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Genome-wide association studies (GWAS) have successfully identified a large
number of genetic variants associated with traits and diseases. However, it still
remains challenging to fully understand the functional mechanisms underlying
many associated variants. This is especially the case when we are interested in
variants shared acrossmultiple phenotypes. To address this challenge, we propose
graph-GPA 2.0 (GGPA 2.0), a statistical framework to integrate GWAS datasets for
multiple phenotypes and incorporate functional annotations within a unified
framework. Our simulation studies showed that incorporating functional
annotation data using GGPA 2.0 not only improves the detection of disease-
associated variants, but also provides a more accurate estimation of relationships
among diseases. Next, we analyzed five autoimmune diseases and five psychiatric
disorders with the functional annotations derived from GenoSkyline and
GenoSkyline-Plus, along with the prior disease graph generated by biomedical
literature mining. For autoimmune diseases, GGPA 2.0 identified enrichment for
blood-related epigenetic marks, especially B cells and regulatory T cells, across
multiple diseases. Psychiatric disorders were enriched for brain-related epigenetic
marks, especially the prefrontal cortex and the inferior temporal lobe for bipolar
disorder and schizophrenia, respectively. In addition, the pleiotropy between
bipolar disorder and schizophrenia was also detected. Finally, we found that
GGPA 2.0 is robust to the use of irrelevant and/or incorrect functional
annotations. These results demonstrate that GGPA 2.0 can be a powerful tool
to identify genetic variants associated with each phenotype or those shared across
multiple phenotypes, while also promoting an understanding of functional
mechanisms underlying the associated variants.
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1 Introduction

Genome-wide association studies (GWAS) have identified
hundreds of thousands of genetic variants significantly associated
with human traits and diseases (Buniello et al., 2019). Despite the
great success of GWAS, multiple challenges still remain to be
addressed. First, the single-trait analysis commonly used in
GWAS can suffer from weak statistical power to detect risk
variants. Pleiotropy, which refers to the phenomenon of a single
genetic variant affecting multiple traits, has been reported to widely
exist in human genome (Sivakumaran et al., 2011). For example,
previous studies reported high genetic correlation between
schizophrenia (SCZ) and bipolar disorders (BIP) (Cross-Disorder
Group of the Psychiatric Genomics Consortium and others, 2013a;
Cross-Disorder Group of the Psychiatric Genomics Consortium and
others, 2013b). Integrative analysis combining GWAS data of
multiple genetically related phenotypes has been proven to be a
powerful approach to improve statistical power to detect risk
variants by leveraging pleiotropy (Chung et al., 2014; Li et al.,
2014; Chung et al., 2017). Second, our understanding of the
functional mechanisms underlying many risk variants is still
limited. It was reported that about 90% of the genome-wide
significant hits in published GWAS are located in non-coding
regions and we still have limited understanding of their
functional impacts on human complex traits (Hindorff et al.,
2009). By considering that functional roles relevant to genetic
variants may affect the corresponding distribution in the GWAS
summary statistics, incorporating functional annotations can help
improve understanding of functional mechanisms by which risk
variants may affect phenotypes. For example, it was reported that
single nucleotide polymorphisms (SNPs) associated with psychiatric
disorders such as BIP or SCZ are more likely to be associated with
the central nervous system or brain function (Hoseth et al., 2018;
Shahab et al., 2019).

Multiple statistical and computational approaches have been
proposed to leverage pleiotropy and integrate functional
annotations to improve association mapping. Here we focus on
approaches based on GWAS summary statistics considering their
wide availability, unlike the original phenotype and genotype data
that are often burdensome and time-consuming to obtain. The first
group of approaches focuses only on integrating multiple GWAS
datasets. Multiple methods have been developed based on
association testing, which usually generate their test statistics
under the null hypothesis of significant association. An early
example is TATES (Van der Sluis et al., 2013) which combines
p-values of each single-trait analysis to generate one comprehensive
p-value by applying eigen-decomposition to the correlation matrix
of p-values. In recent years, MTAG has been a popular method for
conducting meta-analysis of GWAS summary statistics for different
traits, and it has been reported that it is robust to sample overlap
(Turley et al., 2018). It constructs a generalized method of moments
estimator using the estimated effect size of each trait.

The second group of approaches focuses only on integrating
functional annotations. The first subgroup of methods in this
direction is based on false discovery rate (FDR) approaches. An
early example is the stratified FDR (sFDR) method (Schork et al.,
2013), which evaluates enrichment with respect to functional
annotations using stratified Q-Q plots and determines their

statistical significance using Kolmogorov-Smirnov test. Similarly,
the covariate-modulated local FDR (cmfdr) (Zablocki et al., 2014)
incorporates functional annotations as prior distribution for non-
null group. The second subgroup of methods is based on heritability
estimation. The stratified linkage disequilibrium (LD) score
regression (LDSC) (Finucane et al., 2015; Finucane et al., 2018)
and GCTA (Yang et al., 2011) are popular approaches in this
direction and these approaches are based on the idea of
heritability partitioning based on functional annotations. Later,
SumHer (Speed and Balding, 2019) further improved LDSC by
relaxing its assumptions, e.g., those related to minor allele
frequencies (MAF) and confounding bias. The third subgroup of
methods in this direction is based on Bayesian approaches. In these
approaches, GWAS data is often considered as emission
distributions while functional annotations are used as prior
knowledge to guide latent association status. fGWAS (Pickrell,
2014) models the latent association status on functional
annotations, focusing on binary annotations. GenoWAP (Lu
et al., 2016b) considers two different latent components, one for
disease-specific functionality (specific to GWAS) and another for
general functionality, and integrates functional annotation as prior
knowledge affecting general functionality. LSMMMing et al. (2018)
integrates functional annotations with GWAS data by using a latent
sparse mixed model. Specifically, a mixed model is considered to
model the latent association status on functional annotations using
both fixed and random effects, while a spike-slab prior is used for
variable selection of functional annotations. There are also other
approaches to integrate functional annotations, e.g., using regression
models. For example, GARFIELD (Iotchkova et al., 2019) first
identifies links between SNPs and functional annotations based
on their overlap considering LD. Then, statistical significance of
these links are determined using a logistic regression of GWAS
signals on functional annotations. RolyPoly (Calderon et al., 2017)
uses a regression approach to model relationships between SNP
effect sizes and functional annotations. GoShifter (Trynka and
Raychaudhuri, 2013) evaluates enrichment by shifting locations
of functional annotations, which makes it less sensitive to biases
arising from local genomic structure.

The third group of approaches aims to achieve the best of both
worlds by integrating multiple GWAS datasets along with functional
annotations. GPA (Chung et al., 2014) is a pioneer in this direction.
GPA uses a hierarchical modeling approach to incorporate multiple
GWAS datasets and functional annotations within a unified
framework. EPS (Liu et al., 2016) later improved GPA by
allowing more diverse types of functional annotations and
addressing LD. However, it was still limited in the sense of the
number of phenotypes, as in the case of GPA. LPM (Ming et al.,
2020) improved these approaches by allowing to integrate a larger
number of phenotypes using latent probit models. For more
comprehensive review of the statistical methods for leveraging
pleiotropy and incorporating functional annotations, please check
Hackinger and Zeggini (Hackinger and Zeggini, 2017) and Cano-
Gamez and Trynka (Cano-Gamez and Trynka, 2020), respectively.

For the purpose of multi-disease analysis, we previously
proposed graph-GPA (GGPA), a Bayesian approach that models
a pleiotropic architecture using a latent Markov random field (MRF)
approach indicating phenotype-genotype associations (Chung et al.,
2017). First, the pleiotropic architecture is represented as a
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phenotype graph, where each node corresponds to a phenotype and
an edge between two phenotypes represents the genetic correlation
between them. This phenotype graph representation is a unique
feature of GGPA. It not only allows integration of a large number of
phenotypes, but also provides more intuitive representation about
genetic relationships among phenotypes, compared to other
approaches. Second, GGPA can simultaneously detect significant
SNPs and identify genetic relationships among phenotypes in a
rigorous manner within a unified framework. This is another
advantage of GGPA over multi-step approaches because it allows
more effective information sharing and more accurate reflection of
uncertainties between different inferences. Third, the Bayesian
framework of GGPA provides flexibility and allows incorporating
various types of biological or expert knowledge as prior distribution.
For example, GGPA was later further extended by allowing to
incorporate prior knowledge on the phenotype graph architecture
generated from text mining of biomedical literature (Kim et al.,
2018).

In spite of such strengths and flexibility, unfortunately, the
previous version of GGPA did not allow incorporating functional
annotations. This was an important limitation given the potential of
functional annotations to further improve genetic analysis.
Incorporating functional annotations can not only potentially
improve understanding of functional mechanisms underlying
identified genetic variants, but also lead to more reliable and
meaningful findings of genetic variants themselves (Lu et al.,
2016a; Lu et al., 2017). In order to address this critical limitation,
in this paper, we propose GGPA 2.0, an extension of GGPA that
allows to incorporate functional annotations and to integrate GWAS
datasets for multiple phenotypes within a unified framework.
Specifically, GGPA 2.0 improves statistical power to detect
associated genetic variants (both those associated with each trait
and multiple traits) and inference of genetic relationships among
phenotypes, by incorporating functional annotations in addition to
GWAS datasets for multiple phenotypes. In addition, it also provides
information about relevance of each functional annotation for the
phenotype of interest, which allows further investigation of relevant
tissues and/or cell types related to genetic basis of diseases.

2 Methods

2.1 Overview of GGPA 1.0

GGPA takes GWAS summary statistics (genotype-phenotype
association p-values) for SNP t and phenotype i, denoted as pit, as
input, where i = 1, . . . , n and t = 1, . . . , T. For convenience, in
modeling and visualization, we transform pit as yit = Φ−1 (1 − pit),
where Φ is the cumulative distribution of the standard normal
variable. We model the density of yit with the latent association
indicator eit using a lognormal-normal mixture:

p yit|eit, μi, σ2i( ) � eitLN yit; μi, σ
2
i( ) + 1 − eit( )N yit; 0, 1( ), (1)

where eit = 1 if SNP t is associated with phenotype i and eit = 0
otherwise, and LN and N denote the lognormal density and the
normal density, respectively. For yit corresponding to the associated
SNPs (eit = 1), we assume the lognormal distribution because the

p-values of those SNPs are very likely to be less than 0.5 leading to yit
greater than zero (Chung et al., 2017).

To model genetic relationships among n phenotypes, we adopt a
graphical model based on theMRF framework. LetG = (V, E) denote
an MRF graph with nodes V = (v1, . . . , vn) and edges E = {E (i, j): i,
j = 1, . . . , n}. We can interpret vi as phenotype i and E (i, j) = 1means
that phenotypes i and j are conditionally dependent (i.e., genetically
correlated). Specifically, we model the latent association indicators
of SNP t, et = (e1t, . . . , ent), and the graph structure with an auto-
logistic scheme. The probability mass function for et is given by

p et|α, β,G( ) � exp ∑n
i�1

αieit +∑
i~j

βijeitejt⎛⎝ ⎞⎠/C α, β,G( ) (2)

with the non-ignorable normalizing constant in the denominator
given by

C α, β,G( ) � ∑
e*∈E*

exp ∑n
i�1

αiei* +∑
i~j

βijei*ej*⎛⎝ ⎞⎠,

where αi is the MRF coefficient for the phenotype i such that larger
values represent stronger SNP-phenotype associations, βij is the
MRF coefficient for the pair of phenotypes i and j such that larger
values represent stronger associations between the phenotypes, the
symbol i ~ j denotes that vi is adjacent to vj, i.e., E(i, j) = 1, and E* is
the set of all possible values of e* � (e1*, . . . , en*).

The phenotype graph G is one of our key inferential targets in
this framework. In our previous work, we found that MRF
coefficient estimation can be biased when signals are weak in
GWAS data and we showed that incorporating prior information
for G can help address this issue and improve stability of the
phenotype graph estimation (Kim et al., 2018). Specifically, we
implemented text mining of biomedical literature to identify
prior phenotype graph estimation, which we found to give
biologically meaningful prior knowledge.

For the log-normal density in Eq. 1, we introduce the conjugate
prior distribution:

μi ~ N θμ, τ
2
μ( ), σ2i ~ IG aσ , bσ( ),

where IG(a, b) denotes the inverse gamma distribution with the
shape parameter a and the rate parameter b. For the MRF
coefficients in Eq. 2, we assume the following prior distributions:

αi ~ N θα, τ
2
α( ), βij ~ E i, j( ) Γ βij; aβ, bβ( ) + 1 − E i, j( ){ } δ0 βij( ),

where Γ(a, b) denotes the gamma distribution with the shape
parameter a and the rate parameter b, and δ0 denotes the Dirac
delta function. Weakly informative priors are used for the top level
of the Bayesian hierarchical model with the hyperparameters: θμ = 0,
τ2μ � 10000, θα = 0, τ2α � 10000 and aσ = bσ = 0.5. We use aβ = 4 and
bβ = 2 so that most of βij’s with E(i, j) = 1 are a priori distinct
from zero.

The posterior inference is made using the Markov chain Monte
Carlo (MCMC). First, we can make an inference about the genetic
correlation among phenotypes by using both the estimated
phenotype graph structure and the MRF coefficient estimates.
Specifically, the phenotype graph G represents genetic
relationship among phenotypes, where the posterior probability
for each edge p(E(i, j)|Y) indicates the probability that two
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phenotypes i and j are genetically correlated with each other, where
Y indicates the GWAS dataset, i.e., the set of yit, i = 1, . . . , n, t = 1, . . .
, T. In addition, the posterior samples of βij can be interpreted as a
relative metric to gauge the degree of correlation between
phenotypes i and j. Based on this rationale, we conclude that
phenotype i and j are correlated if p(E(i, j)|Y) > 0.5 and p(βij >
0|Y) > 0.95. Second, association mapping of a single SNP with a
specific phenotype is implemented based on p(eit = 1|Y), i.e., the
posterior probability that SNP t is associated with phenotype i.
Likewise, pleiotropic variants can be detected using p(eit = 1, ejt = 1|
Y) representing the posterior probability that SNP t is associated
with both phenotypes i and j. Identification of pleiotropic variants
for more than two phenotypes can be implemented in similar ways.
Global FDR were controlled using the direct posterior probability
approach (Newton et al., 2004).

2.2 Improvements in GGPA 2.0

In GGPA 2.0, in addition to the GWAS summary statistics, we
also consider functional annotations at = (a1t, . . . , aMt), a vector of
length M, for SNP t. Here we mainly focus on the binary
annotations, i.e., amt = 1 if tth SNP is annotated in the mth (1 ≤
m ≤M) functional annotation data. In GGPA 2.0, we incorporate the
functional annotation as a modifier for the MRF intercept so that
when the tth SNP is annotated in more functional annotation data, it
can have a higher probability to be associated with phenotypes.
Specifically, we modify Eq. 2 as follows:

p et|α, γ, β,G, at( )
� exp ∑n

i�1
αi + ∑M

m�1
γimamt

⎛⎝ ⎞⎠eit +∑
i~j

βijeitejt⎛⎝ ⎞⎠/C α, γ, β,G, at( )
(3)

with the non-ignorable normalizing constant in the denominator
given by

C α, γ, β,G, at( ) � ∑
e*∈E*

exp ∑n
i�1

αi + ∑M
m�1

γimamt
⎛⎝ ⎞⎠ei* +∑

i~j

βijei*ej*⎛⎝ ⎞⎠,

where γim (>0) is the MRF coefficient for importance of annotation
m for phenotype i such that larger values represent richer
enrichment of tissues or cells in phenotypes. Note that here we
assume γim > 0 so that associations of genetic variants with
phenotypes are supported, rather than penalized, by being
annotated.

The functional annotation coefficient γim has the following
hyperpriors:

γim ~ uimΓ γim; aγ, bγ( ) + 1 − uim( )δ0 γim( ),
uim ~ Ber pu( ), pu ~ Unif 0, 1( ) � Beta 1, 1( ),

where Ber(p) denotes the Bernoulli distribution with success
probability p, Unif(l, u) denotes the uniform distribution with
lower and upper limits l and u, and Beta(a, b) denotes the beta
distribution with two shape parameters, a and b. We use aγ = 4 and
bγ = 2. Given this model, the posterior inference is made using
MCMC. Specifically, we implement a Metropolis-within-Gibbs
algorithm whose full details are provided in Supplementary

Section 1. The genetic correlation among phenotypes can be
inferred and the association mapping can be implemented as
described in the previous section. We note that although we use
the same set of parameters for these purposes, their inference results
will be different from GGPA 1.0 because incorporation of functional
annotation data affects estimation of these parameters. Moreover,
relevance of functional annotations with disease-risk-associated
variants can be inferred using γim representing the importance of
functional annotationm for phenotype i. Specifically, we declare that
annotation m is associated with phenotype i if γim is significantly
different from zero, e.g., p(γim > 0|Y) > 0.95. Based on significantly
nonzero γs, we can identify cells or tissues that are enriched in the
corresponding phenotypes. Again the direct posterior probability
approach (Newton et al., 2004) is used to control global FDR.

2.3 Simulation setting

For the simulation study, we generated the simulated data using
the following steps. First, we assumed the true phenotype graph
depicted in Figure 1A for phenotype P1, . . . , P6, with the MRF
coefficients (α1, α2, α3, α4, α5, α6) = (−4.7, −3.0, −5.5, −4.8, −3.6, −2.5)
and (β12, β13, β23, β34, β45) = (4.0, 1.8, 2.3, 2.5, 5.0), while all the
remaining βij were set to zeros. Second, assuming T = 200, 000 SNPs
and M = 5 annotations, we generated each binary vector am, of
which elements are set to one for 10% SNPs. We assumed γ11 = γ21 =
γ31 = 1 and γ42 = γ52 = γ62 = 2, while all the remaining γim were set to
zeros. We also considered two other settings for γs whose results are
provided in Supplementary Section 2. Third, we generated et by
running the Gibbs sampler for 1,000 iterations based on Eq. 2.

FIGURE 1
Simulation studies. (A) True phenotype graph used to generate
simulated data. (B) Phenotype graph estimated using annotations,
which is identical to the true graph. (C) Phenotype graph estimated
without using annotations, which added two additional edges
between P4 and P6, and between P5 and P6. Values on edges show β
coefficient estimates.
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Finally, we generated yit using Eq. 1, where μ = (1.05, 0.9, 1.0, 1.0,
1.05, 0.95) and σ = (0.4, 0.3, 0.35, 0.3, 0.45, 0.4).

2.4 GWAS datasets and functional
annotations used in the real data analysis

Here we analyzed GWAS data for two sets of diseases to
demonstrate the usefulness of GGPA 2.0. The first set consists of
five autoimmune diseases, including systemic lupus erythematosus
(SLE), ulcerative colitis (UC), Crohn’s disease (CD), rheumatoid
arthritis (RA), and type I diabetes (T1D). The second set consists of
five psychiatric disorders, including attention deficit-hyperactivity
disorder (ADHD), autism spectrum disorder (ASD), major
depressive disorder (MDD), bipolar disorder (BIP), and
schizophrenia (SCZ). Summary statistics for ten different disease
types were downloaded from the GWAS Catalog: SLE (Langefeld
et al., 2017), RA (Okada et al., 2014), UC (De Lange et al., 2017), CD
(De Lange et al., 2017), T1D (Bradfield et al., 2011), ADHD (Lee
et al., 2019), ASD (Lee et al., 2019), BIP (Lee et al., 2019), SC) (Lee
et al., 2019), and MDD (Lee et al., 2019). We considered two sets of
functional annotations based on GenoSkyline (Lu et al., 2016a) or
GenoSkyline-Plus (Lu et al., 2017) respectively. GenoSkyline is a
tissue-specific functional prediction generated with integrated
analysis of epigenomic annotation data. It calculates the posterior
probability of being functional which is referred to as GenoSkyline
score. We used Genoskyline scores for 7 tissue types: brain,
gastrointestinal tract (GI), lung, heart, blood, muscle, and
epithelium. Specifically, to generate the binary annotations, we
set amt = 1 if the corresponding GenoSkyline score is above 0.5.
GenoSkyline-Plus is a comprehensive update of GenoSkyline by
incorporating RNA-seq and DNA methylation data into the
framework and extending to 127 integrated annotation tracks,
covering a spectrum of human tissue and cell types. Similarly, we
generated the binary annotations using the same cutoff at 0.5. We
considered 1,919,526 SNPs that are shared among these GWAS
datasets. We further removed SNPs with missing values and kept
one SNP in every 10 SNPs to reduce dependent SNPs, leading to
187,335 SNPs. As a reference, after subsampling every tenth SNP,
the average r2 of the nearest pair drops notably from 0.48 to 0.36, as
calculated using the R package “LDlinkR” and 10,000 randomly
chosen pairs. Our approach involves conducting statistical inference
by incorporating functional annotations, accounting for the
correlation among p-values, as covariates. In general, identifying
the source of variability can lessen conditional correlations between
responses. In other words, including the variables responsible for the
correlation in the model can lead to a lower correlation. For
example, if X contains all factors that explain the correlation of
the Y vector, the elements of Y are (conditionally) independent given
X, which is the foundation of the regression model. Additionally,
recognizing the source of dependence can improve statistical
inference. This viewpoint suggests that our approach can be
effective without negatively impacting FDR control.
Consequently, both the marginal correlation reduction between
SNPs resulting from our sampling strategy and the conditional
correlation reduction achieved by incorporating functional
annotation as covariates are simultaneously implemented,
expected to significantly reduce the violation of model

assumptions and substantially decrease the infringement on FDR
control.

2.5 Adjusting for sample overlap

Integrating GWAS summary statistics across multiple
phenotypes can be affected by the potential overlap of subjects
among those studies, making data sets dependent. As a consequence,
the effects of pleiotropy can be confounded with the spurious effects
caused by sample overlap. To address the potential sample overlap
issue, we decorrelated the GWAS summary statistics (LeBlanc et al.,
2018) before applying the proposed methods. Specifically, after we
obtained yit as described in Section 2.1, we decorrelated them by
Ydecorr = C−1/2Y, where C is the sample correlation matrix of Y, and Y
is the observed matrix of which element is yit. It has been reported
that the resultant Ydecorr is less biased by the sample overlap for the
genetic correlation inference, compared to the case of using the
original Y (LeBlanc et al., 2018). For autoimmune diseases, we
decorrelated UC and CD. In the case of five psychiatric
disorders, we decorrelated all of them together, by considering
the overlap pattern of subjects between cohorts.

3 Results

3.1 Simulation studies

Here we especially focused on comparing the GGPA models
with incorporating functional annotations to one without the
functional annotations. Across the simulation settings
(Supplementary Section S2), we did not recognize any notable
issues regarding the convergence of the proposed MCMC
sampler (Supplementary Figures S1, S8, S16) and global FDR is
well controlled at the nominal level for a wide range of FDR values
(Supplementary Figures S5, S12, S20). Interestingly, we observe that
parameter estimation accuracy was improved by incorporating
annotations (Supplementary Figures S3, S4, S10, S11, S18, S19).
Specifically, when functional annotations were incorporated, the
point estimates were closer to true values for all parameters, and the
corresponding 95% credible intervals always covered the true values.
In contrast, when functional annotations were not incorporated, the
parameter estimates were less accurate and the true values were
often outside the 95% credible intervals. The result shows that
incorporating information from functional annotations leads to
better parameter estimation. Next, we evaluated the impact of
functional annotations on the estimation of genetic relationships
among phenotypes. Figures 1B, C show the phenotype graphs
estimated with and without annotations respectively. We can
observe that the true phenotype graph can be more accurately
estimated by incorporating annotations. Specifically, if we ignore
functional annotations, P6 is falsely connected to P4 and
P5 although P6 is designed not to be correlated with any other
phenotypes. This result shows that if SNPs are truly associated with
functional annotations, the analysis ignoring the functional
annotations can lead to inaccurate estimation of genetic
relationships among phenotypes. Finally, we evaluated the
association mapping results. We found that incorporating
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annotations generally leads to larger numbers of associated SNPs
(Supplementary Tables S3, S4) and identifying more truly associated
SNPs compared to the case that we ignored functional annotations
(Supplementary Figures S14). These results suggest that
incorporating functional annotations can improve association
mapping as well. In summary, the simulation studies show that i)
incorporating functional annotations improves the accuracy of
parameter estimation and the power of detecting associated
SNPs; and ii) ignoring functional annotations can result in
misleading conclusions about relationships among phenotypes
when functional annotations are truly related to the associated SNPs.

3.2 Real data analysis

3.2.1 Applications to autoimmune diseases
We first applied GGPA 2.0 to analyze the five autoimmune

diseases, along with seven tissue-specific GenoSkyline annotations,
including blood, brain, epithelium, Gastrointestinal tract (GI), heart,
lung, and muscle. Figure 2A shows the prior graph for these five
diseases, which was derived from biomedical literature mining (Kim
et al., 2018). It illustrates links between SLE and T1D, SLE and RA,
UC and CD, UC and RA, and CD and T1D, respectively.
Supplementary Figure S29 shows the estimated phenotype graph

(Supplementary Figure S26 shows MRF coefficients βs) and it
indicates that 7 pairs out of 10 have edges, suggesting extensive
pleiotropy among these diseases. Compared with the prior
phenotype graph, GGPA 2.0 additionally detected the
pleiotropies between RA and T1D, and between SLE and CD.
These two pleiotropies have been reported in previous studies
(Sanchez-Burson et al., 2004; Kim et al., 2018; Westra et al.,
2018). We further applied LDSC (Finucane et al., 2015; Finucane
et al., 2018) and LPM (Ming et al., 2020) to the same dataset to
evaluate the phenotype graph estimated using GGPA 2.0
(Supplementary Tables S18–S20). We could observe that many
edges in the disease graph obtained using GGPA 2.0 can also be
found by LPM. In addition, some well-known pairs also ranked high
in LDSC (e.g., CD-UC) although it was not trivial to prioritize
genetically correlated pairs using LDSC because its correlation
coefficients were overall comparable across all the pairs.

Supplementary Figure S28 shows γ coefficient estimates
indicating importance of functional annotations for each disease.
Blood was determined to be the key tissue for most of the
autoimmune diseases, which is well supported by existing
literature indicating the established relationships between blood
and autoimmune diseases (Tyndall and Gratwohl, 1997; Olsen
et al., 2004). In addition, epithelium and GI were also
significantly associated with UC and CD, which is consistent

FIGURE 2
GGPA 2.0 analysis of autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), ulcerative colitis (UC), Crohn’s
disease (CD), and type 1 diabetes (T1D), using annotations of Genoskyline-Plus. (A) Prior phenotype graph obtained by biomedical literature mining. (B)
Estimated phenotype graph, where values on the edges show β coefficient estimates. (C)Coefficient estimates of γ show that B cells and regulatory T cells
are associated with these autoimmune diseases. (D) Coefficient estimates of α suggest a stronger genetic basis of CD compared with other
autoimmune diseases.
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with the fact that UC and CD are chronic inflammatory bowel
diseases (Gohil and Carramusa, 2014). Finally, the estimates of α
show that CD has the largest coefficient estimate, suggesting its
strongest genetic basis (Supplementary Figure S27). As expected, in
the association mapping (Supplementary Table S7), CD has the
largest number of SNPs associated with it. We further applied
MTAG (Turley et al., 2018) and LPM (Ming et al., 2020) to the
same dataset to evaluate the association mapping provided by
GGPA 2.0. In general, GGPA 2.0 usually identifies more risk
SNPs compared to LPM and MTAG (Supplementary Table S24).
We further checked overlap among the risk SNPs identified using
GGPA 2.0, LPM, and MTAG (Supplementary Figures S75–S79). We
found that GGPA 2.0 and LPM give comparable results in general
and most of the risk SNPs identified using LPM could also be
identified using GGPA 2.0. Interestingly, the risk SNPs identified
using MTAG do not overlap much with GGPA2 and LPM.

Given the common importance of blood across the autoimmune
diseases, we further investigated these diseases using the functional
annotations based on 12 GenoSkyline-Plus tracks related to blood.
Figure 2B shows the estimated phenotype graph, which shares the
same set of edges as in the case that we used GenoSkyline
annotations. Figure 2C shows the γ coefficient estimates for
GenoSkyline-Plus tracks and only three tracks have nonzero
coefficient estimates. Specifically, i) B cells were enriched for CD,

RA, SLE, and UC; ii) regulatory T cells were enriched for CD and
T1D; and iii) natural killer cells were enriched for T1D. These results
are consistent with previous literature indicating connections
between autoimmune disease and these immune cell types (Roep,
2003; Tsai et al., 2008; Nashi et al., 2010; Fraker and Bayer, 2016;
Gardner and Fraker, 2021). Finally, in Figure 2D, we observed that
CD still has the largest α coefficient estimate among the
autoimmune diseases, leading to more SNPs significantly
associated with it.

Next, we focused on investigation of SLE, the most common
type of lupus and an autoimmune disease that causes inflammation
and tissue damage in the affected organs. Here we specifically
focused on evaluating the impact of incorporating functional
annotations on the association mapping. For this purpose, we
compared the functional importance of the SNPs that were
uniquely identified with functional annotations (denoted as +
SNPs) vs. those without (denoted as -SNPs). Figures 3A, B show
the GenoSkyline scores of +SNPs and -SNPs, where a larger score
suggests a larger likelihood to be functional in the corresponding
tissue. The results indicate that + SNPs have overall significantly
higher GenoSkyline scores compared to -SNPs. In addition, +SNPs
were enriched for blood, which is consistent with our analyses above.
They were followed by enrichment for GI and it has been reported
that SLE may affect GI (Fawzy et al., 2016). Then, we implemented

FIGURE 3
GGPA 2.0 analysis of systemic lupus erythematosus (SLE). (A) GenoSkyline scores of various tissues for the associated SNPs that were uniquely
identified using functional annotations. (B) GenoSkyline scores from the analysis without using functional annotations. (C) GenoSkyline-Plus scores of
various immune cell types for the associated SNPs that were uniquely identified using functional annotations. (D) GenoSkyline-Plus scores from the
analysis without using functional annotations.
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deeper investigation with functional annotations of GenoSkyline-
Plus corresponding to blood, and compared the functional
importance of the SNPs that were uniquely identified with
functional annotations (denoted as + SNPs) to those without
functional annotations (denoted as -SNPs). We observed the
significant enrichment of +SNPs for B cells (Figure 3C), and the
role of B cells in lupus pathogenesis was previously well described
(Nashi et al., 2010). In contrast, -SNPs have extremely low
GenoSkyline-Plus scores, and most of them were close to zeros
(Figure 3D). These results indicate that ignoring functional
annotations may lead to the identification of misleading SNPs
that have no biological functions, while incorporating functional
annotations can help identify functional SNPs and facilitate
understanding of underlying biological mechanisms. To confirm
this, we checked the results without using functional annotation
(Supplementary Section S3.1.3 in Supplementary Materials) and the
results indicate that incorporation of functional annotations leads to
identification of more risk SNPs.

3.2.2 Applications to psychiatric disorders
Next, we applied GGPA 2.0 to the five psychiatric disorders. The

prior disease graph is shown in Figure 4A and indicates links
between ASD and ADHD, ADHD and MDD, MDD and BIP,
and BIP and SCZ, respectively. First, we implemented

investigation using the functional annotations of GenoSkyline.
Supplementary Figure S49 shows the estimated phenotype graph
and three additional disorder pairs were identified, including
ADHD-SCZ, ASD-SCZ, and MDD-SCZ. The connections
between SCZ and the other three disorders have been previously
reported (Canitano and Pallagrosi, 2017; Chen et al., 2017; Arican
et al., 2019). Supplementary Figure S48 shows γ coefficient estimates
and indicates that blood and brain tissues are significantly enriched
for BIP and SCZ, respectively. Along with the natural connection
between psychiatric disorders and brain (Notaras et al., 2015),
aberrant blood levels of the cytokine network components has
been reported for psychiatric disorders (Goldsmith et al., 2016),
supporting the connection between BIP and blood. Again, given the
natural connection between psychiatric disorders and brain, we
implemented investigation using the eight brain-related
GenoSkyline-Plus annotations to understand specificity of brain
regions related to these psychiatric disorders. When this set of
functional annotations were considered, the edge between ADHD
and SCZ disappeared in the estimated phenotype graph (Figure 4B).
Figure 4C shows that dorsolateral prefrontal cortex is significantly
enriched for BIP while inferior temporal lobe is significantly
enriched for SCZ. These enrichment are well supported by
previous literature (Rajkowska et al., 2001; Liu et al., 2020). SCZ
had the largest α coefficient and the largest number of SNPs were

FIGURE 4
GGPA 2.0 analysis of five psychiatric disorders, including attention deficit-hyperactivity disorder (ADHD), autism spectrum disorder (ASD), major
depressive disorder (MDD), bipolar disorder (BIP), and schizophrenia (SCZ), using annotations of GenoSkyline-Plus. (A) Prior phenotype graph obtained by
biomedical literaturemining. (B) Estimated phenotype graph, where values on the edges show β coefficient estimates. (C)Coefficient estimates of γ show
that dorsolateral prefrontal cortex is associated with BIP and inferior temporal lobe is associated with SCZ. (D) Coefficient estimates of α suggest a
stronger genetic basis of SCZ compared with other psychiatric disorders.
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associated with SCZ in both cases (Figure 4D; Supplementary Figure
S47; Supplementary Table S11).

Next, we evaluated impacts of incorporating functional
annotations on the association mapping, focusing on MDD
and SCZ. In Figure 5A, the SNPs identified using functional
annotations have higher GenoSkyline scores for cingulate gyrus
and dorsolateral prefrontal cortex. This observation is consistent
with previous studies indicating that cell density, neuronal size,
and signaling in these two brain regions do have an impact on
MDD (Cotter et al., 2002; Tripp et al., 2012). In contrast, the
scores of SNPs identified without using functional annotations
are close to zeros (Figure 5B). Figure 5C shows the GenoSkyline
scores for the SNPs identified using functional annotations, and
we can observe higher scores for brain. In addition, Figure 5D
shows enrichment of inferior temporal lobe for these SNPs,
which is well supported by the relevance of this brain region
with SCZ (Liu et al., 2020). In summary, GGPA might not only be
powerful in detecting potentially functional SNPs, but also can
potentially eliminate SNPs with irrelevant functions.

Finally, we applied GGPA 2.0 to investigate the pleiotropy
between BIP and SCZ. We incorporated eight brain-related
Genoskyline-Plus annotations and identified 242 SNPs
significantly associated with both BIP and SCZ

(Supplementary Table S12), which corresponds to 104 genes.
According to the GWAS Catalog (Buniello et al., 2019), many of
these genes have previously been reported to be associated with
both BIP and SCZ, e.g., PBRM1, MSRA, and BCL11B. Compared
to the analysis without using functional annotations,
incorporating Genoskyline-Plus annotations uniquely
identified 10 more genes, including PMVK, TAOK2, and
MAD1L1, which have been reported to be associated with BIP
and SCZ (Buniello et al., 2019). These results indicate that
incorporating functional annotations can potentially improve
statistical power to identify risk-associated genetic variants.
We again checked the results without using functional
annotation (Supplementary Section S3.2.3 in Supplementary
Materials) and the results indicate that incorporation of
functional annotations leads to identification of more risk SNPs.

3.2.3 Investigation of the impacts of the use of
irrelevant/incorrect functional annotations and the
variations in minor allele frequencies on the
performance of GGPA 2.0

In the previous sections, we showed the power of GGPA 2.0 in
identify relevant functional annotations, which in turn leads to the
improved association mapping performance. However, in practice,

FIGURE 5
GGPA 2.0 analysis of major depressive disorder (MDD) and schizophrenia (SCZ). (A) GenoSkyline-Plus scores of various brain regions for the MDD-
associated SNPs that were uniquely identified using functional annotations. (B) GenoSkyline-Plus scores from the analysis without using functional
annotations. (C) GenoSkyline scores of various tissues and (D) GenoSkyline-Plus scores of various brain regions for the SCZ-associated SNPs that were
uniquely identified using functional annotations.
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it is often not trivial to know a priori which functional annotations
are relevant to the phenotype of interest. Hence, it is important to
confirm that a statistical model is robust to the use of irrelevant
and/or incorrect functional annotations. To investigate the
robustness of GGPA 2.0, we generated irrelevant/incorrect
functional annotations and evaluated their impacts on GGPA
2.0. Specifically, we shuffled functional annotations of
GenoSkyline and GenoSkyline-Plus, and then repeated the
analyses of the five autoimmune diseases in Section 3.2.1 using
these shuffled annotations. The results show that using these
irrelevant/incorrect functional annotations have essentially no
influence on the estimates of β (Supplementary Figures S63,
S66) and α (Supplementary Figures S64, S67). Moreover, all
estimates of γ were close to zero for these annotations
(Supplementary Figures S65, S68), suggesting that GGPA
2.0 could recognize irrelevance of these annotations and prevent
them affect the model fitting. Finally, in the sense of association
mapping, we found that the numbers of significant SNPs
essentially remain the same as those identified without using
any functional annotations (Supplementary Tables S16, S17). In
conclusion, we confirmed that GGPA 2.0 is robust to the use of
irrelevant/incorrect functional annotations in the sense of
parameter estimation, selection of functional annotations, and
association mapping.

MAF of SNPs can be another potential factor that can affect
the performance of GGPA 2.0. For example, Speed and colleagues
investigated this issue and showed relevance of MAFs with
heritability and functional enrichment (Speed et al., 2017;
Gazal et al., 2018). Therefore, considering MAF of SNPs might
help improve the performance of GGPA 2.0. Following a similar
strategy used by Gazal and colleagues (Gazal et al., 2018), we
incorporated MAF as one of the functional annotations by
assigning ones to the SNPs with MAF less than 0.05, and
zeros to the remaining SNPs. Then, we repeated the analyses
implemented in Supplementary Sections S3.2.1, S3.2.2 using both
GenoSkyline and this MAF vector as functional annotations.
First, we analyzed the five autoimmune diseases with
Genoskyline annotations as described in Supplementary
Section S3.2.1, but with MAF as additional annotation. We
found that incorporating MAF had a minimal impact on the
estimates of α and β (Supplementary Figures S69, S70). However,
we observed some changes in the estimates of γ although overall
patterns remained similar. For example, CD-Epithelium and UC-
Blood, which previously showed weak enrichment, were
shrunken to zeros while the enrichment for UC-Epithelium
became rather stronger (Supplementary Figure S71). Next, we
analyzed the five psychiatric disorders in a similar way. However,
in this case, we did not observe any significant changes
(Supplementary Figures S72–S74). In summary, considering
MAF seems to have some potential to improve the
performance of GGPA 2.0 but more careful and thorough
studies will be needed to have more concrete conclusions.

4 Discussion

In this paper, we proposed GGPA 2.0, which allows to integrate
functional annotations with GWAS datasets for multiple

phenotypes within a unified framework. Our simulation studies
show that GGPA 2.0 can improve both the phenotype graph
estimation and the association mapping by incorporating
functional annotations. In real data applications, we applied
GGPA 2.0 to five autoimmune diseases and five psychiatric
disorders. The results indicate that the incorporation of
functional annotation data not only leads to identification of
novel risk SNPs, but also eliminates the SNPs with potentially
less biological relevance. Finally, we found that GGPA 2.0 is
robust to the use of irrelevant and/or incorrect functional
annotations that we can often have in practice.

In spite of such exciting improvements, there are still some
limitations to be addressed. First, the computational efficiency
needs to be further improved. Specifically, the computation time
increases as the number of phenotypes and functional
annotations increases (Supplementary Section S3.3 in
Supplementary Materials). Thus, it will be of great interest to
investigate approaches that can improve computational
efficiency, e.g., approximation approaches and parallel
computing techniques. Second, because GGPA 2.0 uses p-
values as input, directionalities of effects (protective vs. risk)
are not considered in the current framework. However, it is
important to consider the directionalities of effects to further
elucidate biological mechanisms of phenotype-genotype
association. Hence, extension of GGPA 2.0 by considering
directionalities of effects will be an important and interesting
future research direction. Third, in the current framework,
functional annotations are considered at the SNP level. Using
the gene- or pathway-level information will be an interesting
direction and left as a future work. Fourth, GGPA 2.0 still relies
on the assumption that SNPs are independent. While GWAS data
preprocessing (e.g., SNP clumping) can help better satisfy this
assumption, relaxation of this assumption will be an interesting
work. Finally, as we discussed in Supplementary Section S3.2,
other SNP processing approaches (e.g., SNP clumping) and
potential impact and benefit of considering MAF of SNPs will
be interesting and important issues to investigate.

With the aforementioned strengths and the planned
improvement, we believe that GGPA 2.0 will be a powerful tool
for the integrative analysis of GWAS and functional annotation data.
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