis technique. The statistical
significance thresholds for differentially expressed lncRNA
(DElncRNA) and mRNA (DEmRNA) samples were determined
to be p < 0.05 and |log2FC| >1. Using these screening conditions, we
identified the differential expression of lncRNAs and mRNAs
between OSA patients and healthy controls. To reveal the sample
specificity of differentially expressed lncRNA and mRNA, we
utilized volcano plots and the “Pheatmap” package in R software
(Khomtchouk et al., 2014) to conduct supervised hierarchical
clustering based on the Euclide distance of the lncRNA and
mRNA in the samples (Mielke and Berry, 2003; Bien and
Tibshirani, 2011). Herein, P.Adjustp < adjustP & logFC >
logFoldChange is an up-regulating gene, and P.Adjustp <
logFC <(-log Fold Change) is a down-regulating gene.

2.7 Target gene prediction of differentially
expressed miRNA

Identification of target genes is crucial for defining the function
of miRNA. Due to the lack of miRNA information, the miRcode
database (Jeggari et al., 2012) was utilized to predict the DElncRNA-
targeted miRNA. Then, we predicted the target genes of
differentially expressed miRNA using the mirtarBase (Chou et al.,
2018), miRDB (Chen andWang, 2020), and TargetScan (Lewis et al.,
2003) databases. To improve the accuracy of miRNA prediction, we
chose miRNA with common target genes across three databases.

2.8 Construction of OSA-related lncRNA-
miRNA-mRNA network

The lncRNA that compete with miRNA for binding, miRNA of
common target genes, and differential mRNA were incorporated
into the ceRNA network, which was then visualized using Cytoscape
software (Shannon et al., 2003) (version 3.8.2; http://cytoscape.org),
resulting in the lncRNA-miRNA-mRNA ceRNA network diagram.

2.9 GO and KEGG functional enrichment
analysis

For further analysis of the three domains of potential cell
component (CC), molecular function (MF), and biological process
(BP) of gene modules, the “ClusterProfiler” package (Yu et al., 2012)
in R software was utilized for GO and KEGG pathway enrichment
analysis of target genes. Each category describes the biological function
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of genes at varying depths. Utilizing KEGG pathway enrichment
analysis, the enrichment degree of differential genes in pathways was
analyzed. When p < 0.05, the GO term and KEGG pathway were
designated as being enriched.

2.10 Construction of protein-protein
interaction network and identification of
hub genes

To further investigate the interactions between the
corresponding genes in the ceRNA network, we constructed a
PPI network using the Interaction Gene Retrieval Search Tool
(STRING) (Szklarczyk et al., 2015) 11.0 (http://string-db.org/). It
was assigned a confidence score greater than 0.15. Nodes in the PPI
network results represent proteins, while lines represent protein
interactions. We installed the Hubba plugin for Cytoscape (Chin
et al., 2014) after identifying the hub genes among the common
genes (http://hub.iis.sinica.edu.tw/cytohubba/). CytoHubba is a
visualization program that generates dense relationships using
degree, tight centrality, and moderate centrality algorithms. Using
CytoHubba, the central gene in the ceRNA network was identified.
Then, the top 10 genes were extracted using the five hub gene
screening methods of MCC, degree, EPC, closeness, and
betweenness. The “venndiagram” package (Lam et al., 2016) of R
software was used to create a Venn diagram, and the final hub gene
was determined by the intersection of the Venn diagrams.

2.11 Expression level and correlation analysis
of hub genes

To understand the expression levels of the final hub genes, we
used a t-test to compare the differences between the normal group
and the OSA group for the final hub genes. Then, to gain a better
understanding of the relationship between hub genes, Pearson’s
correlation analysis was utilized, and the “Corrplot” package was
used to visualize the results (Zhang et al., 2021a).

2.12 Verification of hub gene expression
level

To validate the differential expression of hub genes between the
OSA group and the normal group, we used the other threeOSApatients
as the internal validation cohort and the GSE135917 data set
downloaded from the GEO data frame as the external validation
cohort and then extracted the expression data from both sets of
data. First, enter the search term “obstructive sleep apnea” on the
homepage of the gene expression database (GEO) (http://www.ncbi.
nlm.nih.gov/geo) for retrieval; the only allowed species is “Homo
sapiens”; the data type is “expression profiling by array”. The dataset
(GSE135, 917) was selected and queried from the GEO database, and
then the platform file (GPL6244-17, 930) and matrix file (GSE135, 917)
were downloaded. The GSE135917 dataset contains 8 normal patients
and 10OSApatients. This dataset also includes gene expression samples
from 48 OSA patients receiving treatment. The t-test was utilized to
compare the differences between the two groups, and the R packages

“Ggplot2” (Zhang et al., 2021b) and “RColorBrewer” (Jędroszka et al.,
2017) were utilized to visualize the results. p < 0.05 was considered
statistically significant.

2.13 Construction of a genomicmodel based
on predictor selection

To further screen the hub genes associated with a high risk of OSA,
we used the “Glmnet” package in the R software to conduct the least
absolute shrinkage and selection operator (LASSO) logistic regression to
reduce the dimension of the data and determine the best prediction
characteristics of the training cohort (Friedman et al., 2010). Then, the
genes with non-zero coefficient characteristics in the LASSO regression
model were chosen, and the “Rms” package in the R software was used
to develop nomograms for them to identify patients at risk for OSA
(Zheng et al., 2021).

2.14 Verification of nomogram

The nomogram is bootstrapped (1,000 bootstrap samples) in
order to calculate the relative corrected C-index, which is used to
evaluate the nomogram’s discrimination (Wolbers et al., 2009). The
C-index ranges from 0.5 to 1.0, with 0.5 representing random chance
and 1.0 representing complete discrimination (Wolbers et al., 2009).
Medcalc software was used to evaluate the diagnostic value of the
OSA nomogram using receiver operating characteristic (ROC)
curves, and internal and external validation cohort ROC curves
were used for further validation.

2.15 Construction of core ceRNA
subnetworks for key genes

We remapped the validated key genes and their associated
lncRNA and miRNA into ceRNA networks, which were
visualized using the Cytoscape software.

2.16 Statistical methods

For correlation analysis, SPSS 26.0 statistical software, R
4.0.5 software, and Medcalc software were utilized. Counting data
were expressed as frequency, while measurement data were
expressed as mean ± standard deviation. t-test was used to analyze
measurement data, while the chi-square test was used to analyze
counting data. p < 0.05 was considered statistically significant.

3 Results

3.1 Basic characteristics of patients

In our study, we included 6 OSA patients and 3 healthy subjects,
with 3 of them serving as the normal group (BMI: 22.77 ± 2.15), 3 obese
OSA patients serving as the training cohort (BMI: 22.77 ± 2.15 vs.
31.40 ± 1.18, p = 0.004), and 3 non-obese OSA patients serving as the
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internal validation cohort (BMI: 22.77 ± 2.15 vs. 25.00 ± 1.06, p= 0.181).
The AHI of the normal group was 1.53 ± 1.20 (times/hour), the obese
group AHI was 89.93 ± 44.04 (times/hour), and the non-obese group
AHI was 47.13 ± 22.01 (times/hour). In addition, the NoSAS score for
the normal group was (4.00 ± 0.00), for the obese OSA group it was
(13.00 ± 0.00), and for the non-obese OSA group it was (9.00 ± 1.73).
The experimental group (obese OSA and non-obese OSA) consisted of
patients with a high risk of OSA. There were almost no statistically
significant differences between the three groups in terms of age, blood
glucose, total cholesterol, triglyceride, high-density lipoprotein, and
low-density lipoprotein (p > 0.05), and all patients were male, so
they were well-matched. OSA patients had a larger neck
circumference and waist circumference, and lower minimum oxygen
saturation (Min-NOX) andmean oxygen saturation (Mean-NOX), and
the difference between them was statistically significant (p < 0.05)
(Table 1).

3.2 Differential expression of lncRNA and
mRNA between the OSA group and normal
group

To identify the differentially expressed lncRNA and mRNA
between the OSA group and the normal group, the total RNA of

3 normal groups and 3 OSA groups was analyzed using microarrays.
The microarray analysis revealed that lncRNA and mRNA were
altered in the OSA group in comparison to the normal
group. According to the screening criteria, 282 differential
lncRNA, including 166 upregulated and 116 downregulated
lncRNA, and 380 differential mRNA, including 225 upregulated
and 155 downregulated mRNA, were screened. All gene expressions
in the dataset were represented as volcano maps and cluster heat
maps (Figure 1). Each point on the volcanic map represents a gene,
with blue points representing genes with low expression and red
points representing genes with high expression. The cluster heatmap
displayed the differentially expressed lncRNA and mRNA between
the OSA group and the normal group.

3.3 Construction of OSA-related lncRNA-
miRNA-mRNA network

We used the miRcode database to predict the 2,468 targeted
miRNA of DElncRNA, followed by the mirtarBase, miRDB, and
TargetScan databases to eliminate the 1935 miRNA of the common
target genes of these three databases. Subsequently, lncRNAs (2,468)
competing with miRNAs for binding, miRNAs of common target
genes (1935), and differential mRNAs (380) were incorporated into

TABLE 1 Clinical characteristics of the study subjects.

Training cohort Internal validation cohort

Normal group Obesity OSA P Normal group Non-obese OSA P

Number 3 3 — 3 3 —

Male 3 3 — 3 3 —

Age (years) 33.00 ± 4.36 32.00 ± 1.00 0.718 33.00 ± 4.36 31.00 ± 3.61 0.573

BMI(Kg/m2) 22.77 ± 2.15 31.40 ± 1.18 0.004 22.77 ± 2.15 25.00 ± 1.06 0.181

NC(cm) 37.67 ± 0.58 44.33 ± 3.51 0.032 37.67 ± 0.58 42.67 ± 0.58 <0.001

WC(cm) 84.67 ± 5.03 104.67 ± 8.50 0.025 84.67 ± 5.03 93.33 ± 3.79 0.076

SBP(mmHg) 120.33 ± 9.24 134.67 ± 4.93 0.077 120.33 ± 9.24 128.33 ± 10.97 0.389

DBP(mmHg) 72.67 ± 4.04 85.67 ± 4.16 0.018 72.67 ± 4.04 82.67 ± 8.50 0.140

HR(times/min) 68.00 ± 5.29 80.33 ± 16.62 0.288 68.00 ± 5.29 85.33 ± 5.51 0.017

NoSAS(points) 4.00 ± 0.00 13.00 ± 0.00 — 4.00 ± 0.00 9.00 ± 1.73 0.007

Blood sugar(mmol/L) 5.08 ± 0.68 5.21 ± 0.37 0.795 5.08 ± 0.68 5.37 ± 0.51 0.584

CHO(mmol/L) 3.72 ± 0.67 4.16 ± 0.64 0.450 3.72 ± 0.67 5.18 ± 0.55 0.043

TG(mmol/L) 0.85 ± 0.09 1.49 ± 0.62 0.151 0.85 ± 0.09 3.02 ± 1.94 0.126

HDL-C(mmol/L) 0.89 ± 0.19 0.95 ± 0.18 0.720 0.89 ± 0.19 1.20 ± 0.13 0.074

LDL-C(mmol/L) 2.73 ± 0.57 3.11 ± 0.66 0.492 2.73 ± 0.57 3.75 ± 0.78 0.141

AHI(times/hour) 1.53 ± 1.20 89.93 ± 44.04 0.025 1.53 ± 1.20 47.13 ± 22.01 0.023

Mean-NOX(%) 97.33 ± 0.58 91.67 ± 1.15 0.002 97.33 ± 0.58 94.67 ± 0.58 0.005

Min-NOX(%) 89.00 ± 6.08 59.33 ± 15.95 0.040 89.00 ± 6.08 73.67 ± 5.51 0.032

BMI, body mass index; NC, Neck circumference; WC,Waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, Heart rate (times/min); CHO, total cholesterol; TG,

triglycerides; HDL-C, high density lipoprotein; LDL-C, low density lipoprotein; AHI, apnea hypopnea index, mean NOx, average blood oxygen saturation, min; NOx, minimum blood oxygen

saturation; OSA, obstructive sleep apnea, P: p-value.
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the ceRNA network (Figure 2), and an OSA-related ceRNA network
consisting of 292 miRNA-lncRNA and 41 miRNA-mRNA was
developed,. The ceRNA network contained 23 predicted miRNA,
40 DElncRNA, and 28 DEmRNA.

3.4 Functional enrichment analysis

To gain a deeper understanding of the cellular processes
mediated by target genes, a GO functional enrichment analysis
was conducted to investigate the functional roles of their
target genes in the fields of biological processes, cellular
components, and molecular functions. Taking pvalueCutoff =
0.05 and qvalueCutoff = 0.05 as the criteria, we screened the

enrichment analysis of the top 10 of p-value, which was mainly
enriched in protein serine/threonine kinase (PKB, also known as
Akt) activity, transcriptional co-regulatory activity, DNA-binding
transcription factor binding, ubiquitin-like protein ligase binding,
ubiquitin protein ligase binding, RNA polymerase II-specific DNA-
binding transcription factor binding, phosphatase binding, protein
phosphatase binding, SMAD binding and nuclear receptor activity
(Figure 3).

Then, a KEGG pathway enrichment analysis was performed to
determine which pathways were significantly enriched in target
genes. Using pvalueCutoff = 0.05 and qvalueCutoff = 0.05 as the
criteria, we screened the pathway analysis of the top 10 of p-value,
which was predominantly enriched in mitogen activated protein
kinase (MAPK) signaling pathway, miRNA in cancer, human

FIGURE 1
Expression analysis of DElncRNA and DEmRNA in the training cohort (volcano map and cluster heat map). (A)and (C) show the volcano plots of
DElncRNA and DEmRNA, respectively. Red dots represent upregulated expression, and blue dots represent downregulated expression; (B) and (D)
represent the clustering heatmaps of DElncRNA and DEmRNA, respectively. Red stripes show upregulated expression, while blue stripes show
downregulated expression. DElncRNA: differentially expressed lncRNA; DEmRNA: differentially expressed mRNA.
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cytomegalovirus infection, Hepatitis B, Kaposi Sarcoma-associated
herpesvirus infection, cellular senescence, breast cancer, Yersinia
infection, neurotrophin signaling pathway, and EGFR tyrosine
kinase inhibitor resistance (Figure 4).

3.5 PPI network analysis and hub gene
selection

To distinguish hub genes from common genes, we inserted
the corresponding genes in ceRNA into the STRING database to

build a PPI network (Figure 5). Subsequently, we uploaded the
aforementioned PPI network relationship to Cytoscape and
utilized its cytohubba plugin to identify hub genes. The MCC,
EPC, Degree, Closeness, and Betweenness algorithms in
Cytohubba were utilized to determine the top 10 hub genes.
The scores of the five algorithms that screened the top 10 hub
genes are shown in Table 2. To obtain a more robust hub gene, the
top 10 hub genes identified by these five algorithms were
intersected (Figure 6), resulting in the identification of 7 more
robust hub genes, namely, CCND2, WT1, E2F2, IRF1, BAZ2A,
LAMC1, and DAB2.

FIGURE 2
Network diagram of lncRNA-miRNA-mRNA. The construction of the ceRNA network includes 40 DElncRNA, 23 predicted miRNA and 28 DEmRNA.
Blue circles, green triangles and red diamonds represent DEmRNA, miRNA and DElncRNA, respectively. DElncRNA: differentially expressed lncRNA;
DEmRNA: differentially expressed mRNA; miRNA: microRNA.
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3.6 Expression level and correlation analysis
of hub genes

In order to comprehend the expression levels and
correlations between these seven hub genes, we utilized the
t-test to compare the variances of these seven hub genes
between the normal and OSA groups. According to Table 3,
the difference between the normal group and the OSA group was
nearly statistically significant (p < 0.05). Then, we continued with
the correlation matrix analysis of the seven hub genes. According
to the classification of the Pearson correlation coefficient (r)
(Hazra and Gogtay, 2016), the absolute values of 0–0.30,
0.30–0.50, 0.50–0.70, and 0.70–1.00 indicate “weak”
correlation, “general” or “moderate” correlation, “good”
correlation, and “strong” correlation, respectively. In addition,
“r = 0” indicates “no correlation whatsoever” and “r = 1.00”
indicates “complete correlation”. As shown in Figure 7, there was
a good or strong correlation between the seven hub genes, with
IRF1 being strongly positively correlated with E2F2 (r = 0.97) and
strongly negatively correlated with DAB2 (r = −0.97),
respectively.

3.7 Validation of hub gene expression levels

The downloaded GSE135917 dataset was preprocessed, and
relevant information regarding the CCND2, WT1, E2F2, IRF1,
BAZ2A, LAMC1, and DAB2 genes was then searched for.

According to the expression profiling analysis of the
GSE135917 data set, the expressions of CCND2, WT1, E2F2,
and IRF1 in the OSA group were significantly decreased (p <
0.05), while there was no significant difference in BAZ2A,
LAMC1, and DAB2 (p > 0.05) (Table 3). Figure 8 displays the
results of the comparison between the two groups of CCND2,
WT1, E2F2 and IRF1. According to the expression data of the
internal validation cohort, although there was no statistically
significant difference in the expression of CCND2, WT1, E2F2,
and IRF1 (p > 0.05), this may be due to the difference caused by
non-obese patients or the small sample size that did not achieve
statistical significance. Nevertheless, according to the expression
data from the external validation cohort, their expression
differences were statistically significant (p < 0.05). The
expression analysis of the four hub genes in the internal and
external validation datasets was generally consistent with the
training data set.

3.8 Construction of a genomic model based
on predictor selection

LASSO regression is appropriate for high-dimensional data
regression. The compression coefficient is obtained by
constructing a penalty function, and some compression
coefficients are set to zero so that the most significant predictors
can be extracted from the main data set and a more precise linear
regression model can be developed (Friedman et al., 2010). In this

FIGURE 3
GO enrichment analysis diagram. GO enrichment analysis of target genes (p < 0.05 and q < 0.05), GO: Gene Ontology.
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study, a coefficient distribution curve was generated by calculating
each subject’s risk score using a linear combination of factors
weighted by the subject coefficient (Figure 9A). Figure 9B depicts
the error plot for the cross-validation of the lasso regression model.
The cross-validation error for the most regularized and
parsimonious model was within 1 standard error of the
minimum for 3 of the 7 variables. Four predictors (CCND2,
WT1, E2F2, and IRF1) were ultimately chosen to develop an
easy-to-use nomogram based on the expression level and
correlation analysis of hub genes, the PPI network diagram, and
its significance (Figure 10).

3.9 Verification of nomogram

Using 1,000 bootstrap analyses, the validity of the nomogram
was determined. In predicting OSA, the C-index of the nomogram
for both the training cohort and the internal and external
validation cohorts was 1, indicating that the model was
sufficiently accurate; consequently, the model is appropriate for
predicting OSA patients. Since there were fewer than 10 cases in
the training and internal validation groups, no calibration plot
could be generated. However, the calibration plot for external
validation (Figure 11) revealed a relatively strong correlation
between observed and predicted OSA. In addition, ROC curve

analysis was used to evaluate OSA when the AHI cut-off value was
5 times/h based on the current nomogram. When the AUC of the
nomogram was at the optimal cutoff point, regardless of whether
the cohort was the training cohort, the internal validation cohort,
or the external validation cohort, the ROC curve indicated that the
diagnostic performance of the nomogram was improved (AUC = 1,
AUC = 1, and AUC = 1), and their specificity and sensitivity were
both 100% (Figure 12).

3.10 Construction of core ceRNA
subnetworks for key genes

Based on the ceRNA network, we remapped the four key genes
of CCND2, WT1, E2F2, and IRF1, and related lncRNA and miRNA
into the ceRNA network, thereby establishing a core ceRNA sub-
network (Figure 13). It contained 74 miRNA-lncRNA and
7 miRNA-mRNA edges and 40 nodes [29 lncRNA (NSMCE4A,
ZBTB16, TCERG1, UCHL5, ESRRB, DNAH8, FAM189A2,
GARNL3, SLC35F4, ZNF890P, CCDC112, STRBP, IRX2, BPTF,
TLR1, CTAGE10P, FANCB, NRBP2, LDB1, MIR659, MIR524,
VSTM5, MIR300, CCDC26, TPRG1-AS1, EIF3IP1, OSTCP1,
OPCML-IT1, and OR7E2P), 7 miRNA(hsa-miR-1297, hsa-miR-
33a-3p, hsa-miR-17–5p, hsa-miR-20b-5p, hsa-miR-125b-5p, hsa-
miR-301b-3p, and hsa-miR-212–3p) and 4 mRNA(CCND2, WT1,

FIGURE 4
KEGG pathway enrichment analysis diagram. KEGG pathway enrichment analysis of target genes (p < 0.05 and q < 0.05), KEGG: Kyoto Encyclopedia
of Genes and Genomes.
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FIGURE 5
Key gene protein interaction (PPI) network.

TABLE 2 Five methods of research subjects to screen the top 10 hub genes and their scores.

MCC EPC Degree Closeness Betweenness

Name Score Name Score Name Score Name Score Name Score

CCND2 6.000 CCND2 7.332 CCND 27.332 CCND2 11.750 CCND2 210.000

WT1 4.000 WT1 6.887 WT1 6.887 E2F2 10.500 NPEPPS 134.000

E2F2 4.000 E2F2 6.863 E2F2 6.863 WT1 10.417 E2F2 91.667

LAMC1 4.000 DAB2 6.341 DAB2 6.341 DAB2 10.417 DAB2 90.000

DAB2 4.000 LAMC1 6.145 LAMC1 6.145 LAMC1 9.900 LAMC1 79.333

IRF1 3.000 BAZ2A 5.687 BAZ2A 5.687 NPEPPS 9.367 ATL3 74.000

ATL3 3.000 IRF1 5.508 IRF1 5.508 IRF1 8.983 WT1 59.667

NPEPPS 3.000 EZH1 5.143 EZH1 5.143 BAZ2A 8.900 BAZ2A 55.667

BAZ2A 3.000 RRAS2 5.089 RRAS2 5.089 NUP43 8.150 NUP43 43.333

NUP43 3.000 TIAM1 4.991 TIAM1 4.991 EZH1 8.067 IRF1 42.000

OSA: obstructive sleep apnea, P: p-value.
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E2F2 and IRF1)]. Figure 13 demonstrates that STRBP was the core
lncRNA, capable of binding with hsa-miR-1297, hsa-miR-17–5p,
hsa-miR-20b-5p, hsa-miR-125b-5p, hsa-miR-301b -3p, and hsa-
miR-212–3p, which in turn affected four genes: CCND2, WT1,
E2F2, and IRF1.

4 Discussion

Obstructive sleep apnea (OSA) is the most prevalent respiratory
sleep disorder, affecting up to 1 billion individuals worldwide
(Kendzerska et al., 2021). In addition, the patient’s compliance
with the diagnosis and treatment of OSA is poor, which can
easily lead to the disease’s progression, which will impose a
heavy burden on society and present treatment challenges for
physicians. In order to prevent the progression of OSA, effective

screening technologies, accurate diagnosis, and treatment remain
crucial. Recent studies have highlighted the regulatory role of
lncRNA as ceRNA in the development and occurrence of chronic
intermittent hypoxia (Ge et al., 2019; Zhang et al., 2020a; Hu et al.,
2021). We constructed an lncRNA-related ceRNA network based on
the results of the OSA ceRNA chip to identify new targets with
potential diagnostic or therapeutic value for OSA, and then validated
the new targets.

In this study, we successfully identified 282 DElncRNA and
380 DEmRNA through the differential expression of lncRNA and
mRNA in order to reduce the error interference between the OSA
group and the normal group. Initially, we matched the key
information of the two groups in order to reduce the error
interference between the OSA group and the normal
group. Combining lncRNA that compete with miRNA for
binding, miRNA of common target genes, and differential mRNA
yielded a ceRNA network. The target genes in the ceRNA network
were then analyzed for enrichment in GO terms and KEGG
pathways. GO enrichment analysis revealed that target genes
were primarily enriched in protein serine/threonine kinase
activity, transcriptional co-regulatory activity, DNA-binding
transcription factor binding, ubiquitin-like protein ligase binding,
ubiquitin protein ligase binding, and so on. Protein serine/threonine
kinase activity was, without a doubt, the most important GO
pathway. PKB consists of three widely expressed isoforms (PKBα,
PKBβ, and PKBγ; also known as Akt1, Akt2, and Akt3, respectively),
and PKBβ may be an important mediator in the insulin signaling
transduction pathway (Lawlor and Alessi, 2001). Analysis of KEGG
pathway annotations revealed that target genes were predominantly
involved in the MAPK signaling pathway, miRNA in cancer, human
cytomegalovirus infection, Hepatitis B and Kaposi sarcoma-
associated herpesvirus infection, etc. However, the MAPK
signaling pathway was the pathway with the greatest enrichment.
MAPK is a ubiquitous family of proline-directed protein serine/
threonine kinases that are required for the sequential transduction of
biological signals from the cell membrane to the nucleus (Broom
et al., 2009). OSA-induced intermittent hypoxia has been reported to
excessively and persistently activate the MAPK signaling pathway
(Zhao et al., 2016). Some studies have also demonstrated that at the
cellular level, chronic intermittent hypoxia alters the equilibrium
between the phosphatidylinositol 3-kinase (PI3K)-dependent

FIGURE 6
Venn diagram of five methods to screen the top ten hub genes.

TABLE 3 Expression levels of hub genes of the study subjects.

Name Training cohort Internal validation cohort External validation cohort

Normal group Obesity OSA P Normal group Non-obese OSA P Normal group OSA P

CCND2 4.23 ± 0.53 2.70 ± 0.68 0.037 4.23 ± 0.53 3.66 ± 1.18 0.486 9.66 ± 0.55 10.72 ± 0.61 <0.001

WT1 3.98 ± 0.39 2.06 ± 0.73 0.016 3.98 ± 0.39 2.87 ± 0.67 0.069 6.49 ± 0.41 5.44 ± 0.19 <0.001

E2F2 4.34 ± 0.58 3.22 ± 0.39 0.051 4.34 ± 0.58 3.53 ± 1.41 0.411 6.90 ± 0.21 6.60 ± 0.18 <0.001

IRF1 2.98 ± 0.75 1.39 ± 0.57 0.043 2.98 ± 0.75 2.40 ± 1.48 0.578 7.58 ± 0.43 7.12 ± 0.32 0.002

BAZ2A 1.98 ± 0.31 3.20 ± 0.21 0.005 1.98 ± 0.31 1.92 ± 0.23 0.781 8.22 ± 0.30 8.12 ± 0.18 0.243

LAMC1 1.41 ± 0.52 2.46 ± 0.55 0.075 1.41 ± 0.52 1.80 ± 0.54 0.427 10.72 ± 0.35 10.56 ± 0.21 0.117

DAB2 1.32 ± 0.28 2.45 ± 0.44 0.021 1.32 ± 0.28 2.43 ± 2.08 0.412 9.89 ± 0.45 10.05 ± 0.37 0.326

OSA: obstructive sleep apnea, P: P value
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insulin signaling pathway, which regulates the production of
endothelial nitric oxide (NO), and the activation of the mitogen-
activated protein kinase (MAPK)-dependent insulin signaling
pathway, which regulates the secretion of vasoconstrictor
endothelin-1 (ET-1), thus affecting vascular endothelial
dysfunction (Sharma et al., 2018). Clearly, protein serine/
threonine kinase activity plays a pivotal role in the MAPK
signaling pathway during the progression of OSA disease.

Then, we constructed a network of lncRNA-related ceRNAs and
identified 28 hub genes. Then, a PPI network was created, and the
cytohubba plug-inwas utilized to identify 7 stable hub genes (CCND2,
WT1, E2F2, IRF1, BAZ2A, LAMC1, and DAB2). IRF1 was strongly
positively correlated with E2F2 (r = 0.97), and IRF1 was strongly
negatively correlated with DAB2 (r = −0.97), according to the results
of the correlation analysis. In addition, the levels of expression of these
seven hub genes were validated using both internal and external
validation datasets. LASSO regression was then applied to the seven
hub genes. In conjunction with the expression level and correlation
analysis of hub genes, as well as the PPI network diagram and its
significance, the number of candidate variables was reduced to
4 potential predictors (CCND2, WT1, E2F2, and IRF1). It has
been reported that CCND2 regulates cell proliferation by binding
to cyclin-dependent kinase 4 (CDK4) or cyclin-dependent kinase 6
(CDK6) to form a complex required for the G1/S cell cycle (Chermuła
et al., 2019). Furthermore, it has been reported that CCND2 is one of
the most important biomarkers of endothelial dysfunction (Zhu et al.,
2021). WT1 is a transcription factor that is unique among

transcription factors because it functions as both a tumor
suppressor and an embryonic development regulator (Krueger
et al., 2019). It has been demonstrated that the expression of WT1,
which is upregulated by hypoxia in endothelial cells, and the
proliferation of endothelial cells are regulated by WT1 (Duim
et al., 2015). E2F2, a member of the E2F family, regulates the cell
cycle by inhibiting or activating cell cycle regulators, such as cyclins,
cyclin-dependent kinases (CDKs), and checkpoint regulators (Li et al.,
2014). Experiments have demonstrated that E2F1 inhibits
angiogenesis and endothelial cell proliferation following ischemic
injury by suppressing the expression of pro-angiogenic cytokines,
vascular endothelial growth factor, and placental growth factor (Zhou
et al., 2013). Interferon regulatory factor-1 (IRF1), a member of the
IRF family of transcription factors, regulates gene expression during
inflammation, immune response, cell proliferation, cell cycle
progression, T cell differentiation, and DNA damage (Huang et al.,
2019). Studies indicate that hypoxia can regulate the transcription of
KPNA2 by simultaneously increasing the expression of its positive
regulator E2F1 and inhibiting the expression of its negative regulator
IRF1 (Huang et al., 2019). Clearly, these four predictors are associated
with hypoxia, and intermittent hypoxia is one of the underlying causes
of OSA. Consequently, CCND2, WT1, E2F2, and IRF1 target genes
are all associated with OSA, and their inclusion in the model is
reasonable.

Nomogram is a risk prediction tool that has been used for
decades in medicine. By combining important predictors to predict
clinical events and outcomes, it has been widely used to predict the

FIGURE 7
Correlation matrix analysis of robust hub genes. The distribution plot is shown on the diagonal; the lower left shows a bivariate scatterplot with a
fitted line; and the upper right shows the correlation coefficient and significance level.
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risk and prognosis of various diseases (Chen et al., 2021; Song et al.,
2021). Zhu et al. (2020) constructed a nomogram using seven hub
RNA (HMMR, RNF24, RAP2A, S100A10, ARL2, has-miR-326, and
hsa-miR-421). Consistently, the calibration curve demonstrated that
the risk prediction model for hepatocellular carcinoma based on
seven hub RNA had an adequate predictive effect. Song and Fu, 2019
developed a nomogram that included the target gene CXCR5, age,
and stage. In the training set, the AUC values for the nomogram’s
ability to predict the 3-year and 5-year overall survival of colorectal
cancer were 0.749 and 0.805, respectively, whereas, the

corresponding values in the validation set were 0.706 and 0.779,
respectively. Shi et al. (2020) established a nomogram that included
waist-to-hip ratio, smoking status, BMI, uric acid, Homeostasis
Model Assessment 2 Insulin Resistance Index (HOMA2-IR), and
history of fatty liver, and the AUC for distinguishing non-OSA
patients from OSA patients was 0.855. Luo et al. (2015) established a
nomogram that incorporated numerous subjective and objective
variables (disease duration, smoking status, sleep difficulties, lack of
energy, and waist circumference), and its discrimination accuracy
for non-OSA, moderate-to-severe OSA, and severe OSA was 83.8%,

FIGURE 8
Boxplots of differential expression of key genes in the external validation cohort. External validation of four core genes in the GSE135917 dataset.
“0”indicates the normal group; “1″indicates the OSA group. OSA stands for Obstructive Sleep Apnea. (A) The relative expression level of CCND2 between
OSA and normal groups; (B) The relative expression level of WT1 betweenOSA and normal groups; (C) The relative expression level of E2F2 betweenOSA
and normal groups; (D) The relative expression level of IRF1 between OSA and normal group. Data are presented as medians with interquartile
ranges. t-test was used to compare relative expression levels between the two groups.
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FIGURE 9
Factor selection using the Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression model. (A): The best parameter (lambda)
selection in LASSO regression was selected using 10-fold cross-validation (through the minimum standard). Black vertical lines are drawn at the best
values by using theminimum standard and one standard error of theminimum standard (1-SE standard). (B): Three features of the lasso coefficient profile.
Coefficient profiles are plotted according to the logarithmic (λ) series.

FIGURE 10
Nomogram for predicting obstructive sleep apnea syndrome. OSA: obstructive sleep apnea.
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79.9%, and 80.5%, respectively. Based on these prediction models, it
is evident that, regardless of whether the research is fundamental or
clinical, nomograms are generally effective at predicting disease,
which provides a foundation for identifying reliable targets.
Verification of the nomogram is crucial for avoiding overfitting
and determining generality (Iasonos et al., 2008). In our study, after
proper calibration, the validation cohort’s calibration curve revealed
that the actual occurrence probability was relatively close to the
predicted occurrence probability. In addition, the training cohort,
internal validation cohort, and external validation cohort all have
C-index and AUC values of 1, indicating that the model is
sufficiently accurate and diagnostically efficient. Thus, the validity
of our nomogram has been established.

The nomogram has been recognized as a reliable tool for
quantifying disease risk based on multivariate modeling
procedures (Luo et al., 2015), and the nomogram constructed by
target genes such as CCND2, WT1, E2F2, and IRF1 has been
demonstrated to be robust; consequently, CCND2, WT1, E2F2,

and IRF1 may be reliable OSA targets. In order to gain a deeper
understanding of the regulatory mechanisms of these four target
genes, we remapped them back into the ceRNA network,
establishing a core ceRNA sub-network to search for important
lncRNA or miRNA, or even lncRNA-miRNA-mRNA regulatory
axes. The results demonstrated that STRBP was a core lncRNA that
could bind competitively with hsa-miR-1297, hsa-miR-17-5p, hsa-
miR-20b-5p, hsa-miR-125b-5p, hsa-miR-301b-3p, and hsa-miR-
212-3p, thereby regulating the four genes CCND2, WT1, E2F2,
and IRF1.

The ceRNA mechanism is a critical mode of regulation for
cellular active metabolism and disease. STRBP is a sperm
perinuclear RNA-binding protein that resides on chromosome
9q33, is widely expressed in lymph nodes, testis, and other
tissues, and plays a crucial role in mammalian spermatogenesis
(Zhang et al., 2020b). According to reports, STRBP can be detected
in lung adenocarcinoma, breast cancer, and hematological
malignancies (Zhang et al., 2020b). STRBP may be associated
with body weight, according to studies (Wang et al., 2020).
miRNA are commonly used in bioinformatics target prediction
algorithms, and seed matching, sequence conservation, and
thermodynamics of miRNA-mRNA interactions are commonly
used to predict potential targets (Angerstein et al., 2012). miR-
1297 inhibits KPNA2 in glioblastoma to negatively regulate
metabolic reprogramming (Li and Yuan, 2020). According to
previous studies, the CCND2 gene is a potential target of miR-
1297, which inhibits the progression of colorectal cancer by
inhibiting the transcription of CCND2 in colorectal cancer cells
(Wang et al., 2017). It has been reported that miR-17-5p plays a role
in the proliferation of pulmonary vascular smooth muscle cells,
making it a potential new therapeutic target for the control of
pulmonary hypertension (Yao et al., 2021).hsa-miR-17-5p may
play a significant role in hypertrophic cardiomyopathy and is
anticipated to serve as a diagnostic biomarker for this condition
(Shi et al., 2019). Drobna et al. (2020) discovered that hsa-miR-20b-
5p affected the expression of the tumor suppressor genes PTEN and
BIM and regulated the survival of T-cell acute lymphoblastic
leukemia cells in vitro. In addition, miR-20b-5p is predicted to
regulate the TNFα signaling pathway, which supports the notion
that diabetic retinopathy progression is primarily driven by retinal

FIGURE 11
Calibration curve of nomogram in external validation cohort.

FIGURE 12
ROC curve of nomogram. (A): Nomogram ROC of the training cohort; (B)Nomogram ROC of the internal validation cohort; (C)Nomogram ROC of
the external validation cohort.
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inflammation (Trotta et al., 2021). It has been reported that miR-
125b-5p, a member of the miR-125 family, regulates the
proliferation of differentiated tumor cells and may be a
diagnostic biomarker for early cervical cancer and rheumatoid
arthritis (Deping et al., 2021). Wu et al. (2020) discovered that
the regulatory axis of hsa_circ_0000069/hsa-miR-125b-5p/
CDKN2A may play a role in the occurrence and progression of
cervical squamous cell carcinoma. miR-301b expression was
induced by hypoxia in PrCa cell lines (DU145, PC-3, LNCaP)
in vitro, resulting in increased autophagy and loss of
radiosensitivity, thereby influencing the occurrence and
progression of prostate cancer (Fort et al., 2018). Validation of
cell lines and cell line-derived exosomes demonstrated that
exosome-specific hsa-miR-301b-3p was upregulated in both eye
cancer cell lines and their exosomes (Ravishankar et al., 2020).
Previous research has demonstrated that the entire genome of hsa-
miR-212-3p is downregulated in Alzheimer’s disease, with a more
pronounced decrease in Alzheimer’s disease samples containing
gray matter (Pichler et al., 2017). In the study by Cheng and

Wang, 2020 lncRNA XIST regulates the expression of ASF1A
and BRWD1 via miR-212–3p, influencing the occurrence and
development of acute kidney injury. As far as we know, hypoxia
is a condition of insufficient tissue oxygenation that plays an
important role in numerous pathophysiologies, including
embryonic development, high-altitude adaptation, inflammation,
tissue repair, and tumor growth (Krueger et al., 2019), whereas
chronic intermittent hypoxia can cause OSA (Zhou et al., 2021). In
addition, OSA has been linked to cardiovascular disease, type
2 diabetes, Alzheimer’s disease, pulmonary hypertension, and
kidney damage (Daulatzai, 2013; Abuyassin et al., 2019; Zhou
et al., 2021). In conclusion, we hypothesize that lncRNA STRBP
may compete with miRNA (hsa-miR-1297, hsa-miR-17-5p, hsa-
miR-20b-5p, hsa-miR-125b-5p, hsa-miR-301b-3p, and hsa-miR-
212-3p) for binding, thereby regulating the target genes of
CCND2, WT1, E2F2, and IRF1, affecting the occurrence and
development of OSA; however, the specific pathogenesis still
warrants further investigation. Although these four key hub genes
and related mechanism networks may not be specific and require

FIGURE 13
Core ceRNA sub-network diagram of key genes. The construction of the ceRNA network included 29 DElncRNA, 7 predicted miRNA and
4 DEmRNA. Blue circles, green triangles and red diamonds represent DEmRNA, miRNA and DElncRNA, respectively. DElncRNA: differentially expressed
lncRNA; DEmRNA: differentially expressed mRNA; miRNA: microRNA.

Frontiers in Genetics frontiersin.org16

Liu et al. 10.3389/fgene.2023.1084552

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1084552


further validation, they can still provide a new direction for the
diagnosis and treatment of OSA in patients.

5 Advantages and limitations

There are advantages and limitations to this study. First, to the best
of our knowledge, this may be the first study to construct a human
plasma lncRNA-related ceRNA network, followed by the development
of a predictive model for key hub genes and internal and external
validation. The findings in this study provide a new perspective on the
functional mechanism of OSA and theoretical support for the potential
diagnostic and therapeutic targets. Nevertheless, our study has many
limitations. First, we only compared ceRNA between OSA and normal
plasma; however, it may differ between OSA severity levels andmust be
identified further. Second, the sample size used for analysis and
validation is smaller than the sample size typically required for
biomarker analysis, which may result in errors. Thirdly, the external
validation is based solely on public databases, and our results require
additional in vivo and in vitro validation. Therefore, we must conduct a
prospective cohort study with a larger sample size to further confirm
our position.

6 Conclusion

In conclusion, our findings indicate that protein serine/
threonine kinase activity plays a crucial role in the MAPK
signaling pathway during the progression of OSA disease.
CCND2, WT1, E2F2, and IRF1 could be new OSA targets for
diagnosis and treatment. Using these four key hub genes, we
designed and validated a new nomogram to predict the risk of
OSA patients that has sufficient performance and discrimination
ability to serve as a basis for clinical decision-making. LncRNA
STRBP may compete with miRNA (hsa-miR-1297, hsa-miR-17-5p,
hsa-miR-20b-5p, hsa-miR-125b-5p, hsa-miR-301b-3p and hsa-
miR-212-3p) for binding, thereby regulating the target genes of
CCND2, WT1, E2F2 and IRF1, affecting the occurrence and
development of OSA. In conclusion, despite the fact that our
results are preliminary, these analyses provide a new direction for
the pathogenesis of OSA; consequently, they may aid in the future
translation of this study into clinical work.
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Glossary

OSA Obstructive sleep apnea

ceRNA Competitive endogenous ribonucleic acid

ncRNA Non-coding ribonucleic acid

miRNA Micro-ribonucleic acid

lncRNA Long non-coding ribonucleic acid

circRNA Circular ribonucleic acid

inRNA Intronic ribonucleic acid

siRNA Small interfering ribonucleic acid

snoRNA Small nucleolar ribonucleic acid

piRNA Piwi-interacting ribonucleic acid

mRNA Messenger ribonucleic acid

DElncRNA Differentially expressed long non-coding
ribonucleic acid

DEmRNA Differentially expressed messenger ribonucleic acid

HIF-1 Hypoxia-inducible factor 1

BMI Body mass index

AHI Apnea hypopnea index

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

STRING The Search Tool for the Retrieval of Interacting Genes

BP Biological processes

CC Cellular component

MF Molecular function

PPI Protein-protein interaction network

LASSO Least absolute shrinkage and selection operator

Min-NOX Minimum nocturnal oxygen saturation

Mean-NOX Mean nocturnal oxygen saturation

AUC Area under the curve

MAPK Mitogen activated protein kinase

PKB Protein kinase B

NC Neck circumference

WC Waist circumference

SBP Systolic blood pressure

DBP Diastolic blood pressure

HR Heart rate

TG Triglycerides

HDL-C High density lipoprotein

LDL-C Low density lipoprotein
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