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From the perspective of precision medicine, the challenge for the future is to
improve the accuracy of diagnosis, prognosis, and prediction of therapeutic
responses through the identification of biomarkers. In this framework, the omics
sciences (genomics, transcriptomics, proteomics, and metabolomics) and their
combined use represent innovative approaches for the exploration of the
complexity and heterogeneity of multiple sclerosis (MS). This review examines the
evidence currently available on the application of omics sciences to MS, analyses the
methods, their limitations, the samples used, and their characteristics, with a
particular focus on biomarkers associated with the disease state, exposure to
disease-modifying treatments (DMTs), and drug efficacies and safety profiles.
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Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system
(CNS), characterized by pathological, clinical, and neuroradiological complexity, that has
variable prognoses and disease outcomes (Filippi et al., 2016). As epidemiologic studies have
previously shown, MS rates vary with several genetic and environmental factors (Ward and
Goldman, 2022); many of these driving the phenotypic (Olsson et al., 2017) and
neuroradiological heterogeneity (Lorefice et al., 2019a) of MS and the different trajectories
of MS progression. Changes in diagnostic methods and criteria, incorporating imaging and
spinal fluid abnormalities in patients presenting with a clinically isolated syndrome, have
allowed earlier diagnoses of MS (Thompson et al., 2018) and, improved disease control and
management. MS occurs more frequently in young adulthood and is characterized by an initial
relapsing–remitting phase (RRMS) followed by evolution to secondary progressive MS; about
10% of patients present a progression from the onset of the disease, which usually begins later in
these cases (Filippi et al., 2016). At the extremes, the paediatric forms (before age 18), in which
the clinical onset is closer to the biological onset (Margoni et al., 2022), and the late onset MS
(after age 50), in which the opposite happens (Naseri et al., 2021), fuel the debate on the role of
the environment, lifestyle, and other factors in the clinical onset of the disease, the biological
reserve and brain resilience, and the long-term disease progression. There is a strong debate on
how MS patients acquire disabilities, either through relapse-associated worsening (more
attributable to the inflammatory aspects of the disease), or through progression
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independent of relapse activity (Lublin et al., 2022). On clinical
grounds, it is of central importance to distinguish between patients
with more inflammatory characteristics and those with more
neurodegenerative aspects, for the early identification of MS
progression (Filippi et al., 2020) and to better guide disease
management and therapeutic choices; in the current scenario,
specific options are available for progressive forms (Amezcua,
2022). In the last decade, the therapeutic armamentarium of MS
has changed to include the introduction of disease-modifying
therapies (DMTs) with different mechanisms of action, routes of
administration, levels of efficacy, and safety profiles (Faissner and
Gold, 2022). In this context, the identification of biomarkers that could
shed light on the mechanisms of inflammation and
neurodegeneration, and reveal the biological mechanisms involved
in the response and safety of DMTs, represent a crucial challenge in
the therapeutic decision-making process. This makes medicine more
personalised. Within this framework, omics technologies are emerging
as innovative approaches for studying the complexity of MS
(Villoslada and Baranzini, 2012), including the numerous factors
influencing its evolution and response to immunotherapies. Omics
sciences can improve the matching of a patient with the best available
DMT among the varied therapeutic scenarios and drugs, which have
different effects and mechanisms of action, and help determine the
best “window of therapeutic opportunity” (Cocco et al., 2015).

Given this scenario, this review summarizes how emerging multi-
omic approaches (genomics, transcriptomics, proteomics,
metabolomics and others) can improve the understanding of MS,
also discussing the available evidence on biomarkers, which may
predict the efficacy and safety of DMTs, and the effects of MS-
unrelated factors on MS evolution.

Omics approaches

Systems biology approaches have shown promise in elucidating the
mechanisms underlying complex diseases through the integration of
different levels of omics information, using a holistic perspective that
considers all processes involved and their dynamics (Villoslada and
Baranzini, 2012). Ideally, this would facilitate the discovery of different
types of biomarkers and the identification of how they are related across
the different levels of biological complexity (genes, molecules, cells,
tissues, organisms) to the clinical phenotype (Baranzini, 2006). There
are various branches of omics sciences, from the more-known genomics,
transcriptomics, proteomics, and metabolomics, to several subcategories
of disciplines in biology, all with names ending with the suffix -omics.
Omics approaches and their combinations have grown enormously,
offering new evidence on the inflammatory and neurodegenerative
mechanisms of MS, as well as on possible predictors of its evolution.
The main omics sciences, the current methods on which they are based,
and the evidence available to date are described below, with particular
detail on understanding the MS pathogenetic processes, efficacies of
DMTs, and safety implications.

Genomics

Genomics was the first omics approach used on a large scale and has
benefited from advances in microarray technology, next-generation
sequencing (NGS), and genome-wide association studies (GWAS).

Through an agnostic study of the entire genome, genomics has
expanded the knowledge of the genetic bases of complex diseases and
quantitative traits, including immune traits and drug responses. These
data create new opportunities for drug discovery and the selection of
molecular biomarkers predictive of drug response and efficacy. The
genetics of MS have been extensively investigated over the past
15 years through several large GWAS that have advanced the
understanding of genetic predisposition to MS. Currently, over
233 unequivocal, independent, genetic associations have been
identified (International Multiple Sclerosis Genetics Consortium:
Hafler et al., 2007; Sawcer et al., 2011; Beecham et al., 2013; De Jager
et al., 2009; Patsopoulos et al., 2011; Andlauer et al., 2016; Sanna et al.,
2010). They are located throughout the genome and include
32 independent variants in the HLA region and one on the X
chromosome. The greatest MS association from the GWAS data is for
the HLA-DRB1*15:01 risk allele (International Multiple Sclerosis
Genetics Consortium, 2019a). Most of the genes involved in MS
susceptibilities are expressed mainly in immune cells (B and T
lymphocytes, natural killer [NK] cells, monocytes, macrophages) and
microglia (International Multiple Sclerosis Genetics Consortium, 2019b);
risk variants are often located on promoters and enhancers. Disease risk
variants can be combined to quantify genetic predisposition, stratify
individuals according to disease risk, or predict prognostic outcomes
and response to therapy (Lambert et al., 2019). Mathematical models
combine information from a large number of associated genetic variants
by using a weighted sum of allele counts, in which the weights reflect the
estimated effect size (odds ratio) of disease-associated alleles to generate
polygenic risk scores (PRS). PRS have been used as predictive biomarkers
in high-risk individuals for several diseases, and their inclusion in clinical
care has been proposed (Khera et al., 2018). However, there is currently no
MS-predictive score model with potential clinical utility. Several authors
have tested predictive models that include both genetic risk and known
environmental risk and other variables, such as gender and age (De Jager
et al., 2009; Shams et al., 2022). However, the inherent complexity of the
disease, characterised by a large number of variants that contribute to the
disease with small or moderate effects (Odd ratio three 1.1 and 1.5) and
with a large share of genetic heritability that still remains unexplained, is
probably themain reason for the difficulty in developing a predictive score
can provide accurate predictions at the individual level.

A complete list of associated variants and summary statistics for
each study is available (https://www.ebi.ac.uk/gwas/).

One of the open challenges is to systematically combine genomic data
with other omics data. For this purpose, co-localization methods are
increasingly being used (Giambartolomei et al., 2014). The coincidence of
associated variants that influence disease risk and modulate quantitative
variables or regulate gene expression, “coincident associations”, provide
information on disease mechanisms and inform drug targeting of specific
pathways (Floris et al., 2018).

It is known that the use of genomics in drug development improves
their success and reduces development time (Plenge et al., 2013). This is
supported by retrospective analyses (Cook et al., 2014; Nelson et al., 2015)
showing that drugs developed to target molecules identified by genetic
associations are more likely to pass efficacy testing.

In addition, genomics research retrospectively linked a variant on
TNFSF13B with an augmented risk of MS and systemic lupus
erythematosus (LES) and a blood increase in soluble BAFF, which
is already a target of belimumab, a monoclonal antibody approved for
LES (Stohl and Hilbert, 2012) and in clinical trials for MS (Steri et al.,
2017).
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The increasing availability of genetic data collected by
international biobanks (Wu et al., 2019) and linked to information
on drug-action phenotypes promote GWAS on genetic effects related
to drug responses (pharmacogenetics). These can provide useful

information on the efficacy and safety of treatments that are
directly applicable to clinics.

For example, individuals can be stratified into responders and
non-responders, or avoid side effects, based on known genetic

TABLE 1 Genetic variant and allele risk for response to interferon beta and anti-drug antibody measurement traits in multiple sclerosis from the Andlauer TFM Study
(Andlauer TFM et al., 2020)

Variant and risk allele P-
value

P-value annotation RAF OR Beta CI Mapped gene

rs9281971-TTTTTTT 2 × 10-17 0.36 - 0.6 unit decrease [-0.46-0.74] HLA-DQA1

rs9272775-C 2 × 10-19 NR - 0.40715143 unit increase [0.32-0.5] HLA-DQA1

rs17205731-T 2 × 10-11 (conditional on HLA-DRB1*04:01) 0.05 - 0.62026006 unit increase [0.44-0.8] HLA-DQB1,
MTCO3P1

rs3129783-G 4 × 10-19 0.44 - 0.3 unit decrease [-0.24-0.36] HLA-DQB1,
MTCO3P1

rs886401-A 4 × 10-12 NR - 0.24661802 unit increase [0.18-0.32] CCHCR1

rs9271721-G 5 × 10-22 NR - 0.32949224 unit increase [0.26-0.4] HLA-DQA1, HLA-
DRB1

rs9281962-T 5 × 10-32 0.44 - 0.5091026 unit increase [0.42-0.59] HLA-DQA1, HLA-
DRB1

rs1265086-T 5 × 10-9 (conditional on rs9272071 +
rs28746882)

0.38 - 0.15234222 unit decrease [-0.1-0.2] POLR2LP1, CCHCR1

rs2523608-G 2 × 10-13 0.48 - 0.18175249 unit increase [0.13-0.23] HLA-B

rs9260765-C 5 × 10-11 0.45 - 0.17372645 unit increase [0.12-0.23] MICD, HLA-W

rs9272071-C 5 × 10-18 0.32 - 0.22615278 unit decrease [-0.17-0.28] HLA-DQA1

rs28746882-A 5 × 10-11 (conditional on rs9272071) 0.08 - 0.27678168 unit increase [0.19-0.36] HLA-DQB1,
MTCO3P1

rs9272775-C 3 × 10-24 0.23 - 0.41 unit increase [0.33-0.49] HLA-DQA1

rs559242105-TA 5 × 10-10 (conditional on rs9272775) 0.18 - 0.28 unit decrease [-0.18–0.38] HLA-DPA2,
COL11A2P1

rs9268633-A 1 × 10-17 0.39 - 0.2 unit increase [-0.0392-
0.0392]

HLA-DRA, TSBP1-AS1

rs9271673-C 2 × 10-28 NR - 0.37 unit increase [0.31-0.43] HLA-DQA1, HLA-
DRB1

rs9281971-TTTTTTT 2 × 10-17 NR - 0.16 unit decrease [-0.12-0.2] HLA-DQA1

rs559242105-TA 1 × 10-8 (conditional on rs28366299) 0.18 - 0.85 unit decrease [-0.56-1.14] HLA-DPA2,
COL11A2P1

rs28366299-A 7 × 10-19 0.19 - 1.27 unit increase [1.0-1.54] HLA-DQA1, HLA-
DRB1

rs77278603-A 2 × 10-24 NR - 1.06 unit increase [0.86-1.26] HLA-DRB5, HLA-
DRB9

rs9271700-G 5 × 10-27 0.42 - 1.25 unit increase [1.01-1.49] HLA-DQA1, HLA-
DRB1

rs522308-T 2 × 10-15 0.25 2.6 - [2.05-3.29] HLA-DQA1, HLA-
DRB1

rs2454138-A 5 × 10-19 0.22 - 0.41 unit increase [0.31-0.51] HLA-DQA1, HLA-
DRB1

rs2454138-A 8 × 10-19 0.22 - 0.41 unit increase [0.31-0.51] HLA-DQA1, HLA-
DRB1

rs2454138-A 1 × 10-18 0.22 - 0.41 unit increase - HLA-DQA1, HLA-
DRB1
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factors (personalized medicine). In the United States, Europe, and
Asia, many initiatives are studying personalized medicine models
based on preventative screening of a large number of pharmacogens
(PGx-testing). Preliminary economic evaluations of efficacy have
demonstrated a broad benefit from genotype-guided treatments.

While many studies have been published, indicating a large
number of drugs-variant associations, most analyse small cohorts
and show small effect sizes; these are unlikely to be replicated in
other studies. Unfortunately, studies on MS drugs remain limited, and
genomics studies have not yet led to significant changes in clinical
practice toward personalising therapy. Interferon-beta (IFN-β) is a
first-line therapy in MS, that is, used widely (Tsareva et al., 2016).
Unfortunately, up to 50% of patients show a suboptimal response to
IFN-β and are categorized as non-responders. IFN-β is the most
studied biomarker associated with the treatment response. Many
GWAS in different populations are conducted; however, these are
limited to relatively small cohorts of patients (Mahurkar et al., 2017).
Anti-IFN-β antibodies may develop during treatment. These
antibodies may reduce both the bioactivity and clinical efficacy of
IFN-β, reducing or abrogating treatment effects (Pachner et al., 2009).
For this reason, many genomics studies have looked for genetic
variants that influence the production of anti-IFN-β antibodies,
identifying some associated HLA SNP variants, as reported in
Table 1 (Andlauer et al., 2020). In addition, glatiramer acetate
(GA), another first-line treatment of MS, shows variability in
response among patients (Carter and Keating, 2010), and GWASs
have found a multi-SNP (rs80191572, rs28724893, rs1789084 and
rs139890339) signature specific to GA identifies MS patients with a

greater response to treatment in multiple and independent cohorts
(Ross et al., 2017). Pharmacogenetic studies on the response of other
treatments in MS patients are lacking. In contrast, many studies on
rituximab in rheumatological and haematological diseases suggest that
the outcome of anti-CD20 therapy could be predicted by SNPs that
affect the cytotoxic function of macrophages and NK cells and B-cell
survival (Zhong et al., 2020).

Drug treatments can have substantially different adverse reactions in
individuals, due to genetic variants that modulate individual
responses to the drug. The US Food and Drug Administration
site (https://www.fda.gov/drugs/science-and-research-drugs/table-
pharmacogenomic-biomarkers-drug-labeling) and PharmGKB (http://
www.pharmgkb.org) maintain an up-to-date list of genetic variants
implicated in drug efficacy and safety. In a search for DMTs used in
MS treatment, only clinically actionable variants (level of evidence
1A or 1B) were found between CYP2C9 and siponimod. Other
variants with type 3 levels of evidence (annotation based on a single
significant result) were found for IFN-β, GA, and rituximab
(Table 2).

Major initiatives are needed to study the genetic variability in the
MS drug response, with the aim of identifying rare variants that affect
safety. To expand the list of biomarkers that can be used in precision
medicine, studies that integrate omics sequencing data with other
epigenetic and metabolomics data are also necessary.

New long-read sequencing technologies may have great potential
to enrich and improve the knowledge of genetic factors that play a role
in variable drug responses (van der Lee et al., 2022) Long-read
sequencing also offers a comprehensive characterization of variants,

TABLE 2 Genetic variants implicated in efficacy and safety of MS drugs

LEVEL VARIANT GENE DRUGS PHENOTYPE CATEGORIES

Level 1A CYP2C9*1, CYP2C9*2, CYP2C9*3 CYP2C9 siponimod Metabolism/PK

Level 3 rs12044852 CD58 interferon beta-1a, interferon beta-1b Efficacy

Level 3 rs760316 FHIT interferon beta-1a, interferon beta-1b Efficacy

Level 3 rs10760397 GAPVD1 interferon beta-1a, interferon beta-1b Efficacy

Level 3 rs2291858 GAPVD1 interferon beta-1a, interferon beta-1b Efficacy

Level 3 rs10819043 GAPVD1 interferon beta-1a, interferon beta-1b Efficacy

Level 3 HLA-B*15:01:01:01 HLA-B interferon beta-1a Efficacy

Level 3 rs9272105 HLA-DQA1 interferon beta-1a, interferon beta-1b Efficacy

Level 3 HLA-DRB1*04:01:01 HLA-DRB1 interferon beta-1a Efficacy

Level 3 rs2205986 IRF6 interferon beta-1a, interferon beta-1b Toxicity

Level 3 rs4774388 RORA interferon beta-1a Efficacy

Level 3 rs10494227 ZNF697 interferon beta-1a, interferon beta-1b Efficacy

Level 3 rs4278350 interferon beta-1a, interferon beta-1b Efficacy

Level 3 rs1448673 interferon beta-1a, interferon beta-1b Efficacy

Level 3 rs3133084 interferon beta-1a, interferon beta-1b Efficacy

Level 3 rs75041078 glatiramer acetate Toxicity

Level 3 rs12459996 glatiramer acetate Toxicity

Level 3 rs1056854 glatiramer acetate Toxicity

Level 3 rs2229109 ABCB1 cyclophosphamide, prednisone, rituximab, Toxicity
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including structural and rare variants. In addition, haplotype problems
can be overcome, contributing to improved combinations of variants
implicated in drug efficacy and safety.

Epigenomics

Epigenomics is a depth approach that studies epigenetic
mechanisms at whole genome level - i.e. all those chemical changes
in the DNA that do not make any changes to the nucleotide sequence -

at whole genome level. Epigenetic changes cooperate with genetic
mechanisms to determine transcriptional activity and, while
somatically heritable, are also reversible and can arise as a
consequence of environmental factors. DNA methylation, histone
modification and microRNA, associated post-transcriptional gene
silencing, are three key epigenetic mechanisms.

Epigenetic contribution to MS susceptibility was already
considered more than a decade ago to explain the low concordance
(25%–30%) of MS in monozygotic twins (Ebers et al., 1986), who
possess a genetic similarity of 100%. Also, the higher MS prevalence in

TABLE 3 Main results for epigenomics and trascriptomics

EPIGENOMICS

Sample Year Study Method Characterization Gene or main result reported

CD4+ T cells 2014 Graves, M et al,. methylation arrays Status of disease HLA-DRB1

CD4+ T cells , CD8+
T cells

2015 Maltby, V. E.
et al.

methylation arrays Status of disease different epigenetic profiling of CD8+ T cells and CD4+ T cells

CD8+ T cells 2015 Bos, S. D. et al. methylation arrays Status of disease hypermethylation in MS respect to controls

CD4+ T cells 2017 Maltby, V. E.
et al.

methylation arrays Status of disease HLA-DRB1 (hypomethylation), HLA-DRB5
(hypermethylation)

PBMC 2016 Kulakova, O. G.
et al.

methylation arrays Disease progression different methylation in PPMS than in RRMS

monocytes 2018 Kular, L. et al. methylation arrays Status of disease HLA-DRB1 (DRB1*15:01 )

PBMCs
(monozygotic twins )

2020 Souren NY,
et al.

methylation arrays/
bisulfite sequencing

Status of disease and Drug
response

TMEM232, ZBTB16 RSAD2, MX1, IFI44L and PLSC

Blood 2017 Pinto-Medel,
M.J., et al.

methylation arrays Clinical activity, Drug
response

LINE-1

CD4+ T-cells 2021 Roostaei T. .
et al.

methylation arrays Status of disease colocalized MS-cis-mQTL effects: rs59655222 rs12478539,
rs438613, rs7731626, rs67111717, rs4896153, rs55858457,
rs354033, rs7855251, rs4939490, rs12365699, rs405343,
rs34947566, rs3809627, rs1077667, rs1465697, rs6032662,
rs2248137, rs760517. colocalized MS-trans-mQTL effects
rs3809627

CD4+ T-cells 2018 Maltby, V. E.
et al.

methylation arrays Status of disease methylated genes associated at MS risk:

SLC44A2, LTBR, CARD11 e CXCR5

CD4+ T cells 2016 Sanders et al. RNA-seq Disease progression miR-21-5p, -26b-5p, -29b-3p, -142-3p and -155-5p)

Blood 2018 Liguori M. et al. RNA-seq pediatric MS let-7a-5p, let-7b-5p, miR-25-3p, miR-125a-5p,.miR-942-5p,
miR-221-3p, miR-652-3p, miR-182-5p, miR-185-5p, miR-181a-
5p, miR-320a, miR-99b-5p, miR-148b-3p

TRANSCRIPTOMICS

Sample Year Study Method Characterization Gene or main result reported

Blood 2020 Ye F et al. Microarray Disease progression (FTH1, GBP2, MYL6, NCOA4, SRP9

2018 Gafson AR et al RNA-seq Drug response Nrf2 pathway, NFkB pathway

2016 Cordiglieri C et al Gene expression Drug response ITGA2B, ITGB3, CD177, IGJ, IL5RA, MMP8, P2RY12, S100β

2014 De Felice et al. RNA-seq Drug response mir-26a-5p

2014 Moreno-Torres I et al. RNA-seq Drug response FOXP3, GPI, and FCRL1 and NK bright and plasmablasts

2014 Parnell GP et al. RNA-seq Drug response S6 protein

2014 Hecker M et al. RNA-seq Drug response miR-29 family

Frontiers in Genetics frontiersin.org05

Lorefice et al. 10.3389/fgene.2023.1076421

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1076421


women compared to men and the transmission disequilibrium of the
HLADRB1*15 risk allele from mother to daughter (Chao et al., 2010),
indicates an effect probably mediated by epigenetic mechanisms.

For this reason, numerous epigenetic studies have been conducted,
however, many of these have included a limited number of patients,
sometimes obtaining conflicting results. In this review, we describe
some representative whole-genome epigenetic studies (EWAS), as
reported in Table 3.

Graves, M et al., indicated DNA methylation association at HLA-
DRB1 locus in CD4+ T cells related to MS risk (Graves et al., 2014).
Another study found different epigenetic profiling of CD8+ T cells and
CD4+ T cells in MS patients (Maltby et al., 2015; Kiselev et al., 2022),
and the same authors indicated hypomethylation in CD4+ T cells at
HLA-DRB1 and HLA-DRB5 hypermethylation in a MS cohort
(Maltby et al., 2017). Maltby VE and others, in 2018 by means of
an epigenome-wide association analysis of DNA methylation in
CD19+ B-lymphocytes from 24 relapsing-remitting MS patients
undergoing various treatments and 24 healthy controls, observed a
large differentially methylated region in the lymphotoxin alpha (LTA)
locus and four other MS-associated genes: SLC44A2, LTBR,
CARD11 and CXCR5, suggesting that B-cell-specific DNA-
methylation may be associated with MS risk. (Maltby et al., 2018).
Roostaei et al. studing the DNAmethylation profiles of primary CD4+

T-cells fromMS patients, disclosed a broad map of cis-mQTL (methyl
quantitative trait), and identified 19 M susceptibility loci with
colocalised cis-mQTL effects, such as the TBX6 locus, which also
has an effect in trans. (Roostaei et al., 2021).

Bos S. and others found evidence for DNA hypermethylation in
CD8+ T cells of MS patients respect to controls (Bos et al., 2015).
Kulakova, O. G. et al. found differential DNA methylation in
peripheral blood mononuclear cells (PBMC) on relapsing-remitting
MS (RRMS) and primary-progressive MS (PPMS) patients respect
healthy controls, reporting more methylation changes on PPMS than
in RRMS (Kulakova et al., 2016). Another study, which analyzed DNA
methylation in monocytes from MS patients, confirmed the
methylation at the HLA-DRB1 locus and demonstrated that
homozygous DRB1*15:01 patients showed significantly lower levels
of methylation at the HLA-DRB1 locus than heterozygous patients
and non-carriers (Kular et al., 2018). A recent study, examining
methylation in PBMCs of 45 monozygotic twins discordant for
MS, have identified two differentially expressed regions associated
with MS - TMEM232 promoter and ZBTB16 enhancer. Additionally,
differentially methylated regions located in the RSAD2, MX1, IFI44L
and PLSCR1 genes, which are upregulated in the blood cells of IFN-
treated MS patients, thus indicating biomarkers for monitoring the
effects of IFN treatment in PBMCs (Souren et al., 2019). Pinto-Medel,
M.J., and others found that individuals with high methylation levels of
LINE-1 have an increased risk of MS. Furthermore, treated MS
patients with high levels of LINE-1 methylation showed an
increased risk of clinical activity. The authors also propose global
DNA methylation levels as a possible biomarker for differential
clinical response to IFNβ (Pinto-Medel et al., 2017).

Also, many miRNA studies have also been conducted on MS
patients using both peripheral blood and cerebrospinal fluid, but again
these studies often have small sample sizes and lack reproducibility.
However, there are a small number of studies using high-throughput
methods investigating the expression of circulating miRNAs in the
context of the difference in miRNA profile between RRMS and SPMS
subtypes and in drug response.

Sanders et al. (2016) using next-generation sequencing (NGS) to
profile miRNA expression in CD4+ T cells of SPMS patients, identified
42 dysregulated miRNAs. Five of these (miR-21-5p, −26b-5p, −29b-
3p, -142-3p and -155-5p) showed downregulated expression and had
the potential to be used as diagnostic biomarkers of SPMS (Sanders
et al., 2016). Another study, which used NGS sequencing approach in
pediatric MS patients, identified several significantly upregulated
miRNAs (let-7a-5p, let-7b-5p, miR-25-3p, miR-125a-5p, miR-942-
5p, miR-221-3p, miR-652-3p, miR-182-5p, miR-185-5p, miR-181a-
5p, miR-320a, miR-99b-5p) and one downregulated miRNA (miR-
148b-3p) in pediatric MS patients compared to pediatric controls. The
targets of this dysregulates miRNA are genes linked to immunological
functions (TNFSF13B, TLR2, BACH2, KLF4), as well as genes
involved in processes related to autophagy (ATG16L1, SORT1,
LAMP2) and ATPase activity (ABCA1, GPX3) (Liguori et al., 2018).

Overall, these studies indicate that several distinct epigenetic
signatures have been detected in different populations of peripheral
immune cells, supporting the hypothesis of the involvement of
epigenetic factors in the development of MS.

Epigenomics can help to unravel complex gene regulatory
interactions, better understand pathogenetic mechanisms and
optimize MS treatment. However, to our knowledge no epigenetic
biomarker is currently in a clinical.

Transcriptomics

Transcriptomics is an approach that allows for the comprehensive
and extensive study of RNA transcripts in a group of cells or a specific
cell. It is based on the use of high-throughput methods such as
microarray analysis and NGS RNA-sequencing (RNA-seq).
Comparison of transcriptomes in selected subgroups (cases and
controls, different cell populations, different treatments) enables the
identification of differences in gene expression, so-called gene
expression signatures, which can be used for prognostic and
disease-predictive purposes or to predict responses to drug treatments.

Gene expression signatures have been especially useful in cancer
and have entered clinical practice; e.g., to establish prognoses and
personalize therapy in early breast cancer (Puppe et al., 2020). Several
studies investigating gene expression profiles in the peripheral blood of
MS patients have been published. These identified peripheral gene
signatures associated with both disease and its progression (Ye et al.,
2020) and drug response (Hecker et al., 2013; De Felice et al., 2014;
Moreno-Torres et al., 2014; Parnell et al., 2014; Cordiglieri et al., 2016;
Gafson et al., 2018), as summarized in Table 3, suggesting that gene
signatures have the potential to identify individuals at risk of relapse.
Ye F et al. showed a five-gene signature (FTH1, GBP2,MYL6, NCOA4,
SRP9) used to calculate risk scores to predict individual predicting
relapse-free survival (Ye et al., 2020). Cordiglieri C et al. described a
gene signature, that include ITGA2B, ITGB3, CD177, IGJ, IL5RA,
MMP8, P2RY12, S100β genes, associated with positive response in
RR-MS and drug immunomodulatory effects (Cordiglieri et al., 2016).
The Gafson AR et al. study showed expression changes for genes
involved in Nrf2 pathway activation and NFkB pathway inhibition,
which are associated with the clinical and mid-term response to
dimethylfumarate (DMF) (Gafson et al., 2018). Another study,
which used RNA-seq technology, indicated a different gene
expression signature (FOXP3, GPI, and FCRL1), and distribution
of subpopulations of lymphocytes (NK bright and plasmablasts) in
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MS patients who were responsive to fingolimod compared to non-
responders. The authors proposed a predictive model include that a
combination of cellular, molecular and clinical markers (EDSS and
gender) are possible response biomarkers (Moreno-Torres et al.,
2018). RNA-seq technology has also been used to analyse the
whole blood transcriptome of untreated and IFNβ-treated MS
patients (Parnell et al., 2014), indicating a downregulation of
S6 protein in IFNβ responders.

De Felice B et al., in their research, showed a significant change in
the expression level of mir-26a-5p at different stages of treatment in
RR responder MS patients treated with INF-β. They hypothesised that
mir-26a-5p might downregulate the expression level of genes related
to glutamate signalling in MS patients treated with INF-β and point to
it as a possible biological marker to predict the identification of INF-β
responders during therapy, thus reducing ineffective treatments (De
Felice et al., 2014). Another study profiled microRNA (miRNA)
expression changes in response to IFNβ and found a specific
downregulation of the miR-29 family (Hecker et al., 2013). Other
miRNA results are reported in the epigenetics sections.

However, many publications are only descriptive and need further
studies with larger numbers of patients to validate the proposed models.
To our knowledge there are no transcriptomic biomarkers validated for
clinical use in MS. RNA-seq studies also provide information on
alternative splicing and give a quantitative assessment of genotype
influence on gene expression (quantitative expression loci: eQTL).
Integration of eQTL, GWAS, and phenotype association data
(PheWAS) is useful for detecting the effects of genetic variants on cis-
and trans-expression levels of genes (Orru et al., 2020) and to indicate
causative genes whose products can be used as therapeutic targets. InMS,
genes that code for a therapeutic target have been detected through the
integration of genomic data, phenotypes, and eQTLs; these include BAFF
(Amezcua, 2022) or CD40,MERTK, and PARP1 (Jacobs et al., 2020). The
same approach can inform the repurposing of existing drugs for new
therapeutic indications. Large expression datasets in different human
tissues are currently made available by the Genotype-Tissue Expression
Project (GTEx); recent publications show that expression data from
specific tissues integrated with other omics data can inform the
prediction of drug side effects (Duffy et al., 2020). A more-detailed
transcriptome characterization, down to the single cell, is now possible
thanks to single-cell technologies (scRNA-seq). This monocellular
technology allows the study of methylation, chromatin, and
proteomics at the same level of resolution. The integration of these
omics data will not only make new drugs available but also improve
prognostic models on disease and drug efficacy and safety.

Proteomics

Proteomics is the branch of biomedical studies that specifically
analyses an organism’s entire protein content, including functions and
interactions. Clinical proteomics analyses the role of proteins as disease
biomarkers; functional proteomics evaluates the role of proteins in
pathological and physiological processes; both are growing fields of
interest in the exploration of complex diseases such as MS (Drabik
et al., 2007). Several technologies are used in proteomic approaches,
including chromatography-based techniques, enzyme-linked
immunosorbent assay (ELISA), mass spectrometry, and gel
electrophoresis (Drabik et al., 2007). Several biological samples can
be examined for quantitative proteomic analysis in neurological

conditions, including blood, saliva, tears, urine, and other biological
fluids (Sandi et al., 2022); testing limits are linked to the isolated nature
of the CNS, which thereby limits the exploration of MS. Cerebrospinal
fluid (CSF) is of extreme interest, although it is not readily available.
Several attributes of proteomics make it an attractive approach for
exploring MS; for example, evaluating the role of proteins/peptides as
effector molecules in physiological and pathological processes. Several
proteomics studies have been conducted utilizing animal models of
MS, and some studies were performed on human tissue samples
(Sandi et al., 2022; Li et al., 2018). A recent CSF proteomic analysis
of MS patients and neurological controls identified several hundred
proteins (approximately 300) that changed significantly; pathway
analysis associated these with various biological processes including
inflammation, cell adhesion, and the immune response (Kroksveen
et al., 2017). Recently, a study based on serum/plasma samples
established that subjects with pre-symptomatic MS differed from
the control group in the expression of 22 proteins involved in the
complement and coagulation pathways, as well as in lipid transport
(Wallin et al., 2015). Our previous study using quantitative analysis of
salivary peptides in a mass spectrometry-based top-down proteomic
approach found different levels of 23 proteins (subtypes of cystatin,
statherin, antileukoproteinase, and prolactin-inducible protein) that
may distinguish between MS and control groups; the results are
consistent with the inflammatory condition and altered immune
response typical of the pathology (Manconi et al., 2018). In
addition, we observed reduced oxidation of S-type cystatins, which
represented the larger portion of cystatins found in our saliva samples,
highlighting the role of brain oxidative stress and the oxidant/
antioxidant balance in inflammation and neurodegeneration in MS
(Manconi et al., 2018). Regarding the discovery of potential markers of
interest for disease activity, studies have been performed on the blood
and CSF of patients with RRMS forms. Complement C4b increases in
the CSF of active MS (Li et al., 2011). In addition, an increased level of
the complement C4a fragment during relapses was found in the sera of
relapsing patients, with a decrease found in phases of remission (Sawai
et al., 2010). Another study identified the up- or downregulation of
several proteins related to blood vessel development (protein 14-three
to three, metavinculin, myosin-9, plasminogen, reticulocalbin-2 and-
3, ribonuclease/angiogenin inhibitor 1, annexin A1, tropomyosin, and
Ras-related protein Rap-1A) as potential new markers of active MS
disease. This indicates they have a role in dysregulation of the
blood–brain barrier and, thus, on the migration of activated
leukocytes responsible for the development of demyelinating
lesions of MS (Alexander et al., 2007). Interestingly, Tremlett et al.
previously explored the protein signatures of MS phenotypic groups at
the extremes of progression (benign and aggressive cases of MS),
identifying panels of serum biomarkers of MS progression related to
inflammation, opsonisation, and complement activation (Tremlett
et al., 2015). However, research using proteomic analysis to
discover biomarkers for MS progression is rare, and these data
require further confirmation. Similarly, few studies have explored
the effect of different DMTs on the proteome of patients with MS
intending to identify potential biomarkers that can predict treatment
response. Previously, De Masi et al. assessed the potential of
proteomics for discriminating between IFN-treated patients and
untreated RRMS patients; a down-expression of cortactin and
fibrinogen β chain precursor in the blood samples of the treated
MS group was reported, suggesting a pharmacological response to IFN
(De Masi et al., 2013). In patients exposed to natalizumab, nine
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proteins showed decreasing levels in plasma; phosphatidylethanolamine-
binding protein 1 (PEBP1) and reticulon 3 (RTN3) levels had the most
significant changes, particularly in a group of patients with less
disability progression (Bedri et al., 2019). These findings are very
preliminary and reveal little about the treatment efficacy or the
progressive aspects of the disease.

Metabolomics

Metabolomic research has emerged as a promising approach for
identifying potential biomarkers in complex and heterogeneous diseases
such asMS. Through the detailed analysis of the metabolites detected in a
biological sample, it may be possible to identify a fingerprint of MS. If the
dynamic multi-parametric responses ongoing in an individual at any
given time exhibit metabolites attributable to inflammatory or other
pathways, these may characterize MS status (Cocco et al., 2016). Three
analytical techniques are commonly used in metabolomics: gas
chromatography coupled to mass spectrometry (GC–MS), liquid
chromatography coupled with single-stage mass spectrometry
(LC–MS), and nuclear magnetic resonance (NMR) spectroscopy; the
latter can simultaneously identify multiple metabolites, is exceptionally
reproducible, and has a fast measurement time requiringminimal sample
preparation. Moreover, by combining different analytical techniques with
targeted and untargeted approaches, more expansive and comprehensive
metabolomic investigations of MS can be conducted (Jafari et al., 2021).
Various studies have evaluated biofluids as novel metabolomic
biomarkers, to improve diagnoses, patient stratification, and therapy
choices. The most-investigated biofluids were CSF, blood, and urine; the
latter two in particular because of their easy availability. Conversely, CSF
testing is more invasive, but it is considered the “gold standard” fluid in
MS because it reflects the inflammatory processes of the CNS. These
biofluids contain different metabolites and, for reasons including their
composition and availability, they have different potentials for providing
insight into the diagnosis, disease activity, and progression of MS.

Previously, Reinke et al. used NMR spectroscopy analysis to
investigate a set of CSF metabolites between MS patients and
healthy controls. They found a reduction in 3-hydroxybutyrate,
citrate, phenylalanine, 2-hydroxyisovalerate, and mannose in MS-
derived CSF samples; these metabolites suggest alterations to
energy and phospholipid metabolism (Reinke et al., 2014).

More recently, significant differences in amino and fatty acids in
the CSF of patients with newly diagnosedMS were identified using LC-
MS; in relationship with the inflammatory disease activity, the most
significant changes were observed in levels of arginine, histidine, and
palmitic acid. These findings highlight the importance in MS
pathogenesis of fatty acids, which form part of myelin, and of some
amino acids, and show a close connection to immunological processes
of the disease (Židó et al., 2022). Consistent with these findings, the
analysis of the CSF and the serum of patients with RRMS and the
primary progressive course, which was previously assessed by our
group, allowed the identification of several altered metabolites (lipids,
biogenic amines, and amino acids) involved in various metabolic
activities of interest, including energy metabolism and tryptophan
biosynthesis (Murgia et al., 2020; Herman et al., 2019). Moreover,
pathway analysis indicated the metabolism of glutathione, nitrogen,
glutamine–glutamate, arginine–ornithine, phenylalanine biosynthesis,
tyrosine, and tryptophan as the main discriminants between the two
phenotypic classes (Murgia et al., 2020). Interestingly, some studies

have focused on the evaluation of metabolomic biomarkers associated
with disease phase and activity (Simone et al., 1996; Lutz et al., 2007;
Kim et al., 2017). Lutz reported a significant relationship between the
CSF lactate concentration and the number of inflammatory MS brain
plaques; the β-hydroxyisobutyrate level was related to the presence of
these plaques (Lutz et al., 2007). Similarly, high CSF lactate levels were
found in MS patients during clinical exacerbation and on magnetic
resonance imaging (MRI) of Gd-enhanced plaques by Simone,
suggesting that changes in lactate levels may depend on anaerobic
glycolytic metabolism in activated leukocytes during the inflammatory
phases of MS (Simone et al., 1996). Analogously, metabolic changes
principally related to altered energy metabolism and fatty acid
biosynthesis, with isoleucine and valine being downregulated in MS
relapse compared to MS remission, were described by Kim et al. on
1H-NMR spectra of CSF samples (Kim et al., 2017). Several studies also
evaluated the blood of MS patients to assess its metabolomic signature,
its clinical phenotype, and the disease activity, both using NMR
(Mehrpour et al., 2013; Cocco et al., 2016) and mass spectrometry
(Lazzarino et al., 2017, Lim et al., 2017, Bhargava et al., 2018;
Nourbakhsh et al., 2018; Villoslada et al., 2017; Kasakin et al., 2019;
Stoessel et al., 2018; Fitzgerald et al., 2021; 80; Levi et al., 2021; Singhal
et al., 2018). Using NMR analysis of plasma samples of 73 patients with
MS (therapy-free for at least 90 days) and 88 healthy controls, we
reported lower levels of glucose, 5-OH-tryptophan, and tryptophan,
while the levels of 3-OH-butyrate, acetoacetate, acetone, alanine, and
choline were increased in the MS group (Cocco et al., 2016). These
findings highlight the importance of energy metabolism and
phospholipid metabolism for MS processes, consistent with the
results of a study that identified the involvement of glucose
metabolism in MS (Mehrpour et al., 2013). Among the studies with
the largest sample sizes carried out usingmass spectrometry, Villoslada
et al. demonstrated a robustness of sphingomyelin and
lysophosphatidylethanolamine for discriminating between healthy
controls and patients with MS; the levels of several other
metabolites (hydrocortisone, glutamic acid, tryptophan,
eicosapentaenoic acid, 13S-hydroxyoctadecadienoic acid, and
lysophosphatidylcholines) were more associated with disease
severity (Villoslada et al., 2017). Overall, these results point to an
imbalance in MS of the phospholipid and sphingolipid composition of
the serum, as well as changes in several amino acids such as glutamic
acid or tryptophan; these metabolites could be involved in the
activation of the immune system or reflect changes in the CNS
composition due to myelin destruction (Villoslada et al., 2017). A
more extensive study conducted by Fitzgerald identified striking
abnormalities in aromatic amino acid metabolites, with a broad
shift of these toward oxidative pathway metabolites that are also
reported to be strongly associated with MS disability (Fitzgerald
et al., 2021). Also consistent with prior studies, changes in
tryptophan pathway metabolites, with lower circulating levels of
both tryptophan and its endogenous metabolites (e.g., kynurenine)
were described inMS as compared to healthy controls (Fitzgerald et al.,
2021). Consistent with these findings, an NMR urinary metabolic
signature for MS has been recently described, with alterations of
metabolites involved in energy, fatty acid metabolism, and
mitochondrial activity being able to distinguish MS from
neuromyelitis optica–spectrum disorder (Gebregiworgis et al.,
2016). As can be seen from the results reported above, findings
vary according to the samples examined (e.g., CSF, plasma, serum,
urine), the patients included in the study (RRMS or progressive MS),
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and the associations that are being evaluated in regards to disease
activity, level of disability, etc. The question becomes even more
complicated when we investigate the effects of immunotherapies on
the metabolomic profile of MS patients and the associations with
disease activity and treatment response. To date, few studies have
evaluated this aspect. By performing mass spectrometry analysis on
plasma samples, Bhargava et al. showed that DMF treatment alters
lipid metabolism and that changes in fatty acid levels are related to
DMF-induced immunological changes (Bhargava et al., 2017). In
particular, metabolic changes induced by DMF treatment are
related to changes in the absolute counts of lymphocyte and CD8+

T cell subsets; however, these preliminary data cannot yet predict the
effectiveness of DMF therapy (Bhargava et al., 2018). Later, it was
shown that GA influences the metabolic profile of MS subjects,
inducing a reduction of lactate and tyrosine and an increase of
some oxidative phosphorylation markers: citrulline, ornithine, and
tryptophan. This returns the MS metabolic profile to that of healthy
subjects, especially in patients that show a full response to treatment
(Signoriello et al., 2020). Similarly, as reported in our previous study,
IFN-β therapy acts on theMSmetabolomic profile, resulting in profiles
similar to those of healthy controls, with acetoacetate, acetone, 3-
hydroxybutyrate, glutamate, and methylmalonate levels significantly
decreasing during treatment, whereas tryptophan levels increase
(Lorefice et al., 2019b). In addition, differences in the baseline
metabolome between responder and non-responder patients were
found in the levels of lactate, acetone, 3-OH-butyrate, tryptophan,
citrate, lysine, and glucose, indicating that it is potentially possible to
identify the baseline metabolomic profile that predicts a better
response to treatment (Lorefice et al., 2019a). Furthermore,
metabolomics has also been used for predicting the development of
neutralizing anti-drug antibodies in MS patients treated with IFN-β,

which contributes to predicting the immunogenicity against IFN-β
(Waddington et al., 2020) associated with the loss of treatment efficacy.
Our group previously investigated the ability of metabolomics to
predict DMTs safety, by using the metabolomic approach to
evaluate whether patients who started treatment with fingolimod
had a basal metabolic profile predictive of the subsequent response
to treatment and cardiac complication at the first dose. Differences
were observed in metabolites predominantly involved in the synthesis
and degradation of ketone bodies, glycolysis and gluconeogenesis, and
propanoate metabolism in patients who presented with a cardiac
complication at the first dose; this highlights the potential of this
approach for selecting the best candidates for this therapy (Lorefice
et al., 2017). Table 4 details the main metabolomic studies performed
on MS patients, also reporting the few studies aimed at evaluating the
effects of DMTs on metabolomic signatures. The main challenge of the
future will be to integrate a metabolomics approach with other omics
sciences to predict the efficacy and safety of various DMTs in the
context of the modern vision of precision medicine.

Lipidomics

Lipids represent an important class of biomolecules involved in
different vital cellular processes (Züllig et al., 2020). In addition,
several pieces of evidence suggest a significant role played by lipids
in the MS background, as alterations in their metabolism contribute to
MS pathogenesis and to disease severity (Ferreira et al., 2020).
Considering the complexity and heterogeneity of the lipid classes
(lipidome), high-throughput lipidomics analysis is a suitable approach
to evaluate the variation of lipids at a molecular level (Ferreira et al.,
2020). The method of choice for analyzing lipid molecules or massive

FIGURE 1
Workflow of a typical lipidomics experiment:sample preparation, instrumental analysis, data processing, to data interpretation.
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assemblies is certainly mass spectrometry (both GC and LC), due to its
sensitivity and specificity (Rustam and Reid, 2018). The workflow of a
typical lipidomics experiment starting to the sample preparation,
instrumental analysis, data processing, to data interpretation is
represented in Figure 1. The most common biological matrices
used for the investigation of the lipidome in MS are serum, plasma
and CSF. Before the instrumental analysis, sample are treated
according to specific protocols which provide: i) the reduction of
the complexity of the sample; ii) discarding unwanted non-lipid
compounds; iii) the enrichment of the analytes of interest (lipids).

Lipids can be considered a hallmark of demyelination and repair as
they are substantially involved in the myelin sheath formation. For
example, myelin sheath of oligodendrocytes contains polyunsaturated
fatty acids (PUFA) and is highly vulnerable to lipid peroxidation, a
dangerous process inMS pathogenesis as it can stimulate apoptotic events
(Ibitoye et al., 2016). Studies have demonstrated that PUFA react with
reactive oxygen species (ROS, products by processes of oxidative stress,

common feature inMS) generating a cascade of oxidative damage leading
to cell death (Jana and Pahan, 2007). Several studies found increased
levels of lipid peroxidation products and ROS in CSF and plasma of MS
patients (Haider et al., 2011; Ibitoye et al., 2016), together with
mitochondrial damage, this latter often mediated by ceramides (Cer),
another class of lipids (Halmer R et al., 2014).

Lipids are also involved in cell signaling, in communication, and in
transport in the CNS (Pousinis et al., 2020) as well as inflammatory
processes (Reale and Sanxhez-Ramon, 2017). In this regard, the metabolic
pathway of arachidonic acid (AA) is overactivated in the CNS of MS
patients (Palumbo, 2017). AA is a component of the bilayer of cellular
membranes. Elevated concentrations of ROS and cytokines in MS (Rajda
et al., 2017) give rise to its release leading to the production of pro-
inflammatory compounds, such as prostaglandins and leukotrienes, that
are upregulated in this pathology and seem to be involved in the pathogenic
mechanisms of demyelination, axonal pathology and oligodendrocyte loss,
contributing to the development of motor disabilities.

TABLE 4 Summary of metabolomics studies performed on MS patients

METABOLOMIC CHARACTERIZATION OF MS SUBJECTS

Sample Year Study Platform Metabolomic characterization

CSF 1996 Simone et al. NMR MS and Non-MS

2007 Lutz et al. NMR CIS and Non-MS

2014 Reinke et al. NMR MS and Non-MS

2017 Kim et al. NMR MS , HC, NMOSD

2019 Herman et al. Mass Spectrometry MS and HC; MS Phenotypes

2020 Murgia F et al. NMR RRMS and PPMS

2022 Židó M, et al HPLC MS and HC

SERUM 2013 Mehrpour et al. NMR MS and HC

2017 Lim et al. Mass Spectrometry MS and HC; MS Phenotypes

2017 Lazzarino et al. HPLC MS and HC; MS Phenotypes

2017 Villoslada et al. Mass Spectrometry MS and HC

2018 Nourbakhsh et al. Mass Spectrometry Pediatric MS and HC

2021 Fitzgerald et al. Mass Spectrometry MS and HC; MS Phenotypes

2021 Levi et al. Mass Spectrometry MS and HC

PLASMA 2018 Singhal et al. Mass Spectrometry MS and HC

2018 Bhargava et al. Mass Spectrometry MS and HC

2018 Stoessel et al Mass Spectrometry MS and HC; MS Phenotypes

2019 Kasakin et al. Mass Spectrometry MS and HC

URINE 2016 Gebregiworgis et al. NMR MS, HC, NMOSD

METABOLOMIC FEATURES RELATED TO DMTs

SERUM 2018 Bhargava et al. Mass Spectrometry Dymatilfumarate Exposure

2019 Lorefice et al. NMR Interferon Beta Exposure

2020 Waddington et al. NMR Interferon Beta Immunogenicity

2020 Signoriello et al. NMR Glatiramr Acetate Exposure

2017 Lorefice et al. NMR Fingolimod Safery
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Changes in the lipid homeostasis and metabolism seem to be a
hallmark of MS. To investigate the lipid profile can contribute to the
better understanding of the pathophysiology of the disease (Pousinis
et al., 2020). Moreover, this interesting class of compounds can be
considered candidates for biomarkers of different aspects of MS, such
as active and progressive phases of MS or potential target for new
therapeutic approaches (Harlow et al., 2015). A summary of
lipidomics studies performed on MS patients are reported in Table 5.

Previously, Del Boccio et al. through MS combined with LC, found a
noticeably alteration in the lyso-phosphatidylcholine (LPC) and lyso-
phosphatidylethanolamine (LPE) species: more in detail, MS patients
showed reduced levels of LPC (16:0), LPC(18:0) and LPC(18:1), and
increased concentrations of LPE (24:1). A decrease in LPC/PC ratio was
also evidenced, indicating a specific trend in reduced LPC in MS (Del
Boccio et al., 2011).

Later, an interesting study compared firstly the plasma lipidomic
profile of control subjects and MS patients, and then the profile of
patients affected by RRMS considering both the relapsing and the
remitting states. Few PC species discriminated HC from MS: in
particular, plasmalogens PC(P-38:6); PC(P-36:2)/PC(O-36:3); PC(P-
36:4)/PC(O-36:5); PC(P-34:2)/PC(O-34:3); PC(P-36:5) and the diacyl
species PC(34:4); PC(36:6); PC(32:2); PC(36:3); PC(36:5); PC(34:3);
PC(34:2) and PC(38:1) were found decreased in the MS class. Only PC
(38:1) was statistically different between the relapsing RRSM (where it
was found increased) and the remitting RRMS (Ferreira et al., 2021).

Another study by Kurz J.et al. investigated the plasma sphingolipids
profile of patients affected by SM founding significantly increased levels of
different ceramides such as C16:0-Cer; C16:0-glucosylceramide (GlcCer);
C18:0-LacCer; C18:0-GlcCer; C24:0-Cer; C24:1-Cer and C24:1-GlcCer
and decreased level of C16:0-lactosylceramide (LacCer) (Kurz et al.,
2018). Partially in line with these results, a study performed on CSF
samples of MS patients through targeted LC-MS/MS approach revealed
significantly increased levels of C16:0-Cer; C16:0-monohexosylCer and
C24:0-Cer compared to control subjects.

Untargeted lipidomic analysis on CSF of patients with MS
showed marked reductions of several phosphocholines (PC and
lysoPC, LPC) and sphingomyelins (SM): PC(28:0), PC(28:1),
PC(35:4), PC(36:1), PC(36:8), PC(37:6), LPC(18:1), LPC(20:4),
SM [d18:0/16:1 (9Z) (OH)], SM(d18:1/14:0), SM(d18:1/16:0),
SM(d18:2/20:0), SM(d18:2/22:1) and SM [d18:1/24:1 (15Z)]
compared to the controls. On the other hand, PC (32:2) and

PC(36:3) showed significantly higher levels in the same
pathological samples compared to the control class
(Pieragostino et al., 2018). The involvement of the
sphingomyelin pathways may confirm disorders about the
decompaction and destabilization of myelin structure (Jana and
Pahan, 2010). Another study investigated the CSF lipidomic profile
with the non-targeted approach as well, founding a decrease level of
PC(P27:1), PS(40:3) and several triglycerides (TG) such as TG (37:
2), TG (44:5), TG (50:1), TG (52:3), TG (55:5), TG (56:6), TG (57:
4), TG (57:7), TG (58:1), TG (58:3), TG (59:6), TG (60:10), TG (61:
8), TG (61:10), TG (62:8) in MS patients. It was also evidenced
significantly increased concentrations of some fatty acids FA 20:
0 and PC(25:2), PC(42:6), PE (21:0), TG (56:4), TG (57:6), TG (59:
2), TG (63:8), TG (64:10), and some diglycerides DG (18:3), DG
(32:2), DG (36:6), DG (38:6), DG (39:2), DG (42:5) (Nogueras et al.,
2019).

The importance of the sphingomyelins in the MS disease was also
proved by van Doorn et al. who investigated the effect of the sphingosine-
1 receptor agonist, fingolimod, on sphingomyelin metabolism in active
MS lesions. In the pathological context, astrocytes isolated from MS
lesions expressed greater mRNA levels of the enzyme responsible for the
ceramides production (ceramide-producing enzyme acid
sphingomyelinase (ASM)) compared to astrocytes from control white
matter. Interestingly, after the incubation of astrocytes with fingolimod, a
reduction in ceramide production and mRNA expression of ASM was
found (van Doorn et al., 2012).

The strength of the lipidomic analysis performed on CSF samples
is that this biofluid is in direct contact with the CNS and can precisely
reflects its changes related to pathological disfunctions (Vidaurre et al.,
2014). CSF represents a great source of information but, on the other
hand, it is often not possible to take it from healthy subjects for ethical
reasons. Thus, limitations of the studies involved CSF are often related
to the need for a direct comparison between MS and controls.

The studies previously investigated suggest specific alterations in
MS lipid homeostasis and metabolism, which can be assessed through
the serum/plasma/CSF lipidomic analysis. Despite the promising
results obtained by the reviewed studies, some evidence did not
find substantial differences between the plasma lipid profile of MS
patients and controls (Wilkins et al., 2009).

More in general, lipidomic represents a valid tool to explore
pathophysiological aspects still unclear in the MS scenario but

TABLE 5 Summary of lipidomics studies performed on MS patients

LIPIDOMICS CHARACTERIZATION OF MS SUBJECTS

Sample Year Study Platform Metabolomic characterization

CSF 2014 Vidaurre et al. LC-MS/MS MS and Non-MS

2014 Nogueras et al. LC-MS/MS; GC-MS MS and Non-MS

2014 Pieragostino et al. LC-MS/MS MS and Other Neurological Diseases

SERUM 2011 Boccio et al. LC-MS MS, HC and Other Neurological Diseases

PLASMA 2009 Wilkins et al. LC-MS/MS MS

2018 Kurts et al. LC-MS/MS MS and HC

2021 Ferreira et al. LC-MS MS and HC

Brain tissue (Autopsy material) 2012 van Doorn et al. LC-MS/MS MS and HC
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considering the complexity of the “lipid sea” the biological
interpretation of the results represents the best challenge. In this
light, further studies are desirable to optimize the experimental process
and to characterize MS lipid profile and metabolism.

Multi-omics data integration

Access to large-scale omics datasets (genomics, transcriptomics,
proteomics, metabolomics, and others) has revolutionized biology and
led to the development of systems approaches to improvement our
understanding of biological processes, including in MS (Misra et al.,
2018). In this context, the integration of omics data is one of the main
challenges in the era of precision medicine, in particular in complex
disease like MS. Analyzing strengths and limitations of different omics
approaches, if on one hand the interpretation of genome and
transcriptome data in the context of biological function and
phenotype is problematic (Lappalainen et al., 2013), on the other
side combining data from proteomics and metabolomics with
genomics and transcriptomics facilitate to overcome this limitation
by providing molecular information that links genetic and epigenetic
variation with phenotypic presentations. Beyond this, the limitations
due to proteome and metabolome quantification, variability in sample
handling, platform used, interindividual heterogeneity of different
molecules quantification deserve to be mentioned (Spicer et al.,
2017). Supplemental materials details aim, samples and analytical
techniques of proteomics, metabolomics and lipidomics. The main
challenge for integrating different omics datasets is to discern the
true biological signal in the large number of observations per
sample. Indeed, a genome typically includes millions of variants, a
transcriptome a few thousand molecules, a transcriptome about
2000 molecules, and proteomes and metabolomes include thousands
of quantified molecules (Misra et al., 2018)). This makes the omics
experiment a computationally complex process, in which extracting
meaningful correlations and true interactions is a difficult goal. Omics
datasets closest to the genotype (genomics and transcriptomics) and
those closest to the phenotype (proteomics and metabolomics) are
integrated using statistical or advanced machine learning approaches,
for a multi-omics view (Libbrecht & Noble 2015). In this way, machine-
learning approaches, which represents a subfield of artificial intelligence
and includes various algorithms to create an accurate model for
predicting sample outputs, help clustering, association with disease
measures and prediction of disease evolution (Li et al., 2016). To date,
only a few studies have investigated the combined-omics approaches
and the methods of integrating omics data still need to be further
improved, to better distinguish predictive biomarkers. Previously, some
studies have used comprehensive omics measurements, followed by
integrated omics analysis to describe molecular variation in specific
cancer types (Jiang et al., 2016; Kamoun et al., 2016). Later, by using
both label-free and targeted proteomics, lipidomics, and metabolomics
followed by data integration in human serum samples, a model on the
reprogramming of organ functions induced by metastatic melanoma
has been proposed (Muqaku et al., 2017), revealing novel insights into
the basic biology of this disease. Looking to autoimmune diseases, a
longitudinal study of the drug response at multi-omics levels was
recently performed using the peripheral blood of patients with
rheumatoid arthritis, and shown how an integrative analysis
combining data from different molecular classes and detailed clinical
parameters can lead to a better understanding of the molecular and

cellular systems associated with drug treatment and disease severity
(Tasaki et al., 2018). Similarly, the multi-omics approach can lead to the
understanding of drug response in MS, as well as the mechanisms
underlying its pathogenesis and evolution. Therefore, the future
challenge is to integrate the different omics approaches into more
composite models, despite several issues and limitations of
integration data, in order to discern biomarkers of significance for
MS from random noise of biological system (Misra et al., 2018).

Conclusion

According to the modern vision of precision medicine, the
challenge of the future will be to use integrative analytical
approaches that combine clinical characteristics, MRI variables, and
information from different omics approaches (genomics,
epigenomics, transcriptomics, proteomics, and metabolomics) to
improve the management of MS (Zagon and McLaughlin, 2017).
Notoriously, the heterogeneity and biological complexity of MS may
make the identification of a single biomarker difficult; thus, the
combination of different types of data obtained from the omics
approaches, using advanced computational methods and predictive
models, can help maximize the predictive power of these biomarkers.
Omics approaches can serve to distinguish among the subtypes of MS
and identify when the disease changes and becomes progressive, with
the objectives of better identifying the patients that can be
administered the various immunotherapies, predicting the
treatment efficacy and safety, and optimizing the allocation of
resources and the therapeutic path.
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