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Identification of long non-coding RNAs (lncRNAs) associated with common
diseases is crucial for patient self-diagnosis and monitoring of health
conditions using artificial intelligence (AI) technology at home. LncRNAs have
gained significant attention due to their crucial roles in the pathogenesis of
complex human diseases and identifying their associations with diseases can
aid in developing diagnostic biomarkers at the molecular level. Computational
methods for predicting lncRNA-disease associations (LDAs) have become
necessary due to the time-consuming and labor-intensive nature of wet
biological experiments in hospitals, enabling patients to access LDAs through
their AI terminal devices at any time. Here, we have developed a predictive tool,
LDAGRL, for identifying potential LDAs using a bridge heterogeneous information
network (BHnet) constructed via Structural Deep Network Embedding (SDNE).
The BHnet consists of three types of molecules as bridge nodes to implicitly link
the lncRNA with disease nodes and the SDNE is used to learn high-quality node
representations and make LDA predictions in a unified graph space. To assess the
feasibility and performance of LDAGRL, extensive experiments, including 5-fold
cross-validation, comparison with state-of-the-art methods, comparison on
different classifiers and comparison of different node feature combinations,
were conducted, and the results showed that LDAGRL achieved satisfactory
prediction performance, indicating its potential as an effective LDAs prediction
tool for family medicine and primary care.
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Introduction

Autonomously understanding illness or physical condition for
body fluid biomarker samplers is significant after getting the medical
report for family medicine and primary care. It is self-diagnostic for
patients to know their health conditions through artificial
intelligence (AI) at home. The fluid biomarkers, such as non-
coding RNA molecules, are that we often need to be tested in the
course of disease prevention and treatment. Among various non-
coding RNA molecules, one of the most essential and unique non-
coding RNA molecules with longer than 200 nucleotides, long non-
coding RNAs (lncRNAs), was initially thought to be transcriptional
noise. Recently, with remarkable technologies such as developed
sequencing newly, more and more lncRNAs have been identified,
and their functions associated with multiple diseases have received
much attention (Yanofsky, 2007; Core et al., 2008; Lv et al., 2014).
For instance, for some cancers such as lung cancer, bladder cancer,
breast cancer, and colorectal cancer, lncRNA-UCA1 is expressed at
high levels during diagnosis and treatment (Wang et al., 2015).
Besides, the lncRNA PCA3, as a potential cancer diagnostic
biomarker, is also a well-known example. Researchers have found
that PCA3 expression levels significantly increased in prostate
tumors compared with normal tissues (Spizzo et al., 2012; van
Poppel et al., 2012). Hence, it can help to understand the
occurrence of diseases and the development process and further
facilitate the diagnosis, treatment, and prevention of human diseases
by detecting potential LDAs. However, wet biological experiments
have inherent weaknesses: time consumption, low efficiency, and
high cost. It is imperative to build accurate and effective
computational models for predicting potential lncRNAs related to
diseases.

Recently, computational models have been proposed and have
become powerful tools for predicting LDAs. Given the
implementation strategy, most existing LDAs prediction
approaches can predominantly be summarized into three
categories: The first category is based on machine learning
methods. They used known disease-related lncRNAs to infer new
associations by an efficient feature engineering algorithm. For
example, according to the initial probability vector of known
LDAs, an improved IRWRLDA model was proposed by Chen
et al., where they combined disease semantic similarity with
lncRNA expression similarity using the Random Walk algorithm
to predict unknown LDAs (Chen et al., 2016). Yu et al. proposed a
computational model called NBCLDA to detect potential LDAs via
the naive Bayesian classifier (Yu et al., 2018). Chen et al. used
random projection combined with a finite impulse response filter to
predict self-interacting proteins (Chen et al., 2018). Ou-Yang et al.
employed a two-side sparse self-representation algorithm to
estimate representations of lncRNA and disease for LDAs (Ou-
Yang et al., 2019). Han et al. proposed a gene selection method called
BPSO via binary particle swarm optimization and prior information
(Han et al., 2015). Zheng et al. adopt consensus-independent
component analysis for Gene expression data classification
(Zheng et al., 2008). Besides, some prediction models associated
with LDAs prediction, such as protein-protein interactions
prediction (Huang and Zheng, 2006; Zheng et al., 2008; Xia
et al., 2010b; 2010a; Shi et al., 2010; You et al., 2010; Zhu et al.,
2013; Huang et al., 2014), took advantage of machine learning

methods to predict protein-protein interactions based on multi-
biometric features. The second category is based on matrix
decomposition, in which they predict associations between
molecules through decomposing and recovering low-rank matrix.
For example, Lu et al. utilized an inductive matrix completion
method to predict LDAs (Lu et al., 2018). Zheng et al. applied
the penalized decomposition to gene expression data to extract
meta-samples for clustering and identify the samples with
complex classes (Zheng et al., 2011). As we know, the third
category can be regarded as network-based methods. To achieve
satisfactory performances, these network-based methods such as
(Yang et al., 2011), (Sun et al., 2014), and (Zhou et al., 2015)
integrated relationships networks, including known lncRNA-
disease associations, disease similarity networks, and lncRNA
similarity networks to build a heterogeneous network and then
propagation algorithm is used for node embedding learning. With
the development of a bipartite/tripartite graph with similarity
networks as a heterogeneous network-based approach, Ding et al.
propose a TPGLDA model by constructing a lncRNA-disease-gene
tripartite graph (Ding et al., 2018). Based on the tripartite graph,
Mori et al. incorporated biological sequence information into a
disease-target-ncRNA tripartite network to predict ncRNA-disease
associations (Mori et al., 2018). In addition, Ping et al. proposed a
model to infer potential LDAs by constructing a bipartite network
that follows the principle of a power-law distribution (Ping et al.,
2018). In (Sumathipala et al., 2019), a complex multi-level network
called LION in which protein-disease associations, protein-protein
interactions, and lncRNA-protein interactions are jointly
constructed, and the Random Walk algorithm is also utilized to
learn node embedding. Regarding bio-network, Deng et al. predicted
hub genes associated with cervical cancer via gene co-expression
networks (Deng et al., 2015). Yuan et al. used bi-weight mid-
correlation to measure the correlation between factors and then
utilized nonconvex penalty-based sparse regression to infer the gene
regulatory network (Yuan et al., 2018). Zhu et al. employed local
similarity-preserving embedding to identify spurious interactions in
the protein-protein interaction networks (Zhu et al., 2015).

Although predictive results of network-based models adopted
bipartite or tripartite graphs were helpful to some extent, from
another perspective, this also indicates that the relevance between
lncRNA and diseases is a complex biological process in which many
factors are closely involved. Besides, it is worth pointing out that the
occurrence and development of complex diseases are also complex
biochemical reactions involving many biomolecules. Thus, it is
meaningful and essential to investigate the association role of
multiple relevant molecules between lncRNA and disease. By
integrating multiple molecule associations, Guo et al. proposed a
novel molecular associations network model (Guo et al., 2019).
Based on the DeepWalk algorithm, Chen et al. also proposed a
prediction model for drug–target interactions from a multi-
molecular network (Chen et al., 2020). These methods
demonstrate that multiple molecule networks might be a
powerful prediction method. It is worth mentioning that which
molecules could be adopted is also challenging. Different research
objects will have different opinions on this point.

Due to the in-depth research in LDAs prediction, the current
network-based approaches are now regarded as a powerful
alternative. In this paper, inspired by the study of graph deep
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learning, for the LDAs prediction issue, we try to pick lncRNA,
miRNA, drug, protein, and disease to construct a bridge
heterogeneous information network (BHnet) based on the
competing endogenous RNAs (ceRNA) hypothesis, which is
biologically meaningful and rich in regulatory relationship with
lncRNA. So, a novel model termed LDAGRL was proposed to
predict potential LDAs by proposed BHnet including nodes
(lncRNA, miRNA, drug, protein, and disease) and edges (the
relationships among nodes). For exploration, LDAGRL aimed to
take advantage of the multi-molecular network to verify that it can
achieve satisfactory predictive performance. To better estimate the
prediction performance of LDAGRL, comprehensive experiments,
including 5-fold cross-validation (5-CV), comprehensive comparison

with baselines, comparison on different classifiers and comparison of
different node feature combinations, have been implemented. As a
result, the 5-CV results show that our method obtains a satisfactory
prediction performance, demonstrating that LDAGRL has promised
performance in potential LDAs prediction.

Materials and methods

Datasets

According to the actual situation, we first download eight known
kinds of associations from multiple databases. Then a set of data pre-
processing operators, including identifier unification, de-redundancy,
and deletion of the irrelevant items, are implemented. Besides, we
gathered known experimentally supported LDAs data from the
lncRNASNP2 and the LncRNADisease database, and we thus
obtained 345 different lncRNAs and 295 different diseases
(i.e., 1264 independent lncRNA-disease association pairs as positive
samples). The details of the final LDAGRL objects data are shown in
Table 1 and Figure 1.

Experiment evaluation

The prediction performance of LDAGRL was evaluated mainly
using the area under the receiver operating characteristic curve
(AUC). Relevant evaluation metrics include Accuracy (Acc.),
Precision (Prec.), Sensitivity (Sen.) or Recall, Specificity (Spec.)
F1-Score and MCC (Matthews correlation coefficient) and their
definitions as follows:

TABLE 1 The databases of nine kinds of associations in the LDAGRL.

Relationship type Database

lncRNA-disease LncRNADisease (Chen et al., 2012)
lncRNASNP2 (Miao et al., 2018)

miRNA-lncRNA lncRNASNP2 (Miao et al., 2018)

lncRNA-protein LncRNA2Target (Cheng et al., 2019)

miRNA-disease HMDD (Huang et al., 2019)

Protein-disease DisGeNET (Piñero et al., 2016)

Drug-disease CTD (Davis et al., 2013)

miRNA-protein miRTarBase (Chou et al., 2018)

Drug-protein DrugBank (Wishart et al., 2018)

protein-protein STRING (Szklarczyk et al., 2016)

FIGURE 1
The details of nine kinds of associations in the LDAGRL.
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Accuracy Acc.( ) � TP + TN

TP + TN + FP + FN
(1)

Precision Prec.( ) � TP

TP + FP
(2)

Sensitivity Sen.( ) � Recall � TP

TP + FN
(3)

Specificity Spec.( ) � 1 − TP

FP + TN
(4)

F1 − Score � 2 × Precision × Recall

Precision + Recall
(5)

Matthews correlation coefficient MCC( )
� TP × TN − FP × FN�������������������������������������

TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (6)

where TP, FP, TN, and FN respectively represent the number of true
positives, false positives, true negatives, and false negatives.

We adopted eight out of nine kinds of associations to construct
BHnet. Then, the bridge feature of the node can be obtained by
graph embedding algorithm on the BHnet. Note that LDAs are not
included in the BHnet such that we can explore the potential
relationship possibility between the lncRNA nodes and the
disease nodes in the case of no prior edges (LDAs) in the BHnet
for LDAGR. In other words, this article sets out to explore the
association possibilities between lncRNAs and diseases only relying
on their bridge nodes. Hence, we used LDAs as a training set and test
set to conduct 5-CV, while the bridge feature (learned from eight
types of associations) was the node/edge feature.

LDAGRL overview

According to available datasets, the proposed BHnet based
on biomolecules can be composed of nodes and edges. For
nodes, there are five kinds of molecular such as ncRNA
(miRNA, lncRNA), protein (target), drug, and disease. For
edges, it consists of eight associations except known lncRNA-
disease associations. Since the unknown lncRNA disease
association would have been predicted, eight associations
were embedded in BHnet. As shown in Figure 2, LDAGRL
consists of three parts. First, we construct a BHnet by
integrating biomolecule data, including five types of
molecules. Second, we leveraged SDNE to learn node
representations (node embedding) as dense feature vectors
for LDA pairs. Third, we used a supervised machine
learning-based XGBoost classifier to predict unknown LDAs.

Specifically, in the LDAGRL, by integrating multiple
molecules information, we leveraged multiple relationships
(associations) to construct a BHnet for lncRNAs and diseases,
including eight kinds of associations (i.e., miRNA-lncRNA,
miRNA-disease, lncRNA-protein, protein-disease, drug-
disease, miRNA-protein, drug-protein, protein-protein). Then,
based on the graph embedding framework, we employed SDNE
to learn the embedding vector of nodes. Finally, we adopted the
embedding vector combined with the positive and negative
samples constructed by LDAs to train the XGBoost classifier,
aiming to predict potential links.

FIGURE 2
Flowchart of LDAGRL for predicting LDAs.
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LncRNA and protein sequence
representation

As shown in Figure 1, we downloaded the sequences
information of lncRNA, miRNA, and protein from miRbase
(Kozomara et al., 2019), NONCODE (Fang et al., 2018), and
STRING (Szklarczyk et al., 2016) database respectively. Similar to
the previous methods, we utilize a 64-dimensional vector to encode
ncRNA (i.e., lncRNA and miRNA) sequences, where each attribute
in nodes represents the normalized frequency of the k-mer for
corresponding sequences. Based on the polarity of the side chain, we
first divide 20 amino acids into four types and then represent each
protein sequence by k-mer to form a 64-dimensional vector
following the method proposed by Shen et al. (Shen et al., 2007).

Drug molecular fingerprint representation

In LDAGRL, the smiles of drugs are downloaded from the
DrugBank database (Wishart et al., 2018), which combines
detailed drug data with comprehensive drug target information.

By RDKit (Open-Source Cheminformatics Software) API, we
transform the smiles of drugs into corresponding Morgan
fingerprints to get drug molecular fingerprint representation.

Disease semantic feature

The MeSH (Medical Subject Headings) is a comprehensive
searchable control vocabulary primarily employed for indexing
journal articles and books in the life sciences (Wang et al., 2010).
In MeSH, related disease annotation terms can be represented by a
Directed Acyclic Graph (DAG) structure that can be expressed as
DAG = (D, N(D), E(D)). The Dd(t) of a disease t in a DAG to the
semantics of disease D is defined as follows:

Dd D( ) � 1
Dd t( ) � max 0.5*Dd t′( )∣∣∣∣t′ϵ children of t{ } if t ≠ d{ (7)

where for a given disease D, N(D) denotes D itself together with all
its ancestor nodes, while E(D) denotes all relationships connecting
between nodes in the DAG(D). So, the semantic feature score
between two diseases, where the i and j, can then be calculated by:

S i, j( ) � ∑t∈T i( )∩T j( ) Di t( ) +Dj t( )( )
∑t∈T i( )Di t( ) +∑t∈T j( )Dj t( ) (8)

Structural Deep Network Embedding

Numerical studies substantiate the effectiveness and superior
abilities of the proposed Structural Deep Network Embedding
(SDNE)(Wang et al., 2016), which is a semi-supervised deep
model to perform network embedding. It can preserve the
highly-nonlinear local-global network structure well and is robust
to sparse networks, with its advantages mainly focusing on the
following crucial two points: A deep architecture: To capture the
highly nonlinear network structure, it is composed of multiple
nonlinear mapping functions to map the input data to a highly
nonlinear latent space to capture the network structure; A semi-
supervised model: To address the structure-preserving and sparsity
problems, it exploits both the second-order and first-order
proximity. Meanwhile, it designed the unsupervised component
to preserve the first- and second-order proximity to refining the
representations in the latent space.

Here, unsupervised components preserve global network
structures by second-order proximity. As an unsupervised model,
Autoencoder consists of two parts, i.e., the encoder and decoder. The
Autoencoder aims to minimize the output and input reconstruction
error. For given the input xi, for each layer, the hidden
representations are shown as follows:

yi
1( ) � σ W 1( )xi + b 1( )( ), k � 1 (9)

yi
k( ) � σ W k( )yi

k−1( ) + b k( )( ), k � 2, . . . , K (10)

After obtaining yi
k, we can obtain the output x̂i by reversing the

calculation process of the encoder. The objective function is shown
as follows:

TABLE 2 5-CV results of LDAGRL.

Fold
Evaluation metrics

Acc Sen Spec Prec MCC

0 0.8458 0.8458 0.8458 0.8458 0.6917

1 0.8162 0.7826 0.8498 0.8390 0.6338

2 0.8360 0.8182 0.8538 0.8484 0.6724

3 0.8557 0.8419 0.8696 0.8659 0.7117

4 0.8492 0.8413 0.8571 0.8548 0.6985

Average 0.8406 0.8260 0.8552 0.8508 0.6816

FIGURE 3
AUC of LDAGRL using SDNE network representation method via
XGBoost classifier.
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O � ∑∞
n�1‖ x̂i − xi ‖22 (11)

Considering the penalty or regularization, more penalty to the
reconstruction error of the non-zero elements than that of zero

elements in the adjacency matrix. The revised objective function is
shown as follows:

O2nd � ∑∞
n�1‖ x̂i − xi( ) ⊙ bi ‖22 (12)

� ‖ X̂ −X( ) ⊙ β ‖2
F

where⊙means the Hadamard product, bi = bi.j{ }n
j�1.if si,j �

0, bi,j � 1, else bi,j � β> 1
It is essential to preserve the local structure. Therefore, the

supervised component is designed to exploit the first-order
proximity. The objective function for this goal is defined as
follows:

TABLE 3 The predictive performance comparison of gGATLDA and LDAGRL by 5-CV.

Evaluation indicators
Dataset

Dataset1 Datase2 Dataset3 Method

AUC 0.9888 0.9870 0.9442

gGATLDA

AUPR 0.9890 0.9864 0.9493

Precision 0.7980 0.9098 0.8124

Accuracy 0.8670 0.9395 0.8455

Recall 0.9913 0.9759 0.9029

F1-Score 0.8830 0.9416 0.8541

AUC 0.9258 0.9167 0.9037

LDAGRL

AUPR 0.9126 0.8892 0.8976

Precision 0.8508 0.8510 0.8421

Accuracy 0.8406 0.8390 0.8198

Recall 0.8260 0.8017 0.8078

F1-Score 0.8382 0.8256 0.8246

TABLE 4 The predictive performance comparison of three methods by 5-CV.

Evaluation indicators
Method

GCNLDA GCRFLDA LDAGRL

AUC 0.9589 0.9621 0.9258

Precision 0.8250 0.8278 0.8508

TABLE 5 Bridge paths of between lncRNA and disease in BHnet.

Path
(Node & Path) frequency in BHnet

lncRNA

(L)

miRNA

(M)

Protein (1)

(P)

Protein (2)

(P)

Drug

(Dr)

Disease

(D)
Path

lncRNA-miRNA-disease

(L-M-D)

477 19 773 31, 0634

lncRNA-protein-disease

(L-P-D)

9 19 442 3736

lncRNA-protein-drug-disease

(L-P-Dr-D)

8 8 33 574 1, 2818

lncRNA-protein-protein-disease

(L-P-P-D)

10 94 359 685 12, 2719

lncRNA-protein-protein-drug-disease

(L-P-P-Dr-D)

9 49 131 204 598 56, 6745
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O1st � ∑n

i,j�1si,j‖ yi k( ) − yj
k( ) ‖2

2
(13)

� ∑n

i,j�1si,j‖ yi − yj ‖22
To preserve the first-order and second-order proximity

simultaneously, a semi-supervised model was proposed, which
combines Eq. 12 and Eq. 13, and joint minimizes the following
objective function:

Omix � O2nd + αO1st + ]Lreg (14)
� ‖ X̂ −X( ) ⊙ B ‖2

F
+ α∑n

i,j�1si,j‖ yi − yj ‖22+]Lreg

where Lreg is an L 2-norm regularizer term to prevent overfitting,
which is defined as follows:

Lreg � 1
2
∑K

k�1 ‖ W k( ) ‖2F+ ‖ Ŵ k( ) ‖2F( ) (15)

Results and discussion

Cross-validation experiment

In this section, to demonstrate the prediction performance of
our novel method, the bridge molecular, including lncRNA, miRNA,
drug, and protein, are integrated to obtain lncRNA-disease link
embedding. Thus, we utilize SDNE to train the proposed BHnet and
to get a dense representation of the lncRNA and the disease vector.

For further investigation, we choose XGBoost as a classifier
algorithm to verify the classification performance of LDAGRL.
Moreover, the AUC scores are used to evaluate the predictive
performance of our method. As seen from Table 2 and Figure 3,
as illustrated in the method section, LDAGRL effectively predicts

potential lncRNAs related to diseases. Specifically, it can be easily
found that LDAGRL achieved a reliable AUC of 0.9258, which is
the expected AUC we required. We can see that in most previous
methods, the characteristics of the research objects themselves
were considered to detect unknown relationships in these
methods.

Nevertheless, there are many other indirect associations, such as
the other associations in LDAGRL. If these previous methods
integrate these different indirect associations, the predictive
performance can be improved significantly. Our method is better
than previous methods (such as bipartite graph) that only focus on
single or isolated objects to some extent. As can be seen, LDAGRL
works more effectively in predicting potential LDAs when adopting
multiple bridge relationships-based methods.

Comparison with state-of-the-art methods

Then, we compared our model with existing state-of-the-art
methods, i.e., GCNLDA (Xuan et al., 2019), GCRFLDA (Fan et al.,
2022) and gGATLDA (Wang and Zhong, 2022). They were GCN-
based models (Kipf and Welling, 2016) on LDAs prediction. For
gGATLDA, according to its experimental setup, we correspondingly
collected its three benchmark datasets called Dataset1, Dataset2 and
Dataset3 to compare the performance. Specifically,
Dataset1 contained 3207 LDAs (443 lncRNAs and 608 diseases);
Dataset 2 contained 2697 LDAs (240 lncRNAs and 412 diseases) and
Dataset3 contained 621 LDAs (285 lncRNAs and 226 diseases). To
objectively compare the performance of LDAGRL with the state-of-
the-art methods, similarly, we adopt 5-CV to conduct comparison in
a targeted manner for false positive rate in identifying novel LDAs by
LDAGRL, combining the precision indicator of prediction. As
shown in Table 3, gGATLDA show unstable average precision on

TABLE 6 The predictive performance comparison of five methods over node2vec by 5-CV.

Evaluation indicators
Method

GCNLDA GCRFLDA gGATLDA LDAGRL LDAGRL (L-M-D)

AUC 0.9552 0.9862 0.9640 0.9222 0.9563

Precision 0.9049 0.9442 0.8710 0.8805 0.9162

TABLE 7 The AUC results of five classifiers under LDAGRL.

Fold
Classifier

XGBoost Random forest SVM AdaBoost Logistic regression

0 0.9311 0.9112 0.8784 0.8880 0.8930

1 0.9125 0.9102 0.8734 0.8722 0.8802

2 0.9239 0.9308 0.8827 0.8838 0.8899

3 0.9316 0.9290 0.9009 0.9003 0.9031

4 0.9294 0.9324 0.8963 0.8889 0.9021

Average 0.9258 0.9227 0.8863 0.8867 0.8937
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three kinds of datasets under 5-CV, while LDAGRL exhibits stable
average precision under 5-CV and thus lower false positive rate.

Though the AUCs and precisions of GCNLDA and GCRFLDA
are higher than the corresponding indicator of LDAGRL, it can be
observed from Table 4 that three types of methods, including
LDAGRL, keep AUC at the same level (>0.90) and the results of
experiment manifested that LDAGRL has a trait of low false negative
and low false positive.

To add an independent baseline approach (i.e., graph embedding
algorithm) to compare four types of methods, we adopted the node2vec
(Grover and Leskovec, 2016) as the baseline model to obtain node
embedding and employed the Random Forest classifier to score the
potential LDAs. Since node2vec is a graph embedding algorithm that
considers both the Depth First Search (DFS) and the Breadth First
Search (BFS) neighborhood. It is consistent with our design idea that
exploring the association possibilities between lncRNAs and diseases
relies on their bridge nodes or bridge paths.

First, as shown in Table 5, we listed all potential paths and
calculated the frequency for lncRNA and disease in BHnet dataset
(104,282 edges). Here, the node frequency calculation needs to make
sure that each node on the same path appears together (i.e., for
L-M-D, we calculate L/D frequency under the condition that L-M-D
holds simultaneously, instead of one of L-M, M-D and L-D
holds).We can observe that the ‘lncRNA-miRNA-disease’ path
can be chosen as a BHnet to conduct baseline (node2vec) due to
the highest frequency both for each lncRNA and for each disease.

Then, we implemented the predictive performance comparison
experiment for five methods over node2vec (with default
parameters) by 5-CV. As shown in Table 6, five methods can
obtain satisfactory AUCs over node2vec, GCRFLDA achieved the
best performance on both AUC and Precision. LDAGRL using
L-M-D path get the next best performance and its precision is
consistently and even higher related to LDAGRL. These results also
indicate bridge paths play a key role in LDA prediction.

Besides, GCNLDA, GCRFLDA and gGATLDA all adopted the
similarity subnetwork to build heterogeneous bipartite graph or
tripartite graph and followed the assumption that the lncRNAs in
the same sets are similar. Then they think of LDAs prediction as a
recommender systems issue in which they usually view lncRNA as the
user and disease as the item. Despite its rationality from a pure
computational perspective, it may be controversial and have not
stood up to the biological significances. Sometimes, a single
nucleotide difference can completely change the nature of a lncRNA.
Surely, the coarse-grained feasibility brought about by the way enable
LDAs prediction to a certain extent for researchers, but the false positive

FIGURE 6
AUC Result based on the ‘Attribute + Bridge’ feature.

TABLE 8 Comparison of different feature combinations.

Feature Acc Sen Spec Prec MCC

Attribute 0.7290 0.6471 0.8109 0.7746 0.4648

Bridge 0.8406 0.8260 0.8552 0.8508 0.6816

Both 0.8394 0.82.68 0.8521 0.8483 0.6793

FIGURE 4
AUC Result based on the ‘Attribute’ feature.

FIGURE 5
AUC Result based on the ‘Bridge’ feature.
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problems at the same time cannot be neglected. In LDAGRL,we remove
the disadvantage of the similarity hypothesis and depend on the
regulatory or targeting relationships between lncRNAs and
corresponding bridge molecules, obtaining the satisfactory prediction
effects with the same level prediction performance and lower false
positive rate.

Comparison experiment results with
different classifiers

Network embedding (Yuan et al., 2018) is a crucial method for
learning low-dimensional representations of vertexes in network. As
described in the method section, the different classifiers may influence
LDAGRL prediction performance. Therefore, we implemented the
experiment to evaluate the impact of five classifiers.

To evaluate the performance of LDAGRL based on
different classifier, we choose XGBoost, Random Forest,
Logistic Regression, SVM, and AdaBoost to execute the 5-
CV experiment. By validating different classifiers, different
values of AUC are obtained through the 5-CV. As seen in
Table 7, XGBoost, SVM, Logistic Regression, AdaBoost, and
Random Forest are all effective in classification with high AUC
values. Moreover, Tree-based classifiers, such as XGBoost and
Random Forest, have been demonstrated to be a practical tool
in prediction due to their higher operational efficiency and
lower over-fitting rate. By looking into the detail of these
results, we can observe that, for LDAGRL, compared with
the AdaBoost, the XGBoost and the Random Forest achieve
higher AUC value. Besides, we can also find that all classifier
parameters are default values, and only the bridge feature for
nodes is appended to the training process. In the LDAGRL, the
result of 5-CV through the XGBoost classifier (with AUC =
0.9258, default parameters) is better than other classifiers. It
further verifies the superiority of the SDNE on LDAs
prediction.

Comparison of different node feature
combinations

In the LDAGRL, each node can be represented by its intrinsic
attributes and relationship with other nodes. Thus, each node can be
represented as a vector (192-dimension) by two kinds of
information, including attribute and bridge structure. For
attribute information (64-dimensional vectors), the node’s
attributes can be the k-mer about sequences of ncRNA and
protein, the disease’s semantics, and the drug’s molecular
fingerprint. For bridge structure information (128-dimensional
vectors), the relationship of each node with others could be
abstracted by the network embedding method SDNE.

Here, in comparison with the predictive performance of
LDAGRL for different node feature combinations, we mainly
divided it into three groups to validate the different performances
with Attribute, Bridge, and Attribute + Bridge combinations. It is
known that the attribute information is each node’s intrinsic feature,
so we design an experiment that can verify the predictive
performance of prediction based on attribute information with
the previous isolated embedding method.

Furthermore, in the LDAGRL, bridge structure information,
as critical relationships among nodes, is vital for LDAs
prediction. The main goal we construct LDAGRL is to obtain
the network’s relation features. Therefore, it is indispensable to
verify the bridge structure’s influence on predictive performance
in LDAGRL. After the above two kinds of the feature are verified,
considering the complexity of LDAGRL and the character of
lncRNAs and diseases, we used the ‘Attribute + Bridge’
combination to evaluate the entire performance, aiming at
obtaining optimized features for classifiers and further
improve LDAGRL generalization performance.

Among nodes in LDAGRL, bridge structure information is a
critical association relationship for LDAs prediction. In other words,

TABLE 9 Validation of the top 10 lncRNAs for four types of endocrine system
diseases.

Type 2 diabetes
mellitus

Diabetic nephropathy

Rank lncRNA PMID lncRNA PMID

1 PAX8-AS1 33155514 ARAP1-AS2 31079598

2 LINC01503 32337289 H19 32391614

3 MIR143HG 33274206 NEAT1 30515796

4 GAS5 31849505 CASC2 32016985

5 LINC01173 32337289 ZEB1-AS1 30121551

6 ARAP1 31975379 UCA1 31799676

7 H19 30201684 PVT1 31371698

8 MEG8 32765026 TUG1 31539141

9 PLUTO 28041957 GAS5 31849505

10 XIST 32447981 SNHG17 32627655

Obesity Osteoporosis

Rank lncRNA PMID lncRNA PMID

1 MALAT1 31659145 CRNDE 30280760

2 H19 ENCD XIST 33336851

3 PRINS ENCD HOTAIR ENCD

4 XIST ENCD KCNQ1OT1 ENCD

5 KCNQ1OT1 ENCD BCAR4 32572903

6 MAFG 32005828 SNHG14 33928771

7 EDF1 30061575 FTX 32660465

8 HAR1A ENCD ENSG00000260802 32742382

9 DMPK ENCD LINC01535 33174047

10 MIR31HG ENCD DANCR 25660720
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the main goal of our constructing LDAGRL is to obtain the relation
features, namely, the bridge structure feature.

As shown below, Figure 4˜Figure 6 plot the ROC curves of
the three combinations’ results and reports their AUROC values
of 5-CV. Figure 4 shows the AUC result of the ‘Attribute’ that 5-
CV with pure attribute information as the node’s characteristics.
Figure 5 shows the AUC result of ‘Bridge’ that 5-CV with pure
bridge structure information as the feature of the node. Figure 6
shows the AUC result of the ‘Attribute + Bridge’ combination
based on the feature combined attribute information with the
bridge structure.

As seen from Table 8, the ‘Attribute’ combination has the
lowest AUC and accuracy rate in LDAGRL. When the feature
combination is ‘Attribute + Bridge’, the value of AUC based on
SDNE for XGBoost barely change, and the average accuracy rate
increase more slowly than the ‘Bridge’ combination. Therefore,
the predictive performance of LDAs based on the feature
combined attribute information with bridge structure
information (i.e., ‘Attribute + Bridge’ combination) is not
better than the ‘Bridge’ combination, which dominates the
highest TPRs under the same FPRs and has the highest AUC
(0.9258). It implies that attribute information has a small
impact on predictive performance. Besides, it is worth
pointing out that though the augment of features
information is relatively large for ‘Attribute + Bridge’, the
average accuracy rate of the ‘Bridge’ and ‘Attribute + Bridge’
remain stable. It is because we chose the SDEN to globally
represent the bridge structure feature of nodes in the entire
network and the flow of information directly or latently with
other nodes, thus improving the performance. In addition, the
results in Figure 5 show that the ‘Bridge’has superiority in
LDAGRL.

Case study

Endocrine system diseases including type 2 diabetes mellitus,
diabetic nephropathy, obesity and osteoporosis are common
diseases (Sun et al., 2022). It is evident that the early
detection of endocrine system diseases is vital to precise
treatment (Hackney and Lane, 2015; Rachdaoui and Sarkar,
2017). Hence, the case study is implemented to identify the
possible lncRNAs associated with endocrine system diseases to
thus explore the generalization ability of LDAGRL. Specifically,
we take LDAGRL to identify novel LDAs and verify the
prediction results based on ENCD database (Hao et al.,
2023).After scoring those scores for potentially associated
lncRNAs with the endocrine system diseases, all predicted
disease-related lncRNAs are ranked. Here, we select the top
10 associated lncRNAs which get the highest predicted ranks for
endocrine system diseases. Relevant biology literature and
databases support predictive results, and the details shown in
Table 9. Here, we listed the top 10 predicted lncRNAs and then
confirmed them in relevant biology literature or databases,
which also indicated the consistency between LDAGRL and
biology wet experiments.

Conclusion

Recently, more and more lncRNAs are identified and their
functions associated with multiple diseases have received much
attention. We construct a bridge heterogeneous information
network based on five nodes and nine kinds of relationships to
detect lncRNA-diseases associations. To evaluate the performance
of our method, a set of comprehensive experiments are
implemented, and the validation results demonstrate the
effectiveness of LDAGRL. The prediction performance obtained
by LDAGRL could be due to several reasons: first of all, our method
integrated associations information of lncRNA, miRNA, diseases,
drug, protein, and their associated biomolecules for lncRNA and
diseases by constructing a bridge heterogeneous information
network, so that the LDAGRL could fully make use of the
integrated associated data, which can further enhance its
predictive performance as a global network model. Second, each
node can be represented as a vector by two kinds of information
including node attributes and node bridge structure, which can
improve prediction performance. Significantly, the
‘Bridge’can further improve prediction performance and has its
superiority.

In conclusion, in this paper, an LDAGRL model is presented,
developed, and investigated for the association prediction of the
lncRNA-disease pair. The LDAGRL model takes advantage of
the bridge heterogeneous information network. The validation
results demonstrate that LDAGRL can globally obtain
satisfactory performance. In verifying the feasibility and
effectiveness of the bridge heterogeneous information
network, the proposed LDAGRL and their experiment results
show the expected effect on LDAs prediction. Even so, the
current version of LDAGRL has limitations. For example,
only 1264 known lncRNA-disease associations have been
adopted by LDAGRL; the prediction accuracy of LDAGRL
will improve if more known LDAs are added.
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