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Background: An imbalance of redox homeostasis participates in tumorigenesis,
proliferation, andmetastasis, which results from the production of reactive oxygen
species (ROS). However, the biological mechanism and prognostic significance of
redox-associated messenger RNAs (ramRNAs) in lung adenocarcinoma (LUAD)
still remain unclear.

Methods: Transcriptional profiles and clinicopathological information were
retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) of LUAD patients. A total of 31 overlapped ramRNAs were
determined, and patients were separated into three subtypes by unsupervised
consensus clustering. Biological functions and tumor immune-infiltrating
levels were analyzed, and then, differentially expressed genes (DEGs) were
identified. The TCGA cohort was divided into a training set and an internal
validation set at a ratio of 6:4. Least absolute shrinkage and selection operator
regression were used to compute the risk score and determine the risk cutoff in
the training set. Both TCGA and GEO cohort were distinguished into a high-risk
or low-risk group at the median cutoff, and then, relationships of mutation
characteristics, tumor stemness, immune differences, and drug sensitivity
were investigated.

Results: Five optimal signatures (ANLN, HLA-DQA1, RHOV, TLR2, and TYMS)
were selected. Patients in the high-risk group had poorer prognosis, higher
tumor mutational burden, overexpression of PD-L1, and lower immune
dysfunction and exclusion score compared with the low-risk
group. Cisplatin, docetaxel, and gemcitabine had significantly lower IC50 in
the high-risk group.
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Conclusion: This study constructed a novel predictive signature of LUAD based on
redox-associated genes. Risk score based on ramRNAs served as a promising
biomarker for prognosis, TME, and anti-cancer therapies of LUAD.
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tumor microenvironment, lung adenocarcinoma, immunotherapy, prognostic risk model,
redox, oxidative stress

1 Introduction

Lung cancer has been the leading cause of cancer-related deaths
for many years worldwide (Siegel et al., 2018). Despite knowledge
gains in targeted therapies, mortality from non-small-cell lung
cancer (NSCLC) remains high and has a 5-year survival rate of
16% (Santarpia et al., 2016). Lung adenocarcinoma (LUAD) is the
most common histologic subtype of NSCLC patients (Barta et al.,
2019); therefore, comprehensive and systematical studies to
construct improved models and screen for novel biomarkers
responsible for molecular diagnosis and prognostic prediction
come to urgency.

Reactive oxygen species (ROS) are a cluster of short-lived
molecules, which can oxidize other molecules and subsequently
transition rapidly between species (Ryter et al., 2007; Kong and
Chandel, 2018). In cancer cells, the production of ROS can be
facilitated to initiate cancer and generate carcinogenesis (Helfinger
and Schroder, 2018; Ghoneum et al., 2020). Moreover, increased
ROS production mediates chemotherapy or radiotherapy responses
by activating the downstream cell survival or death signaling
cascades (Srinivas et al., 2019). Thus, ROS is recognized as a
promoter of tumor proliferation and metastasis (Florean et al.,
2019). Although redox homeostasis is critical for cell survival,
ROS can also lead to cell deaths in multiple cancer types such as
melanoma, pancreatic cancer, and head and neck cancer (Alexander
et al., 2010; Lau et al., 2010; Herraiz et al., 2016). It is still a necessity
to analyze the complex mechanism and role of redox status in
cancers in depth.

Tumorigenesis is associated with not only genetic alteration
of cancer cells but also the tumor microenvironment (TME),
which includes the extracellular matrix, blood vessels, oxygen,
and inflammatory cells (Khramtsov, 2018). Increasing evidence
suggests that the TME enables cancer cells to respond to
chemoradiotherapy and is pivotal to cancer diagnosis and
therapy (Wang et al., 2018). Redox homeostasis also
participates in the TME. Some antioxidants, such as Trx,
TrxR, and NADPH, mediate distinct intracellular processes
that induce oxidative stress and regulate the redox cellular
microenvironment (Policastro et al., 2013). Normalizing the
TME redox parameters may decrease the selection pressure for
malignant phenotypes, therefore providing a tool for TME-
targeted anticancer therapy (Khramtsov and Gillies, 2014).
However, few studies investigated the patterns and
characteristics of redox in the TME of LUAD.

This study identified prognostic and differentially expressed
redox-associated genes based on the data downloaded from
online cohorts. Subsequently, active and inhibited biological

functions and pathways were determined. The immune-
infiltrating levels and differentially expressed genes (DEGs) were
also investigated. To examine the effectiveness of the model, the
nomogram, survival analysis, independent prognostic analysis,
TME, and drug sensitivity with the risk were explored and
validated in an external cohort.

2 Materials and methods

2.1 Data collection and processing

The list of redox-associated mRNAs (ramRNAs) was
extracted from 20 gene sets of the Molecular Signatures
Database (MSigDB, http://www.gsea-msigdb.org/gsea/index.
jsp), an integrated web server providing annotated gene sets
of distinct species. The transcriptional profile of LUAD patients
was downloaded in The Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/) including 59 normal tissues and
535 tumor tissues along with the corresponding
clinicopathological phenotypes of patients with cancer single-
nucleotide variant (SNV) information. The RNA sequencing
data were formatted in transcripts per kilobase million and
processed by log2 transformation. Since the prognostic
information of CPTAC-3 is not available, we excluded the
cohort from our study. Another independent cohort
(GSE36471) of Gene Expression Omnibus (GEO, https://
www.ncbi.nlm.nih.gov/geo/) was chosen to validate the
results externally. The rationale of selecting this cohort
included the two reasons. First, the follow-up information
can be obtained, which can be used for survival analysis.
Second, the overlapped genes sequenced in this dataset with
TCGA contained the candidates responsible for the redox
signature. Statistical and bioinformatics analyses in this study
were conducted using the R program (version 3.6.3 and 4.0.5).

2.2 Unsupervised clustering to identify the
novel subtypes of LUAD

A univariate Cox proportional hazard regression was performed to
screen for survival-related ramRNAs in LUADwith the threshold of p<
0.05. The DEGs between normal and tumor tissues were identified with
|log(Fold Change) (log FC)|>1.5 and p < 0.01. Then, the overlapped
ramRNAs were included in K-means consensus clustering to classify
LUAD patients into different subtypes based on their expression levels
by using the ConsensusClusterPlus package.
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2.3 Clinical and biological function
characteristics of clustering subtypes

Kaplan–Meier (KM) analysis was conducted to estimate the
statistical differences of survival outcomes among the clustering
subtypes. To assess relationships between clustering and tumor
purity, the “Estimation of Stromal and Immune cells in
Malignant Tumors using Expression data” (ESTIMATE)
algorithm (Yoshihara et al., 2013) and Wilcoxon rank-sum test
were carried out to predict the differences among clustering
subtypes and immune and stromal components in LUAD. This
study also investigated the distribution of clinical phenotypes
including the follow-up status, age, gender, pathologic stage, T
stage, N stage, and tumor status in different subtypes by the chi-
squared test. The subtle biological pathways were identified between
each of the two clustering subtypes by gene set variation analysis
(GSVA) (Hanzelmann et al., 2013) based on “c2. cp.kegg.v7.4.
symbols.gmt” and “c2. cp.reactome.v7.4. symbols” gene sets
retrieved from MSigDB for Kyoto Encyclopedia of Genes and
Genomes (KEGG) and RACTOME enrichment, respectively. In

addition, tumor immune-infiltrating levels of 28 cell types among
the clustering subtypes were evaluated by single-sample Gene Set
Enrichment Analysis (ssGSEA) (Barbie et al., 2009) and the
Kruskal–Wallis (KW) test.

2.4 Determination of optimal redox-
associated signatures for LUAD prognosis

The overlapped DEGs between each of the two subtypes with |
log FC|>0.5 and p < 0.001 were included in the univariate Cox
model. Significant ramRNAs were used to perform further
dimension reduction through a weighted random forest and
sliding window sequential forward feature selection by curtailing
out-of-bag (OOB) error rate (Zhang et al., 2019) in the ranger and
randomForest packages. Then, the TCGA cohort was divided into a
training set and a validation set randomly at a ratio of 6:4. To
validate the randomness, Pearson’s chi-squared test was performed
with clinicopathological information (Bao et al., 2020). LASSO Cox
regression was used to screen for optimal redox-associated

FIGURE 1
Workflow of the study.
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signatures based on the results of feature selection with the training
set. The risk score was formulated as follows:

Risk score � α1 α2 . . . αn[ ]1×n ×
β11 β12 . . . β1m
β21 β22 . . . β2m
..
. ..

.
1 ..

.

βn1 βn2 . . . βnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n×m

, (1)

where the row vector represents the coefficient of the n signatures,
and the matrix represents the corresponding expression levels of m
samples. Patients from both TCGA cohort and GEO cohort were
distinguished into a high-risk and a low-risk group at the median
cutoff of risk score in the training set.

2.5 Model validation and combined
diagnosis estimation

A log-rank test was taken to analyze the survival differences
between the high- and low-risk groups in the training set, validation
set, whole TCGA cohort, and GEO cohort. Moreover, the survival
outcomes were compared between the high- and low-expression
groups of patients classified at the optimal cutoff of transcriptional
expression in each ramRNA signature. Receiver operating
characteristic (ROC) curves and AUC values of 1-, 2-, and 3-year
survival probability were adopted to reveal the accuracy and
sensitivity of the prediction. The relationships between the
survival status and risk score were investigated with the strategy
of statistical difference measured by the Wilcoxon rank-sum test.
Principal component analysis (PCA) was performed to visualize the
discrimination of the model. Independent prognostic factors were
determined by a univariate and a multivariate Cox proportional
hazard regression with the clinicopathological phenotype
information in the training set, validation set, and TCGA cohort.
In addition, a nomogram model was developed based on the TCGA
phenotype information and validated by calibration and
concordance index (C-index). Decision curve analysis (DCA) was
conducted to compare the net benefit between the risk score and
traditional staging system.

2.6 Relationships of mutation characteristics
and tumor stemness

The top 20 mutated genes in the low- and high-risk groups were
analyzed, respectively. Furthermore, the correlation between the risk
and tumor mutational burden (TMB) of each sample was estimated
by Spearman’s correlation coefficients. Patients with TMB
information were divided into a low-TMB and a high-TMB
group at the optimal cutoff for survival. Afterward, risk and
TMB groups were integrated as four types of combinations:
L-Risk + L-TMB, L-Risk + H-TMB, H-Risk + L-TMB, and
H-Risk + H-TMB. The survival differences among the re-
constructed subtypes were tested by the KM method. Stemness
indices calculated by machine learning were recognized as a novel
potential biomarker in anti-cancer therapies recently (Malta et al.,
2018). In the present study, the relationship between the risk and
RNA stemness score (RNAss) or DNA stemness score (DNAss)

obtained from the UCSC Xena website (http://xena.ucsc.edu/) was
examined. Moreover, GSEA was employed to screen for a
significantly enriched biological process in the low- and high-risk
groups.

2.7 Exploration of the TME and
immunotherapies with risk

To explore the immune differences between the low- and high-
risk groups, the KW test was used to investigate the varieties of risk
scores among multiple immunophenotypes, including wound
healing (C1), IFN-gamma dominant (C2), inflammatory (C3),
lymphocyte depleted (C4), and TGF-beta dominant (C6). The
information of tumor immune-infiltrating levels estimated by
TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ,
MCPCOUNTER, XCELL, and EPIC was acquired from the
TIMER database (http://timer.cistrome.org/). The immune-
infiltrating differences and PD-L1 expression levels between risk
subtypes were evaluated by the Wilcoxon rank-sum test.
Furthermore, immune dysfunction and exclusion of immune
escape mechanisms in LUAD according to Tumor Immune
Dysfunction and Exclusion (TIDE, http://tide.dfci.harvard.edu/)
were explored along with risk groups.

2.8 Associations of drug sensitivity and risk

The pRRophetic package (Geeleher et al., 2014) was adopted to
predict the chemosensitivity measured by half maximal inhibitory
concentration (IC50) based on transcriptional expression profiles
between the low- and high-risk groups.

3 Results

3.1 Clustering subtypes based on prognostic
ramRNA expression levels

The workflow of the present study is shown in Figure 1. A total
of 153 ramRNAs were examined by univariate Cox proportional
hazard regression to identify the prognostic targets (Supplementary
Table S1). A total of 89 DEGs including 39 downregulated genes and
50 upregulated genes compared within normal and tumor tissues
were determined (Figure 2A, Supplementary Table S2). Then,
31 aggregated prognostic differentially expressed ramRNAs were
obtained (Figure 2B). Unsupervised consensus clustering with the
K-means method measured by the Euclidean metric demonstrated
k = 3 was an optional clustering number: 125 samples in Cluster A
(low immunity), 203 samples in Cluster B (median immunity), and
185 samples in Cluster C (high immunity) (Figure 2C,
Supplementary Table S3). Survival analysis indicated that patients
in Cluster A had the poorest prognosis while those in Cluster B had
relatively favorable outcomes (p < 0.001, Figure 2D). The chi-
squared test indicated that survival status (p < 0.001), gender
(p < 0.001), pathologic stage (p < 0.05), and tumor status (p <
0.01) had significant differences among the clustering subtypes
(Figure 2E). As shown in Figures 2F–H, immune score, stromal
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FIGURE 2
Identification of clustering subtypes based on prognostic differentially expressed ramRNAs. (A) Volcano plot with the thresholds of p < 0.01 and |
log(Fold Change)|>1.5. Blue points represented downregulated ramRNAs and red points represented upregulated ramRNAs in the tumor tissues
compared with normal tissues. Gray points represented non-DEGs. (B) The 31 overlapped ramRNAs from univariate Cox regression and DEGs are shown
by a Venn diagram. (C) Consensus matrix with 3 clustering subtypes. (D) Kaplan–Meier analysis and the log-rank test showed the significant
difference amongClusters A–C. Black dotted lines represented themedian survival of each clustering. (E) TheHeatmap illustrated the expression levels of
31 DEGs and clinicopathological variable distributions among the three clustering subtypes (***p < 0.001, **p < 0.01, and *p < 0.05). Orange indicates
three high-expression levels, while purple indicates a low level. (F–H) Differences in immune, stromal, and ESTIMATE scores among the subtypes.
ramRNA: redox-associated messenger RNA and DEG: differentially expressed gene.
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FIGURE 3
Characteristics of biological pathways and immune-infiltrating levels among clustering subtypes. Gene set variation analysis for Kyoto Encyclopedia
of Genes and Genomes pathways between (A) Cluster A and Cluster B, (B) Cluster A and Cluster C, and (C) Cluster B and Cluster (C). Yellow color
represented active pathways, while blue color represented inhibited pathways. (D) Overlapped differentially expressed genes between each of the two
clustering subtypes are shown by a Venn diagram. (E) Tumor immune-infiltrating levels of 28 cell types predicted by single-sample gene set
enrichment analysis (***p < 0.001, **p < 0.01, and *p < 0.05; ns: no significance).
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FIGURE 4
Feature selection and development of the prognostic risk model. (A) Univariate Cox proportional hazard regression with 112 differentially expressed
ramRNAs. (B) The relationship of the “out-of-bag” error rate and gene numbers included in the random forest model by the method of sliding window
sequential forward feature selection. (C) Solution paths of partial likelihood deviance and lambda in the least absolute shrinkage and selection operator
Cox regressionmodel. Left black dotted lines represented the minimum lambda and its corresponding number of genes, which was optimal. (D–G)
Survival differences between the low- and high-risk groups in the training set, validation set, TCGA cohort, and GSE36471 estimated by the log-rank test.
TCGA: The Cancer Genome Atlas.
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score, and ESTIMATE score increased gradually and significantly
from Cluster A to Cluster C (p < 0.001).

3.2 Biological pathway enrichment and
tumor immune infiltration among clusters

GSVA functional enrichment revealed that Cluster A was
markedly enriched in pathways such as xenobiotic metabolism
mediated by cytochrome P450, phenylalanine metabolism, steroid
hormone biosynthesis, and drug metabolism induced by
cytochrome P450 compared with Cluster B (Figure 3A);
pathways including pentose and glucoronate interconversions,
porphyrin metabolism, and proteasome were active in Cluster A,
while several pathways of asthma, intestinal immune networks for
immunoglobulin A production, and cell adhesion molecule cams
were active in Cluster C (Figure 3B). DNA replication, cell cycle, and
homologous recombination pathways were active in Cluster B, while
Cluster C presented enrichment pathways of arachidonic acid
metabolism, linoleic acid metabolism, and primary bile acid
biosynthesis (Figure 3C). The results of REACTOME pathway
enrichment are provided in Supplementary Figures S1A–C.
Variations in tumor immune-infiltrating levels of 28 cell types
were estimated by the KW test. It was demonstrated that Cluster
C had significantly higher infiltrating levels of the most cell types,
such as CD8+cells, regulatory T cell, activated B cell, and natural

killer cells (Figure 3D). The differentially expressed strategy
determined 112 DEGs between each of the two clusters was also
acquired (Figure 3E, Supplementary Figure S2A; Supplementary
Table S4).

3.3 Feature selection and prognostic risk
model development

A univariate Cox proportional hazard regression screened for
79 signatures with p < 0.05 out of 112 DEGs (Figure 4A). Dimension
reduction was further carried out by weighted random forests and
sliding window sequential forward feature selection. It was
demonstrated that the OOB error reached its minimum with
49 genes (Figure 4B). The relative importance of variables is
illustrated in Supplementary Figure S2B. The entire TCGA
cohort was randomly divided into a training set and a validation
set. Pearson’s chi-squared test was adopted to examine the
clinicopathological difference between the two inner separate sets
(Table 1). Based on the training set, LASSO Cox regression
determined five optimal signatures (ANLN, HLA-DQA1, RHOV,
TLR2, and TYMS) at the minimum partial likelihood deviance for
LUAD prognosis (Figure 4C). Then, patients from both TCGA
cohort and GEO cohort were classified into low- and high-risk
groups at the cutoff of 2.198, which was the median value of the risk
score in the training set.

TABLE 1 Pearson’s chi-squared test with clinicopathological information for three LUAD sets in the TCGA cohort.

Covariate Type Entire Test Training p value

Vital status Alive 312 (63.67%) 119 (61.34%) 193 (65.2%) 0.385

Dead 178 (36.33%) 75 (38.66%) 103 (34.8%)

Age ≤60 153 (31.22%) 56 (28.87%) 97 (32.77%) 0.658

>60 327 (66.73%) 134 (69.07%) 193 (65.2%)

Unknown 10 (2.04%) 4 (2.06%) 6 (2.03%)

Gender Female 262 (53.47%) 102 (52.58%) 160 (54.05%) 0.749

Male 228 (46.53%) 92 (47.42%) 136 (45.95%)

Stage Stage I–II 378 (77.14%) 157 (80.93%) 221 (74.66%) 0.127

Stage III–IV 104 (21.22%) 36 (18.56%) 68 (22.97%)

Unknown 8 (1.63%) 1 (0.52%) 7 (2.36%)

T T1–T2 426 (86.94%) 172 (88.66%) 254 (85.81%) 0.331

T3–T4 61 (12.45%) 20 (10.31%) 41 (13.85%)

Unknown 3 (0.61%) 2 (1.03%) 1 (0.34%)

N N0–N1 409 (83.47%) 163 (84.02%) 246 (83.11%) 0.174

N2–N3 70 (14.29%) 24 (12.37%) 46 (15.54%)

Unknown 11 (2.24%) 7 (3.61%) 4 (1.35%)

Tumor status Tumor free 275 (56.12%) 109 (56.19%) 166 (56.08%) 0.461

Unknown 50 (10.2%) 16 (8.25%) 34 (11.49%)

With tumor 165 (33.67%) 69 (35.57%) 96 (32.43%)

Numbers in the bracket represented the ratio of the corresponding sample numbers.
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FIGURE 5
Survival analysis for single gene and AUC estimation. Survival differences evaluated by log-rank test between the low- and high-expression groups at
the optimal cutoff of each optimal prognostic signature in the (A) entire TCGA cohort and (B) GSE36471. (C–F) 1-, 3-, and 5-year receiver operating
characteristic curves and AUCs in the training set validation set, TCGA cohort, and GSE36471. AUC: area under the curve; TCGA: The Cancer Genome
Atlas.
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FIGURE 6
PCA and differences of the survival status with the risk score. (A–D) Distributions of low- and high-risk patients in the PCA for the training set,
validation set, TCGA cohort, and GSE36471 dataset. The number in the brackets represented the ratio of explaining variability of thewhole data. (E–H) The
Wilcoxon rank-sum test implied the variations of risk scores between the alive and dead follow-up status in the training set, validation set, TCGA cohort,
and GSE36471. PCA: principle component analysis.
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3.4 Validation of model effectiveness and
construction of a nomogram model

Survival differences between the low- and high-risk groups in
the training set (p < 0.001, Figure 4D), validation set (p = 0.005,
Figure 4E), entire TCGA cohort (p < 0.001, Figure 4F), and
GSE36471 (p = 0.047, Figure 4G) revealed that patients in the
high-risk group experienced poor prognosis compared with the
low-risk group. Simultaneously, the log-rank test of low- and high-
expression groups with each optimal signature suggested that
overexpressed ANLN, RHOV, and TYMS led to worse survival,
while upregulation of HLA-DQA1 and TLR2 led to favorable
prognosis (Figures 5A,B). ROC curves and AUC values of 1-, 2-,
and 3-year survival in the training set (Figure 5C), validation set
(Figure 5D), entire TCGA cohort (Figure 5E), and GSE36471
(Figure 5F) are shown. PCA demonstrated that the cumulative
value of principal component 1 (PC1) and principal component
2 (PC2), which was over 70%, sufficiently explained the variance of
the signature expression levels (Figures 6A–D). Hence, it was
notable that patients in the different risk groups were stratified
effectively. Patients in the high-risk group had higher mortality rates
(training set: p < 0.001; validation set: p < 0.01; TCGA cohort: p <

0.001; GSE36471: p < 0.01, Figures 6E–H), and ANLN, RHOV, and
TYMS overexpressed in the high-risk group, while the expression of
HLA-DQA1 and TLR2 were reduced in the high-risk group
(Supplementary Figures 3A–D). Independent prognostic analysis
demonstrated that the tumor status and risk score could serve as an
independent factor for predicting LUAD patients’ prognosis in the
training set, validation set, and entire TCGA cohort (Table 2). Also,
KM survival analysis of different clinicopathological variables
showed that patients of the high-risk group had significantly
poor prognosis in all subgroups including age, gender,
pathological stage, and tumor status (Supplementary Figure S4).
It should be noted that the survival of patients with advanced stages
showed no statistical significance (Supplementary Figures 4C–E).
We also found that male or advanced patients exhibited significantly
higher risk scores than the other populations (Supplementary
Figures 5A–D).

A nomogram model with age, gender, pathological stage, T
stage, N stage, tumor status, and risk score were established
(Figure 7A). The predictive accuracy of the nomogram was
determined by 1-, 2-, and 3-year survival probability
calibration curves (Figures 7B–D) and C-index of 0.786 (95%
confidence interval (CI) = 0.765–0.808), showing favorable

TABLE 2 Independent prognostic analysis for clinicopathological variables and risk scores by Cox regression.

Dataset Factor Univariate Multivariate

p value HR 95%CI p value HR 95%CI

Training Age 0.501 0.993 0.972–1.014

Gender 0.982 1.005 0.636–1.588

Stage <0.001 1.674 1.343–2.087 0.833 1.035 0.753–1.421

T 0.006 1.466 1.116–1.925 0.240 1.208 0.882–1.655

N 0.001 1.536 1.192–1.981 0.088 1.359 0.956–1.932

Tumor status <0.001 7.085 4.147–12.105 <0.001 6.164 3.502–10.849

Risk score <0.001 2.032 1.594–2.589 <0.001 1.608 1.266–2.042

Validation Age 0.393 1.012 0.985–1.039

Gender 0.526 1.179 0.708–1.962

Stage 0.001 1.534 1.192–1.975 0.913 0.977 0.642–1.486

T 0.001 2.013 1.344–3.013 0.118 1.466 0.907–2.371

N 0.001 1.667 1.243–2.236 0.054 1.591 0.992–2.551

Tumor status <0.001 5.594 3.027–10.337 <0.001 5.813 3.063–11.029

Risk score 0.002 1.637 1.201–2.232 0.014 1.619 1.101–2.382

TCGA Age 0.914 1.001 0.984–1.018

Gender 0.607 1.093 0.780–1.531

Stage <0.001 1.576 1.340–1.854 0.894 0.983 0.769–1.258

T <0.001 1.572 1.265–1.954 0.079 1.251 0.974–1.606

N <0.001 1.566 1.294–1.896 0.008 1.442 1.101–1.888

Tumor status <0.001 6.465 4.325–9.664 <0.001 6.246 4.119–9.471

Risk score <0.001 1.885 1.557–2.283 <0.001 1.633 1.350–1.975
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fitness and discrimination ability. In addition, compared with the
conventional TNM stage, the risk score exhibited higher net
benefits of 1-, 2-, and 3- year survival probability (Figures
7E–G), which indicated that risk scores might have optimal
prognostic values.

3.5 Profiles of cluster and mutation risks

The KW test demonstrated that Cluster C exhibited the lowest
risk score (p < 0.001, Figure 8A). The distribution of different
clusters among risk subtypes and the follow-up status are shown

FIGURE 7
Nomogram model and decision curve analysis curves. (A) A nomogram model to predict lung adenocarcinoma patients’ survival with
clinicopathological variables and risk scores. (B–D) 1-, 2-, and 3-year calibration curves. Blue crosses represented the result of each point after the
stratified Kaplan–Meier correction. Small gray vertical lines at the top of the boxes represented the distribution of survival rates under the model
predictions. (E–G) 1-, 2-, and 3-year survival probability decision curve analysis curves for the pathological stage, T stage, N stage, and risk score.
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FIGURE 8
Cluster-risk andmutation-risk profiles. (A) Variations among the three clustering subtypes revealed by the Kruskal–Wallis test. (B) An alluvial diagram
illustrated the distributions among clusters, risk groups, and vital status. (C–D) The top 20mutated genes in the low- and high-risk groups. The upper bar
plot showed the total mutation frequency of each sample. The number on the right indicated the mutation frequency in each gene. The right bar plot
showed the proportion of each variant type. The stacked stripe below showed risk subtypes, blue for low risk and red for high risk. (E) TMB
differences between the low- and high-risk groups. (F) The correlation of TMB and risk scores. Points with three colors represented different clustering
subtypes. (G) Survival differences among four TMB-risk stratifications. (H, I)Correlation between the risk score and tumor purity estimated by RNA-seq
and DNA methylation. TMB: tumor mutational burden.

Frontiers in Genetics frontiersin.org13

Zhao et al. 10.3389/fgene.2023.1079035

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1079035


FIGURE 9
Tumor immunemicroenvironment investigation. (A) Biological functional analysis of biological processes for the risk subtypes. The curves upon the
horizontal axis represented terms enriching in the high-risk group, while the curve beneath the horizontal axis represented terms enriching in the low-risk
group. Stripes below showed the gene abundance of each function annotation. (B) Differences of risk score among five immune subtypes in lung
adenocarcinoma. (C) Associations of immune-infiltrating levels of distinctive cell types calculated by several methods and risk scores are shown by a
heatmap. (D, E) PD-L1 expression variations between the low- and high-risk group in TCGA cohort and GSE36471. (F–I) Relationships between TIDE
score, IFNG score, T-cell exclusion score, T-cell dysfunction score, and risk subtypes respectively. TCGA: The Cancer Genome Atlas.
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by an alluvial diagram in Figure 8B. By summarizing the mutation
information including frequency and types, the mutation landscape
in the low- and high-risk groups was manifested, respectively, by an
oncoplot (Figures 8C,D). It was notable that MUC16, TP53, and
TNN exhibited the highest frequency in the low-risk
group. MUC16 and TP53 showed mostly non-sense mutation,
while TP53 had the most missense mutation. Then, TMB of each
sample was calculated, and Figure 8E evinced that patients in the
high-risk group had higher TMB compared with the low-risk group
(p < 0.001). TMB was also positively correlated with the risk score
with the coefficient of 0.38 and p < 0.001 (Figure 8F). After
separating samples into four novel TMB-risk subtypes, their
survival differences were analyzed. It was noticeable that patients
with high-TMB and low-risk showed better prognosis while patients
with low-TMB and high-risk experienced the poorest survival
outcomes (Figure 8G). Furthermore, stemness indices measured
by DNAss (Figure 8H) and RNAss (Figure 8I) also had a
significantly positive connection with the risk score (p < 0.001).

3.6 Associations of the TME,
immunotherapies, and risk model

GSEA functional enrichment for biological processes indicated
that the term “adenylate cyclase activating adrenergic receptor
signaling pathway” was active in the low-risk group, while high
risk manifested significant terms such as chromosome segregation,
DNA dependent DNA replication, organelle fission, and innate
immune response activating signal transduction (Figure 9A).
With the information regarding immunophenotypes of TCGA
cohort retrieved from UCSC Xena, it could be observed that
C2 held the highest risk score, and the five immune subtypes had
significantly different score levels (p < 0.001, Figure 9B). The
evidence from the TIMER database demonstrated that the
immune-infiltration abundance of cell types such as macrophage
M0/1 (by CIBERSORT) and T cell CD4+ Th1/2 (by XCELL) was
positively associated with the risk score while that of B cells (by

TIMER), activated mast cells (by CIBERSORT), and
M2 macrophages (by QUANTISEQ) were negatively associated
with the risk score (Figure 9C). To explore anti-PD-
L1 therapeutic effectiveness, PD-L1 expression was analyzed
between the low- and high-risk groups. The Wilcoxon rank-sum
test implied that PD-L1 was overexpressed in the high-risk group
than the low-risk group from both TCGA cohort (p < 0.001,
Figure 9D) and GEO cohort (p = 0.001, Figure 9E). In addition,
immunotherapy examination according to the TIDE prediction
score represented the possibility that patients with high-risk
enjoying significantly lower TIDE scores (p < 0.001, Figure 9F)
were insusceptible to immune evasion, which suggested that the
patients were more likely to benefit from therapy with ICIs.
Furthermore, the IFNG score (p < 0.01, Figure 9G) and T-cell
exclusion score showed higher level in the high-risk group (p <
0.001, Figure 9H), while T-cell dysfunction score exhibited lower
level in the high-risk group (p < 0.001, Figure 9I).

3.7 Probes into drug sensitivity, risk, and
optimal signatures

Chemosensitivity of drugs for anti-LUAD therapies such as
cisplatin (p < 0.001), docetaxel (p < 0.001), and gemcitabine (p =
0.006) had significantly lower IC50 in the high-risk group (Figures
10A–C), while erlotinib (p < 0.001) held higher IC50 in the high-risk
group (Figure 10D).

4 Discussion

In this study, differentially expressed survival-related ramRNAs
were screened to identify the novel subtypes of LUAD with
consensus clustering based on the TCGA dataset. Patients were
classified into three groups, and there were statistical differences in
KM survival analysis. GSVA functional enrichment analysis for
distinct subtypes revealed that metabolic pathways such as

FIGURE 10
Drug sensitivity exploration. (A–D) Chemosensitivity measured by IC50 of cisplatin, docetaxel, gemcitabine, and erlotinib for anti-tumor therapies.
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phenylalanine, tyrosine, and histidine were activated in Cluster A,
which promoted essential amino acid metabolism and
tumorigenesis (Yue et al., 2017); cytogenetic pathways including
DNA replication, cell cycle, homologous recombination, and
mismatch repairs were enriched in Cluster B, which were tightly
associated with tumorigenesis (Zong et al., 2016; McGrail et al.,
2020). Also, immune-related pathways contain intestinal immune
networks for IgA production, cell adhesion molecule cams, and FC
epsilon RI signaling activated in Cluster C, which were related to the
response of inflammatory cells (Palm et al., 2014; Inman et al., 2018).
To investigate the differences of immune-infiltrating levels among
the subtypes, the ssGSEA algorithm was adopted and it found that
Cluster C exhibited higher infiltrating abundance in most cell types.

DEGs were further determined between each of the two clusters
and obtained overlapped targets for feature selection. Subsequently,
by integrating both conventional statistical methods like univariate
Cox regression and machine learning strategy including weighted
random forest with sliding window sequential forward feature
selection, we reduced the dimension of the data structure for
LASSO regression to develop an effective prognostic risk model
with the median cutoff. It was illustrated that high-risk patients had
poorer survival outcomes compared with low-risk patients, which
was consistent in the training set, validation set, and GEO cohort.
Also, each optimal signature showed differences in KM survival for
LUAD patients. Thus, these agents can be potential biomarkers for
prognostic prediction. ROC analysis demonstrated that AUCs
reached 0.70, indicating that our model had promising accuracy
and sensitivity. PCA also demonstrated an optimal discrimination
of risk.

Nomograms have been acknowledged as a tailored tool with a
single numerical prediction of the probability of an event for cancer
prognosis (Iasonos et al., 2008). This study constructed a nomogram
with age, gender, pathologic stage, T stage, N stage, tumor status,
and risk scores to estimate the 1-, 2-, or 3-year survival probability of
LUAD patients. The C-index of 0.786 implied that the evaluation of
the model had a strong consistency with actual outcomes. The risk
score also underwent higher net benefit than the conventional stage
system according to DCA, which suggested risk had values of
prognostic prediction. In addition, it was showed that male
patients had higher risk scores than female ones, which are
consistent with previous reports (Hsu et al., 2015; Hsu et al.,
2017). Therefore, male donors exhibited lower immune-
infiltrating levels (Figure 8A), which suggested potentially
insensitive responses to immunotherapy. Although advanced
patients were characterized by high risk, the survival distinction
did not show significance. We reasoned that the predisposition of
survival differences among advanced individuals includes not only
the redox hallmark quantified by the transcriptome in our study, but
also other genetic and microenvironment cofounders, such as
immunological and metabolic factors.

Then, the correlations were explored among clustering subtypes,
risk, and mutation characteristics. The KW test showed patients
fromCluster C had the lowest risk score and better survival, which fit
well with the KM result of clustering subtypes. Previous studies
demonstrated that MUC16 mutation associated with response to
immune checkpoint inhibitors in solid tumors and TP53 mutation
status had potential predictive values for response to PD-1 blockade
immunotherapy in LUAD (Dong et al., 2017; Zhang et al., 2020).

Our results revealed that high-risk groups had higher total mutation
frequency as well as TP53, TTN, and MUC16, which demonstrated
that patients with higher risk score may benefit from ICI treatment.
Moreover, it was found that TMB was positively correlated with the
risk score, which indicated that high-risk patients are more likely
benefited from anti-PD-1 therapies and is consist with the previous
study (Marabelle et al., 2020). However, several studies found that
TMB was not markedly associated with the PD-1/PD-L1 expression
(Hellmann et al., 2018; Rizvi et al., 2018). Hence, to further disclose
the important value of the risk score in immune checkpoint
therapies, the relationship between the TME and risk score was
analyzed.

Immune regulation is pivotal to the development and
progression of LUAD affected by the proportion of infiltrating
immune cells (Yao et al., 2021). The risk score varied
significantly within the six immune subtypes. Accordingly, this
study then downloaded the information of immune-infiltrating of
various cell types measured by different methods and detected the
correlations of risk and tumor immune fractions. It could be
observed that the risk score was positively connected with the
immune-infiltrating levels of cells such as M0/M1 macrophages ,
plasmacytoid dentritic cells, and CD4+ Th1/Th2, whereas the risk
score was negatively correlated with cells such as B cells, neutrophils,
NK cells, and T-cell regulatory. These reflected that high-risk LUAD
patients had stronger immunosuppression and weaker
immunoreactivity.

TIDE is an inventive computational protocol to screen two
factors, including the induction of T-cell dysfunction and the
prevention of T-cell infiltration in tumor tissues, which has been
validated as an effective biomarker of prognostic prediction (Jiang
et al., 2018). Our research study found that patients in the high-risk
group had the lower TIDE score and patients in the low-risk group
had the lower T-cell exclusion score but the higher T-cell
dysfunction score. It suggested that patients were more unlikely
to experience immune escape, which had more opportunities to
benefit from ICI therapies, and the insensitive ICI response may
result from immune evasion T-cell dysfunction rather than T-cell
exclusion. ICI therapies targeting several immunological checkpoint
blockades have achieved prospective clinical benefits in treating
LUAD patients (Chen et al., 2021). In the current study, PD-L1 was
significantly overexpressed in the high-risk group of both TCGA
dataset and the independent cohort GSE36471 dataset. Therefore,
patients with higher risk scores could be more sensitive to PD-1/PD-
L1 blockades and thus the individuals may benefit from ICI
treatment (Ansell et al., 2015; Galluzzi et al., 2018).

Finally, drug sensitivity analyses implied that the low-risk group
was related to higher IC50 of chemotherapeutics such as cisplatin,
docetaxel, and gemcitabine, while erlotinib had higher IC50 in the
high-risk group. The aforementioned results indicated these
signatures of out model might play a vital role in tumor cell
sensitivity or resistance. However, as the database is limited, the
half maximal inhibitory concentration of more target therapy and
immunotherapy drugs are not investigated in this study and requires
more research to confirm and explore the findings.

However, some limitations should be considered in this study.
First, we only used retrospective datasets for this study, and a multi-
center prospective clinical cohort of LUAD samples is a necessity to
verify the stability of phenotyping. In addition, further experiments
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are still needed to investigate the relationship between the redox
signature and immunotherapy and reveal how ramRNAs affect
genomic instability. In the future, the combination of ramRNAs
and immunotherapy may be a promising strategy for LUAD
treatment.

5 Conclusion

In conclusion, this study successfully constructed a novel
predictive signature of lung adenocarcinoma based on redox-
associated genes, which had optimal prognostic values and
affected TME cell-infiltrating characterization. Moreover, the
model helps researchers understand the association between
redox and tumorigenesis. This study contributes to guiding more
effective strategies for TMB and anti-tumor immunotherapy.
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