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Hepatocellular carcinoma (HCC) is a clinically and genetically heterogeneous
disease. To better describe the clinical value of the main driver gene mutations of
HCC, we analyzed the whole exome sequencing data of 125 patients, and combined
with the mutation data in the public database, 14 main mutant genes were identified.
And we explored the correlation between the main mutation genes and clinical
features. Consistent with the results of previous data, we found that TP53 and LRP1B
mutations were related to the prognosis of our patients byWES data analysis. And we
further explored the associated characteristics of TP53 and LRP1B mutations.
However, it is of great clinical significance to tailor a unique prediction method
and treatment plan for HCC patients according to the mutation of TP53. For TP53
wild-type HCC patients, we proposed a prognostic risk model based on 11 genes for
better predictive value. According to the median risk score of the model, HCC
patients with wild-type TP53 were divided into high-risk and low-risk groups. We
found significant transcriptome changes in the enrichment of metabolic-related
pathways and immunological characteristics between the two groups, suggesting
the predictability of HCC immunotherapy by using this model. Through the CMap
database, we found that AM580 had potential therapeutic significance for high-risk
TP53 wild-type HCC patients.
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1 Introduction

Hepatocellular carcinoma (HCC) is one of the most commonmalignancies, accounting for 85%
of liver cancer. It is also the third leading cause of cancer-related death; morbidity and mortality are
increasing yearly (Hoshida et al., 2009; El-Serag, 2011). Although progress has been made in the
diagnosis and treatment of HCC, the high heterogeneity of HCC still makes prognosis prediction
and treatment challenges, and the 5-year overall survival rate of HCC patients is still less than 20%
(Long et al., 2017; Nault and Villanueva, 2021). Therefore, there is an urgent need for molecular
characterization of HCC to help the discovery of biomarkers, to promote proper diagnosis, accurate
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treatment, and prognosis prediction, then to achieve the purpose of
precision medicine, tiered care, and accurate prediction in a real sense.
The continuous innovation of sequencing technology provides us with
manyHCCdata resources.We can better understandHCC by integrating
data from different sources, which is helpful in finding clinical therapeutic
targets and biomarkers (Ding et al., 2019). To date, genome analysis in
HCC has revealed a wide diversity of genetic changes, including DNA,
transcribed mRNA, and non-coding RNA (Craig et al., 2017; Sun and
Malhotra, 2018). In this genomic era, the emergence of a large number of
genome sequencing techniques and data is conducive to further cancer
exploration. It is significant for early diagnosis, treatment, and prognosis
monitoring of cancer (Hong et al., 2020).

Although cancer cells show similar characteristic behavior, there are
almost no samemutations in individual tumors (Hanahan andWeinberg,
2011). The most frequently altered gene in human tumors is TP53, and
mutated TP53 is associated with poor clinical outcomes (Kandoth et al.,
2013).TP53mutations lead to the loss of function of the wild type p53 and
deprive cells of innate tumor inhibitory response; TP53 mutations can
promote tumor cell survival and adapt to various internal and external
stress conditions, including overproliferation-related DNA damage,
oxidative and protein toxic stress, nutritional fluctuations, physical
constraints, matrix cues, and anti-tumor immune responses (Senft and
Ze’ev, 2016; Mantovani et al., 2019). In HCC, TP53mutation is associated
with clinical features such as tumor differentiation, vascular invasion,
serum alpha-fetoprotein (AFP) level, and tumor stage, andTP53mutation
is also correlated to the tumor microenvironment and immune-related
characteristics of hepatocellular carcinoma (Dong et al., 2017; Biton et al.,
2018; Hong et al., 2020). To sum up, it is essential to make unique
prediction methods and treatments for TP53 according to the mutation
state of HCC. Currently, the development of HCC prognostic gene
signature is mainly based on the whole population and patients with
TP53 mutants. There is no corresponding research to put forward the
prognostic model for patients with TP53 wild-type HCC.

In this study, combined with available clinical information, we
describe the mutation map and molecular mechanism of the main
driver genes in HCC through gene exon sequencing andmutation data
from public databases; in addition, we tailored a prognosis prediction
model for TP53 wild-type HCC patients and screened out potential
therapeutic drugs for high-risk patients.

2 Materials and methods

2.1 Patients and tumor materials

Our study included one hundred and twenty-five patients with
hepatocellular carcinoma (HCC). Tumor puncture samples were
collected from Qionglai Hospital of Traditional Chinese Medicine, and
the whole exome sequencing was performed. The selected patients’
baseline demographic, clinical, and pathological data were collected
and recorded during diagnosis, including sex, age, AFP, PIVKA-II,
tumor size and number, tumor stage, treatment mode, survival status,
and the latest follow-up information. The review date from the date of
diagnosis to the date of death or the date of the last follow-upwas collected
for OS calculation, and the date from the first treatment to the time of the
first recurrence was collected for PFS calculation. Exclusion criteria: when
exploring whether patients with stage TNMI and TNMII relapse within
one year, filter out patients with a follow-up period of less than one year; in
the survival analysis of patients with stage TNMIII and TNMIV, filter out

patients with an overall survival period of less than one month. Details
were shown in Supplementary Table S1. The study was approved by the
local ethics committee [No. 2021 (01)], and the patient’s informed consent
was obtained following Chinese law.

2.2 Common data set

Somatic mutation data were derived from TCGA (364 HCC
samples) and ICGC (904 HCC samples, including LICA-CN,
LICA-FR, and LIRI-JP) databases. Gene expression data (raw
counts) were derived from TCGA (375 HCC samples, 50 normal
tissue samples) and ICGC (LIRI-JP, 227 hepatocellular carcinoma
samples). The original counts of gene expression data were normalized
to CPM, and HCC samples with gene expression data, somatic
mutation data, and complete clinical information were screened for
subsequent analysis. Exclusion criteria: At the time of survival analysis,
patients with overall survival of less than one month and a follow-up
period of fewer than two months were excluded.

2.3 Whole exome sequencing and data
analysis

Whole exome sequencing was performed using the Agilent
SureSelect Human All Exon v6 Kit (Agilent Technologies, Santa
Clara, CA, United States), then sequenced on the Illumina HiSeq
2000 System (Illumina, San Diego, CA, United States) by Shanghai
Personal Biotechnology Cp. Ltd. The 150bp paired reads were aligned
to the human reference genome (GRCh38) by BWA (version 0.7.15).
GATK (version 4.0) detected single nucleotide variants and indels.
Copy number variation (CNV) was identified from the bam file by
VarSeq (version 2.2.4, Golden Helix®). All the variants were annotated
by VarSeq with the public (gnomAD, 1,000 Genomes, DGV, ICGC,
TCGA) and in-house databases. Variants passed quality control (Read
depth ≥6, Genotype Qualities ≥20) were filtered. Variant filtering
criteria: 1. Read depth filtering. A variant will be retained only if it
meets the following conditions. (1) The total reads depth ≥10; (2) The
alternative reads depth ≥5; (3) The alternative reads depth/total reads
depth ≥0.1.2. Variant annotation result filtering. If a site meets the
following conditions, it will be filtered. (1) The variants located
upstream and downstream of the gene were filtered out; (2) The
variants located in the intron region were filtered out; (3) Synonymous
variants were filtered out; (4) The variants located on the transcript
ablation region were filtered out; (5) The variant pathogenicity
classified as “LOW” or “MODIFIER” were filtered out.

2.4 Principal analysis tools and R packages

SPSS (Statistical Product Service Solutions, version 26.0) is used to
analyze the correlation betweenmolecular and clinical features and the
statistics of clinical information. Rstudio (4.1.0) for data processing,
analysis, and graphic visualization. GSEA is used for pathway
enrichment analysis to determine the enrichment differences in
biologically significant pathways among HCC patients in different
groups. FDR <0.25, p < 0.05, and | NES | > 1 indicates that the results
are meaningful. R package enrichplot for Gene Ontology (GO) and
Jingdu Encyclopedia of Gene and Genome (KEGG) Analysis. R
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package Maftools is used to read and visualize MAF files, and R
package GenVisR is used to draw a gene mutation waterfall map. R
package edgeR and limma are used to identify differentially expressed
genes (DEGs) among different groups of HCC patients. The cpm
function in edgeR can convert the original data of gene expression into
CPM format. R package survival and survminer are used for Kaplan-
Meier survival analysis and graphical visualization. Evaluation of the
predictive ability of R package timeROC and ggDCA in prognostic
models. R package regplot for the Construction of Nomotu. R package
ggplot2, pheatmap and ggpubr are mainly used for graphic
visualization, including heat maps, histograms, volcanoes, etc.
CIBERSORT algorithm is used to evaluate the relative proportion

of 22 immune cells. The multi-algorithmic immune cell infiltration
result file of the TCGA database is obtained at the website (http://
timer.comp-genomics.org). The CMap database (http://clue.io/query)
is used to screen small molecule drugs.

2.5 Statistical analysis

The correlation analysis between classified variables were
processed by the chi-square or Fisher exact test. All statistical
analysis was carried out using R software (version 4.1.0) or SPSS
(version 26.0).

FIGURE 1
The primary mutations were screened by whole exon sequencing and a database. (A–D) The waterfall chart showed the top 40 genes in the four cohorts
of ICGC-LICA-CN, ICGC-LICA-FR, ICGC-LIRI-JP, and TCGC-LIHC. (E) The mutation profiles of 14 repetitive genes in the whole exon sequencing queue.
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3 Results

3.1 Mutations of the main driver genes

The median age of 125 patients with hepatocellular carcinoma
was 53 years (range: 28–78 years), and the proportion of males was
high (84.8% vs. 15.2%); Tumor staging using TNM classification
was TNM I in 42.4% (n = 53), TNM II in 24.8% (n = 31), TNM III in
23.2% (n = 29), and TNM IV in 9.6% of the cases (n = 12);
75 resectable patients (60%) and 50 unresectable patients (40%)
received curative surgery, immunotherapy, radiofrequency ablation
(RFA), palliative treatment or combined treatment (Supplementary
Table S1). The mean depth of target sequencing of the samples was

105X. The percentage of the target regions with a mean depth over
20X was 99.3%. Since we only get the WES data of tumor puncture
samples from HCC patients, there may be errors in directly
describing the gene mutations in our cohort. To better describe
the mutations of the main driver genes of hepatocellular carcinoma
(HCC), we screened the top 40 genes with mutation frequency from
the somatic mutation data in the ICGC database and the TCGA
database, including the four cohorts of ICGC-LICA-CN, ICGC-
LICA-FR, ICGC-LIRI-JP and TCGC-LIHC, respectively, among
which TTN, TP53, OBSCN, APOB, ADGRV1, XIRP2, PCLO,
CSMD1, USH2A, LRP1B, FAT3, CSMD3, RYR2, and HMCN1 are
repeated in four HCC queues (Figures 1A–D). In our cohort (N =
125), the frequencies of mutations in these genes were equally high,

FIGURE 2
Correlation analysis of significant mutant genes with major clinical features and prognosis. (A–C) Correlation analysis of major mutant genes with major
clinical features. (B) Coexistence and mutual exclusion among major mutant genes. (D,E) Univariate and multivariate COX regression analysis of the main
influencing factors and progression-free survival (PFS) within one year in HCC patients with TNMI and TNMII. (F) The independent influencing factors of 1-year
progression-free survival (PFS) in HCC patients with TNMI and TNMII were analyzed by K-M survival curve. (G,H) Univariate and multivariate COX
regression analysis of the main influencing factors and overall survival (OS) in HCC patients with TNMIII and TNMIV. (I) The independent influencing factors of
overall survival (OS) in HCC patients with TNMIII and TNMIV were analyzed by Kaplan-Meier survival curve.
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predominantly with missense mutations, and TTN was the gene
with the highest mutation frequency; other genes with higher
mutation frequencies were as follows: TP53 (30%), OBSCN
(23%), APOB (22%), ADGRV1 (22%), etc. The mutation
frequency was altered compared to the somatic mutation data
for HCC in the TCGA and ICGC databases (Figure 1E).
Analysis of tumor TNM stage showed that TP53 mutations and
FAT3 mutations were distributed differently in different TNM
stages (p < 0.05), and both were more common in patients with
advanced HCC. Serum AFP level is a commonly used and vital
index in diagnosing HCC and monitoring therapeutic efficacy.
LRP1B mutations were mainly enriched in the normal serum
AFP level (p = 0.044). We also found that APOB mutations were
primarily distributed in HCC patients with tumors larger than 5 cm
(p = 0.037) and XIRP2mutations were primarily distributed in non-
smoking patients (p = 0.002) (Figures 2A, C). By Fisher’s exact test,
we found an evident coexistence between ADGRV1 mutations and
LRP1B mutations, and between XIRP2 mutations and CSMD3
mutations (p < 0.05), there was significant mutual exclusion
between the APOB mutation and the USH2A mutation (p <
0.05) (Figure 2B). In addition, we statistically analyzed
mutations in main driver genes with other major clinical
features and found no statistical significance (Supplementary
Table S2).

3.2 Impact of main driver gene mutations on
the prognosis of HCC patients

To better distinguish our clinical patient samples, we focused on 1-
year progression-free survival (PFS) of TNMI and TNMII HCC patients
(Supplementary Table S3) and overall survival (OS) of TNMIII and
TNMIV HCC patients (Supplementary Table S4). Through univariate
COX regression analysis, we found that TP53 mutations, LRP1B
mutations, sex, and serum abnormal prothrombin II (PIVKA-II) levels
were closely related to recurrence within one year in TNMI and TNMII
patients (p < 0.05) (Figure 2D). In contrast, TP53 mutations, LRP1B
mutations, and serum AFP levels were closely related to death in TNMIII
and IV patients (p < 0.05) (Figure 2G). In multivariate COX regression
analysis, we found that TP53 mutations, LRP1B mutations, and serum
abnormal prothrombin II (PIVKA-II) levels were independent factors of
recurrence in HCC patients with TNMI and TNMII within one year
(Figure 2E). TP53 mutations, LRP1B mutations, and serum alpha-
fetoprotein (AFP) levels were independent influencing death factors in
TNMIII and TNMIV HCC patients (Figure 2H). At the same time, the
Kaplan-Meier survival analysis also validates our findings (Figures 2F, I).
To further verify our conclusion, we performed a Kaplan-Meier survival
analysis on the mutation data with complete clinical information in
TCGA and ICGC database and also found that LRP1B mutations and
TP53 mutations were significantly correlated with the prognosis of HCC
patients (Figure 3A).

3.3 Biological characteristics related to TP53
mutation and LRP1B mutation

To further explore the biological characteristics related to TP53
mutation and LRP1Bmutation, we downloaded RNA sequencing data
from the TCGA database and screened out samples with RNA

sequencing data and somatic mutation data. According to the
mutation state of TP53 and LRP1B, the RNA sequencing data were
divided into mutant group and wild group for follow-up analysis.
Because many pathways are involved in tumorigenesis, the poor
prognosis of HCC patients with TP53 or LRP1B mutations may be
related to the abnormal regulation of many signal pathways in HCC.
Through GSEA enrichment analysis, we found seven KEGG signal
pathways, including DNA replication, base excision repair,
homologous recombination, cell cycle, mismatch repair, splicing,
and nucleotide excision repair, showed significant differential
enrichment in TP53 or LRP1B mutant groups (Figures 3B, C). We
then analyzed the infiltration of 22 kinds of immune cells in the tumor
immune microenvironment of HCC patients. We found that memory
B-cell, follicular helper T-cell, Treg cells, M0 macrophages,
M1 macrophages, resident DC cells, and activated DC cells were
significantly enriched in the TP53 mutation group, and CD4 resident
memory T-cell were significantly improved in the TP53 non-mutation
group (Figure 3D). Perhaps due to the small proportion of patients
with LRP1Bmutation in TCGA, we only found that activated NK cells
were significantly enriched in the LRP1B mutation group, and the
infiltration of other immune cells did not show a significant statistical
difference (Figure 3E).

3.4 TCGA as a training set to construct a
prognostic model of TP53 wild-type HCC

We created a detailed analysis flow chart (Figure 4A) to describe our
analysis process more intuitively. In the TCGA database, 335 HCC
patients have both RNA sequencing and somatic mutation data.
Patients with HCC were divided into groups according to TP53
mutation status, including 96 TP53 mutant samples and 239 TP53
wild-type samples. Through differential gene expression analysis, we
found that 809 genes were highly expressed in TP53 wild-type
samples (logFC >1, p < 0.05), including 473 mRNA (Figure 4B). GO
enrichment analysis showed that highly expressed genes were significantly
enriched in the metabolic hormone process, muscle system process,
collagen-containing, extracellular matrix apical part of cell, receptor
ligand activity and signaling receptor activator activity (p < 0.05)
(Figure 4C). KEGG enrichment analysis showed that highly expressed
genes were significantly enriched in Neuroactive ligand-receptor
interaction and Wnt signaling pathway pathways (Figure 4D). To
ensure the integrity and rationality of clinical information,
167 samples of TP53 wild-type were included in the training set for
constructing prognostic models. Through batch univariate COX
regression analysis, it was found that 21 mRNA were closely related to
the total survival time (OS) of patients with TP53 wild-type HCC
(Figure 4E). Then, stepwise multivariate COX analysis, 11 mRNA
were selected to construct the prognosis model of TP53 wild-type
HCC patients to narrow the scope of gene screening further. The
COX regression coefficient of related genes in each model is calculated
based on COX multiple regression model, and the model risk score of
each sample is defined as the product of the regression coefficient and the
expression value of related genes in each model. According to the median
risk score, the training set samples are divided into high-risk and low-risk
groups for follow-up analysis. In addition, we further analyzed the
distribution of the expression levels of 11 genes involved in
constructing the model in different clinical characteristics, including
hepatitis B virus infection, grade, stage, age, and sex (Figure 4F).
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FIGURE 3
Verification of the database and biological characteristics related to TP53 mutation and LRP1B mutation. (A) Kaplan-Meier survival analysis was
performed on the mutation data with clinical information in TCGA and ICGC databases. (B) GSEA enrichment analysis showed that the pathway was
significantly related to TP53mutation. (C) GSEA enrichment analysis showed that the pathway was significantly related to LRP1Bmutation. (D) The difference
of immunocyte infiltration abundance between TP53 mutation group and wild group in HCC patients. (E) The difference of immunocyte infiltration
abundance between LRP1B mutation group and wild group in HCC patients.
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3.5 Evaluation and verification of prediction
ability of the model

In the training set, the Kaplan-Meier survival analysis showed a
significant difference in prognosis between the high-risk and low-risk
groups. The median survival time of the low-risk group was

significantly longer than that of the high-risk group (Figure 5A).
Univariate and multivariate cox regression analysis was used to
evaluate independent prognostic factors in patients with TP53
wild-type HCC. First, a univariate cox regression analysis was
performed on all clinical variables and model risk scores. We
found that age, sex, grade, and model risk score were closely

FIGURE 4
Based on TCGA database, the prognostic risk model of HCC patients with TP53 wild type was constructed. (A) A complete process for the development
and verification of prognostic risk models. (B) The volcano map is used to show the differentially expressed genes between TP53 mutant group and wild
group. (C) Results of KEGG enrichment of highly expressed genes in TP53 wild group. (D) Results of GO enrichment of highly expressed genes in TP53 wild
group. (E) Univariate Cox regression analysis of the relationship between highly expressed genes and OS in TP53 wild group. (F) The differential
expression of genes involved in the construction of prognostic risk model in different clinical feature groups and different risk groups.
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FIGURE 5
Evaluation and verification of the prediction ability of the model. In the training set, (A) Kaplan-Meier survival analysis between the high-risk group and
low-risk group. (B,C)Univariate andmultivariate COX regression analysis of prognostic risk model and clinical features with OS. (D) The time-dependent ROC
curve of the prognostic risk model and the comparison with the predictive ability ofmajor clinical features. (E) The DCA curve of the prognostic risk model and
the comparison with the predictive ability of major clinical features. (F) Risk factor linkage analysis: the distribution and median of the model risk score,
the distribution of dead patients in the high and low-risk group, and the expression of genes involved in the construction of themodel in the high and low-risk
group. In the verification set, (G–I) The predictive ability of the prognostic risk model was further verified by Kaplan-Meier survival analysis, ROC analysis, and
risk factor linkage analysis.
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FIGURE 6
Clinical predictive application of biological differences and prognostic risk models in high and low risk groups. (A) Prognostic risk model of Kaplan-Meier
survival curve in HCC patients with TP53mutant. (B) GSEA enrichment analysis showed that pathways were significantly associated with high risk scores. (C)
Differential expression of common immune checkpoints between high and low risk groups. (D) The difference of immune-related function in high and low
risk groups. (E) Based on five algorithms, the differences in immune cell infiltration between high and low risk groups were evaluated. (F)Nomographwas
used to predict 1-year, 3-year and 5-year OS in patients with TP53 wild type HCC. (G) The correlation between the differentially expressed genes in high and
low risk groups and the expression profile of AM580. (H) The molecular structural formula of AM580.
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related to the total survival time (OS) of patients with TP53 wild-type
HCC (p < 0.05) (Figure 5B). Through further multivariate COX
regression analysis, we found that the risk score of this model
could be used as an independent prognostic factor for patients
with TP53 wild-type HCC (p < 0.001) (Figure 5C). ROC analysis
showed that the model could effectively predict the 1-year, 3-year, and
5-year survival of patients with TP53 wild-type HCC. The predictive
ability was better than other clinical features (including age, sex, grade,
stage, and hepatitis B virus). A higher AUC value indicates that the
model has high sensitivity and specificity (Figure 5D). At the same
time, DCA analysis also showed the superiority of the model’s
predictive capacity for predicting 1-year, 3-year, and 5-year survival
of patients with TP53wild-type HCC (Figure 5E). The linkage analysis
of risk factors showed that the low-risk and high-risk groups could be
distinguished according to the median risk score of the model, and the
death toll of the high-risk group was significantly higher than that of
the low-risk group. And there are differences in the expression of
genes involved in constructing the model in high and low-risk groups
(Figure 5F). Next, we use TP53wild-type HCC samples from the ICGC
database (ICGC-JP) as a verification set further to verify the predictive
ability of the prognostic model. Consistent with the above analysis
method, we divided the validation set into high-risk and low-risk
groups according to the model risk score. Kaplan-Meier survival
analysis showed that the survival probability of the high-risk group
was significantly lower than that of the low-risk group (Figure 5G).
ROC analysis showed that the prognostic model could also effectively
predict the 1-year, 3-year, and 5-year survival of patients with TP53
wild-type HCC (Figure 5H). The risk factor linkage analysis also draws
the same conclusion as the training set (Figure 5I). As a supplement,
we also evaluated the prognostic potential of the prognostic model in
patients withmutant TP53. The risk score of each TP53mutant patient
in the TCGA cohort was calculated using the same algorithm and
grouped according to the median risk score. Kaplan-Meier survival
analysis showed that the prognostic model did not maintain a good
predictive performance in patients with TP53 mutant HCC
(Figure 6A). To sum up, the prognostic model is reliable in
predicting the clinical prognosis of patients with TP53wild-type HCC.

3.6 Clinical predictive application of biological
differences and risk scores in high and low
groups

To explore which biological processes are involved in the poor
prognosis of patients with TP53wild-type HCC in the high-risk group,
we performed a GSEA analysis. The results showed that the high-risk
group was highly enriched in metabolic-related biological processes,
such as oxidative phosphorylation and pentose phosphate pathway
(Figure 6B). This suggests that the imbalance of metabolic processes
may be a factor for poor prognosis in the high-risk group of patients
with wild-type HCC of TP53. At present, immunotherapy plays an
important role in tumor therapy, and the difference in immune-
related characteristics of different HCC patients may affect the effect of
immunotherapy. Below, we further analyze whether there are
differences in immune-related characteristics between high and
low-risk groups of TP53 wild-type HCC patients. The association
analysis between joint immune checkpoints and high and low-risk
groups showed that NRP1, CD160, and KIR3DL1 were highly
expressed in the low-risk group, while CD276, TNFRSF14, LGALS9,

TNFRSF4, and TNFRSF18 were highly expressed in the high-risk
group (p < 0.05) (Figure 6C). However, the analysis of immune-
related function only showed that Type_II_IFN_Reponse was
enriched in the low-risk group (Figure 6D). We then used five
algorithms: CIBERSORT, CIBERSORT−ABS, QUANTISEQ,
MCPCOUNTER, and XCELL, to analyze the correlation between
immune cell infiltration and high and low-risk groups. The results
showed that T-cell regulatory (Tregs), Macrophage M0, Macrophage
M2, Neutrophil, T-cell CD4+ (non-regulatory), Common lymphoid
progenitor, T-cell NK, B-cell plasma, T-cell CD4+ Th1, T-cell CD4+

Th2 are enriched in the high-risk group, Monocyte, Mast cell
activated, NK cell, Endothelial cell, Common myeloid progenitor,
Granulocyte-monocyte progenitor, Hematopoietic stem cell are
enriched in the low-risk group (Figure 6E). Considering the clinical
utility of risk score in predicting OS in patients with TP53 wild-type
HCC, we established a Nomograph including model risk score and
main clinical features to predict 1-year, 3-year, and 5-year OS rates
(Figure 6F). Next, we screened the small molecular compounds with
potential therapeutic significance in high-risk patients with TP53wild-
type HCC. First, the differences in gene expression profiles between
high and low-risk groups of TP53 wild-type HCC were analyzed, and
the upregulated genes of the high-risk and low-risk groups were
uploaded to the CMap database for comparison. We found that the
expression profile of AM580 was similar to that of upregulated genes
in the low-risk group (score = 99.01) but opposite to that in the high-
risk group (score = −99.29) (Figure 6G). This suggests that AM580 has
potential therapeutic significance for patients with TP53 wild-type
high-risk HCC, and we provide a structural formula for AM580
(Figure 6H).

4 Discussion

Hepatocellular carcinoma (HCC) is the most prevalent type of
primary liver cancer, and it is a fatal disease that usually occurs in the
context of chronic liver disease (such as liver cirrhosis) (Craig et al.,
2020). High-throughput sequencing technology has extensively
promoted our understanding of hepatocellular carcinoma (HCC)
biology. More knowledge of the molecular map has been
transformed into new therapeutic targets and biomarkers and
provides a direction for improving the prognosis of patients (Yang
et al., 2021). Genomic studies have identified the prospect of HCC
molecular changes; however, the most common mutations are
inoperable, and only about 25% of tumors have potential targeted
drivers (Llovet et al., 2018). In recent years, many studies have
described the gene mutation map of HCC, which mainly includes
the genome sequencing queue of clinical samples and the data mining
of mutation data in public databases, such as Jean-Charles Nault et al.
(2020) described the inheritance and transcription of HCC from early
to advanced; Xue et al. (2019) provided a detailed genome picture of
cHCC-ICC; Ding et al. (2019) described the genomic and epigenomic
characteristics of primary and recurrent HCC. In this study, to more
reliably describe the mutations of the main driver genes of HCC, we
combined the somatic mutation data from TCGA and ICGC
databases. In the Whole Exome Sequencing cohort of HCC, we
described the mutational status of main driving genes in different
tumor stages and the mutually exclusive coexistence between
mutations. We also described the close relationship between
genetic alterations and major clinical features and prognosis. It is
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worth noting that in our Whole Exome Sequencing cohort, most
patients are male patients with hepatitis B, so it is impossible to explain
whether there is an association between gender, hepatitis B virus
infection, and main driver gene mutations.

Cancer is a genomic disease formed by a combination of
heritable variation (usually marked by single nucleotide
polymorphism (SNP)) and acquired somatic mutations.
Genome-wide association studies (GWAS) and tumor
sequencing studies have revealed many heritable variants and
somatic drivers, which are roughly divided into oncogenes and
tumor suppressor genes (Bader, 2021). A better understanding of
the mutations of different genes in cancer patients is also conducive
to drug development and personalized treatment. And ideally,
more people with genetic predisposition will be identified before
diagnosis, so that effective screening and prevention management
strategies can be considered (Mendiratta et al., 2021; Rooney et al.,
2023). The mutation of the tumor suppressor gene TP53 is one of
the most common mutations in HCC. After DNA damage, the cell
cycle regulation and apoptosis of TP53 mutant cells are affected,
and they can escape apoptosis and transform into cancer cells when
DNA damage occurs (Lai et al., 2007; Yang et al., 2020). The
mutated TP53 protein loses its tumor suppressor function
simultaneously (Brosh and Rotter, 2009). LRP1B is one of the
most changed genes in human cancer, and it is mainly
considered a presumptive tumor suppressor (Príncipe et al.,
2021). Its expression, mutation status, and function in cancer
still need further study. It is worth noting that TP53 mutation
and LRP1Bmutation are associated with poor prognosis in patients
with HCC (Liu et al., 2012; Liu et al., 2021). In this study, compared
with the wild group, both the TP53 mutant group and LRP1B
mutant group were significantly enriched in DNA replication, base
excision repair, cell cycle, and other pathways, suggesting that the
changes of these pathways may affect the immune response and
other biological functions of patients with TP53 and LRP1B
mutations, and may also be factors leading to poor prognosis of
mutant patients. In tumors, the increase of immunosuppressive
cells (Treg cells and tumor-associated macrophages, etc.), the
overexpression of immunosuppressive molecules (CTLA-4, etc.),
and the decrease of tumor antigens will lead to the inability of
CD8T cells to recognize cancer cells, thus promoting the
occurrence and development of tumors (Zou and Chen, 2008).
The analysis of immune cell infiltration in patients with TP53,
LRP1B mutant, and corresponding wild-type HCC further showed
the change in the proportion of infiltrating immune cells in
22 tumors. It is worth noting that except for the significant
enrichment of activated NK cells in the LRP1B mutation group,
there is no significant correlation between LRP1B mutation and
other immune cell infiltration, which may be related to the small
proportion of patients with LRP1B mutation in TCGA. However,
relevant studies have shown that although there is no significant
correlation between LRP1B mutation and tumor immune
infiltrating cells, the expression level of LRP1B is associated with
various immune checkpoints, immune infiltrating cells, and
immune cell markers (Wang and Xiong, 2021).

The development of bioinformatics has extensively promoted the
understanding of the occurrence and development of hepatocellular
carcinoma, and the derivative results may promote the clinical
realization of proper medical care and stratified medical care.
Presently, the development of hepatocellular carcinoma gene

signature is primarily based on the population. For example, Junyu
Long et al. established a prognostic model for predicting OS in
patients with HCC based on four mRNA (Long et al., 2018);
Zhang et al. (2020) established a hepatocellular carcinoma
diagnosis, prognosis and recurrence model based on three hypoxia-
related genes; Liang et al. (2020) established a hepatocellular
carcinoma prognostic model based on novel iron filariasis related
genes, and so on. However, these studies are insufficient to meet the
precise risk stratification and treatment of hepatocellular carcinoma in
clinical work. Recently, Yang et al. (2021) developed a genetic feature
for predicting the prognosis of hepatocellular carcinoma with TP53
mutations. They also provided potential therapeutic targets and drugs
for patients with high prognosis-associated signature scores. Zhang
et al. (2021) found two directly regulated lncRNA associated with
TP53 mutations in HCC. These studies provide new insights into
personalized prediction methods, but the average frequency of TP53
mutations in HCC is about 30% (Yang et al., 2022). The prognostic
model for patients with TP53 wild-type HCC is not clear. Given this
situation, we developed an adequate risk model to predict the
prognosis of TP53 wild-type HCC. As expected, the prognostic
model showed good predictive ability in both the training and
validation sets. The predictive power of the prognostic model was
independent of other clinical factors of hepatocellular carcinoma. It is
worth noting that the prognostic model does not maintain a good
predictive performance in HCC patients with TP53 mutations, which
reflects the specificity of its predictive performance. Through GSEA
enrichment analysis, we found that the high-risk group was highly
enriched in metabolic-related biological processes, including the
pentose phosphate pathway and oxidative phosphorylation. The
activation of the pentose oxide phosphate pathway can increase the
intracellular redox ability of cancer cells by enhancing NADPH
production, thus helping tumor cells escape oxidative stress
(Kowalik et al., 2017). WTp53 promotes OXPHOS and inhibits
glycolysis by regulating the expression or activity of metabolic
enzymes, thus enabling the tumor inhibitory activity of p53 by
disrupting cancer metabolism (Kruiswijk et al., 2015). But a recent
study found that WTp53 plays a carcinogenic role by promoting
metabolic transformation in cancer by inhibiting OXPHOS (Kudo
et al., 2020). In short, metabolism-related pathway disorders such as
the pentose phosphate pathway and oxidative phosphorylation may
promote the occurrence and development of hepatocellular
carcinoma. In addition, we found that there were also differences
in immunological characteristics in the model risk group. In the high-
risk group, the infiltration of immunosuppressive cells (Treg cells and
M2 macrophages, etc.) was higher, and the expression level of the
immune checkpoint was higher. In addition, when evaluating the
related immune function, we only found that the activity of type II
IFN response was significantly decreased in the high-risk group,
suggesting that there may be anti-tumor immune impairment in
our high-risk group. These results indicate that the risk model can
not only predict the prognosis of TP53 wild-type HCC patients but
also be used to predict the effect of immunotherapy. Due to the high
heterogeneity of liver cancer among individuals and the lack of
corresponding biomarkers, and at present, all the treatment of
advanced liver cancer is population-based, it is almost impossible
to find a treatment method suitable for all cases of liver cancer, and the
treatment effect is not satisfactory (Yang et al., 2021). Finding tailor-
made biomarkers and treatment strategies for specific populations is
part of the primary purpose of this study. It is of great significance to
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maximize the effectiveness of treatment. This study established a
quantitative map to facilitate patient counseling, decision-making,
and follow-up arrangements by integrating model risk scores and
significant clinical features. Finally, we found that retinoic acid
nuclear receptor (RAR) agonist AM580 can be a potential
therapeutic drug for high-risk patients with TP53 wild-type HCC.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://ngdc.cncb.ac.cn/gvm/,
GVM000465.

Ethics statement

The studies involving human participants were reviewed and
approved by Ethics Committee of Qionglai Traditional Chinese
Medicine Hospital. The patients/participants provided their
written informed consent to participate in this study. Written
informed consent was obtained from the individual(s) for the
publication of any potentially identifiable images or data
included in this article.

Author contributions

YZ and YW conceived the project. LL and GL collected the clinical
samples. DL, JW, RD, WS, and TZ performed experiments. DL, JW,
and BT carried out the computational analysis. DL and YZ prepared
the manuscript, with all authors’ contribution. All authors have
reviewed the manuscript.

Funding

This study was sponsored by Natural Science Foundation of
Chongqing, China (cstc2021jcyj-msxmX0826) and Chongqing
International Institute for Immunology (2020YJC08).

Acknowledgments

The authors acknowledge TCGA and ICGC Projects for using
these data.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2023.1075347/
full#supplementary-material

References

Bader, J. S. (2021). The panorama of cancer genetics. Cancer Res. 81 (10), 2586–2587.
doi:10.1158/0008-5472.CAN-21-0885

Biton, J., Mansuet-Lupo, A., Pecuchet, N., Alifano, M., Ouakrim, H., Arrondeau, J., et al.
(2018). TP53, STK11, and EGFR mutations predict tumor immune profile and the
response to anti-PD-1 in lung adenocarcinoma. Clin. Cancer Res. 24 (22), 5710–5723.
doi:10.1158/1078-0432.CCR-18-0163

Brosh, R., and Rotter, V. (2009). Whenmutants gain new powers: News from themutant
p53 field. Nat. Rev. Cancer 9 (10), 701–713. doi:10.1038/nrc2693

Craig, A. J., von Felden, J., Garcia-Lezana, T., Sarcognato, S., and Villanueva, A. (2020).
Tumour evolution in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 17 (3),
139–152. doi:10.1038/s41575-019-0229-4

Craig, A. J., von Felden, J., and Villanueva, A. (2017). Molecular profiling of liver cancer
heterogeneity. Discov. Med. 24 (131), 117–125.

Ding, X., He, M., Chan, A.W. H., Song, Q. X., Sze, S. C., Chen, H., et al. (2019). Genomic
and epigenomic features of primary and recurrent hepatocellular carcinomas.
Gastroenterology 157 (6), 1630–1645. doi:10.1053/j.gastro.2019.09.005

Dong, Z.-Y., Zhong, W.-Z., Zhang, X.-C., Su, J., Xie, Z., Liu, S.-Y., et al. (2017). Potential
predictive value of TP53 and KRAS mutation status for response to PD-1 blockade
immunotherapy in lung adenocarcinoma. Clin. cancer Res. 23 (12), 3012–3024. doi:10.
1158/1078-0432.CCR-16-2554

El-Serag, H. B. (2011). Hepatocellular carcinoma. N. Engl. J. Med. 365 (12), 1118–1127.
doi:10.1056/NEJMra1001683

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: The next generation.
Cell 144 (5), 646–674. doi:10.1016/j.cell.2011.02.013

Hong, M., Tao, S., Zhang, L., Diao, L.-T., Huang, X., Huang, S., et al. (2020). RNA
sequencing: New technologies and applications in cancer research. J. Hematol. Oncol. 13
(1), 166–216. doi:10.1186/s13045-020-01005-x

Hoshida, Y., Nijman, S., Kobayashi, M., Chan, J. A., Brunet, J.-P., Chiang, D. Y., et al.
(2009). Integrative transcriptome analysis reveals commonmolecular subclasses of human
hepatocellular carcinoma. Cancer Res. 69 (18), 7385–7392. doi:10.1158/0008-5472.CAN-
09-1089

Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., et al. (2013). Mutational
landscape and significance across 12 major cancer types. Nature 502 (7471), 333–339.
doi:10.1038/nature12634

Kowalik, M. A., Columbano, A., and Perra, A. (2017). Emerging role of the pentose
phosphate pathway in hepatocellular carcinoma. Front. Oncol. 7, 87. doi:10.3389/fonc.
2017.00087

Kruiswijk, F., Labuschagne, C. F., and Vousden, K. H. (2015). p53 in survival, death and
metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16 (7), 393–405.
doi:10.1038/nrm4007

Kudo, Y., Sugimoto, M., Arias, E., Kasashima, H., Cordes, T., Linares, J. F., et al. (2020).
PKCλ/ι loss induces autophagy, oxidative phosphorylation, and NRF2 to promote liver
cancer progression. Cancer Cell 38 (2), 247–262. doi:10.1016/j.ccell.2020.05.018

Lai, P., Chi, T.-Y., and Chen, G. G. (2007). Different levels of p53 induced either
apoptosis or cell cycle arrest in a doxycycline-regulated hepatocellular carcinoma cell line
in vitro. Apoptosis 12 (2), 387–393. doi:10.1007/s10495-006-0571-1

Liang, J.-y., Wang, D.-s., Lin, H.-c., Chen, X.-x., Yang, H., Zheng, Y., et al. (2020). A
novel ferroptosis-related gene signature for overall survival prediction in patients with
hepatocellular carcinoma. Int. J. Biol. Sci. 16 (13), 2430–2441. doi:10.7150/ijbs.45050

Liu, F., Hou, W., Liang, J., Zhu, L., and Luo, C. (2021). LRP1B mutation: A novel
independent prognostic factor and a predictive tumor mutation burden in hepatocellular
carcinoma. J. Cancer 12 (13), 4039–4048. doi:10.7150/jca.53124

Liu, J., Ma, Q., Zhang, M., Wang, X., Zhang, D., Li, W., et al. (2012). Alterations of
TP53 are associated with a poor outcome for patients with hepatocellular carcinoma:

Frontiers in Genetics frontiersin.org12

Li et al. 10.3389/fgene.2023.1075347

https://ngdc.cncb.ac.cn/gvm/
https://www.frontiersin.org/articles/10.3389/fgene.2023.1075347/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1075347/full#supplementary-material
https://doi.org/10.1158/0008-5472.CAN-21-0885
https://doi.org/10.1158/1078-0432.CCR-18-0163
https://doi.org/10.1038/nrc2693
https://doi.org/10.1038/s41575-019-0229-4
https://doi.org/10.1053/j.gastro.2019.09.005
https://doi.org/10.1158/1078-0432.CCR-16-2554
https://doi.org/10.1158/1078-0432.CCR-16-2554
https://doi.org/10.1056/NEJMra1001683
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1186/s13045-020-01005-x
https://doi.org/10.1158/0008-5472.CAN-09-1089
https://doi.org/10.1158/0008-5472.CAN-09-1089
https://doi.org/10.1038/nature12634
https://doi.org/10.3389/fonc.2017.00087
https://doi.org/10.3389/fonc.2017.00087
https://doi.org/10.1038/nrm4007
https://doi.org/10.1016/j.ccell.2020.05.018
https://doi.org/10.1007/s10495-006-0571-1
https://doi.org/10.7150/ijbs.45050
https://doi.org/10.7150/jca.53124
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1075347


Evidence from a systematic review and meta-analysis. Eur. J. cancer 48 (15), 2328–2338.
doi:10.1016/j.ejca.2012.03.001

Llovet, J. M., Montal, R., Sia, D., and Finn, R. S. (2018). Molecular therapies and
precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 15 (10), 599–616.
doi:10.1038/s41571-018-0073-4

Long, J., Lin, J., Wang, A., Wu, L., Zheng, Y., Yang, X., et al. (2017). PD-1/PD-L blockade
in gastrointestinal cancers: Lessons learned and the road toward precision
immunotherapy. J. Hematol. Oncol. 10 (1), 146–221. doi:10.1186/s13045-017-0511-2

Long, J., Zhang, L., Wan, X., Lin, J., Bai, Y., Xu, W., et al. (2018). A four-gene-based
prognostic model predicts overall survival in patients with hepatocellular carcinoma. J. Cell
Mol. Med. 22 (12), 5928–5938. doi:10.1111/jcmm.13863

Mantovani, F., Collavin, L., and Del Sal, G. (2019). Mutant p53 as a guardian of the
cancer cell. Cell Death Differ. 26 (2), 199–212. doi:10.1038/s41418-018-0246-9

Mendiratta, G., Ke, E., Aziz, M., Liarakos, D., Tong, M., and Stites, E. C. (2021). Cancer
gene mutation frequencies for the US population.Nat. Commun. 12 (1), 1–11. doi:10.1038/
s41467-021-26213-y

Nault, J. C., Martin, Y., Caruso, S., Hirsch, T. Z., Bayard, Q., Calderaro, J., et al. (2020).
Clinical impact of genomic diversity from early to advanced hepatocellular carcinoma.
Hepatology 71 (1), 164–182. doi:10.1002/hep.30811

Nault, J. C., and Villanueva, A. (2021). Biomarkers for hepatobiliary cancers.Hepatology
73, 115–127. doi:10.1002/hep.31175

Príncipe, C., Dionísio de Sousa, I. J., Prazeres, H., Soares, P., and Lima, R. T. (2021). LRP1B: A
giant lost in cancer translation. Pharmaceuticals 14 (9), 836. doi:10.3390/ph14090836

Rooney, M. M., Miller, K. N., and Plichta, J. K. (2023). Genetics of breast cancer: Risk
models, who to test, and management options. Surg. Clin. 103 (1), 35–47. doi:10.1016/j.
suc.2022.08.016

Senft, D., and Ze’ev, A. R. (2016). Adaptive stress responses during tumor metastasis and
dormancy. Trends cancer 2 (8), 429–442. doi:10.1016/j.trecan.2016.06.004

Sun, X., and Malhotra, A. (2018). Noncoding RNAs (ncRNA) in hepato cancer: A
review. J. Environ. Pathology, Toxicol. Oncol. 37 (1), 15–25. doi:10.1615/
JEnvironPatholToxicolOncol.2018025223

Wang, M., and Xiong, Z. (2021). The mutation and expression level of LRP1B are
associated with immune infiltration and prognosis in hepatocellular carcinoma. Int.
J. General Med. 14, 6343–6358. doi:10.2147/IJGM.S333390

Xue, R., Chen, L., Zhang, C., Fujita, M., Li, R., Yan, S.-M., et al. (2019). Genomic and
transcriptomic profiling of combined hepatocellular and intrahepatic cholangiocarcinoma
reveals distinct molecular subtypes. Cancer Cell 35 (6), 932–947. doi:10.1016/j.ccell.2019.
04.007

Yang, C., Huang, X., Li, Y., Chen, J., Lv, Y., and Dai, S. (2021). Prognosis and
personalized treatment prediction in TP53-mutant hepatocellular carcinoma: An in
silico strategy towards precision oncology. Briefings Bioinforma. 22 (3), bbaa164.
doi:10.1093/bib/bbaa164

Yang, Y., Qu, Y., Li, Z., Tan, Z., Lei, Y., and Bai, S. (2022). Identification of novel
characteristics in TP53-mutant hepatocellular carcinoma using bioinformatics. Front.
Genet. 13, 874805. doi:10.3389/fgene.2022.874805

Yang, Z., Shang, J., Li, N., Zhang, L., Tang, T., Tian, G., et al. (2020). Development and
validation of a 10-gene prognostic signature for acute myeloid leukaemia. J. Cell. Mol. Med.
24 (8), 4510–4523. doi:10.1111/jcmm.15109

Zhang, B., Tang, B., Gao, J., Li, J., Kong, L., and Qin, L. (2020). A hypoxia-related
signature for clinically predicting diagnosis, prognosis and immune microenvironment of
hepatocellular carcinoma patients. J. Transl. Med. 18 (1), 342. doi:10.1186/s12967-020-
02492-9

Zhang, X., Fu, Z., and Zhang, X. (2021). TP53 mutation related and directly regulated
lncRNA prognosis markers in hepatocellular carcinoma. OncoTargets Ther. 14,
4427–4437. doi:10.2147/OTT.S321669

Zou, W., and Chen, L. (2008). Inhibitory B7-family molecules in the tumour
microenvironment. Nat. Rev. Immunol. 8 (6), 467–477. doi:10.1038/nri2326

Frontiers in Genetics frontiersin.org13

Li et al. 10.3389/fgene.2023.1075347

https://doi.org/10.1016/j.ejca.2012.03.001
https://doi.org/10.1038/s41571-018-0073-4
https://doi.org/10.1186/s13045-017-0511-2
https://doi.org/10.1111/jcmm.13863
https://doi.org/10.1038/s41418-018-0246-9
https://doi.org/10.1038/s41467-021-26213-y
https://doi.org/10.1038/s41467-021-26213-y
https://doi.org/10.1002/hep.30811
https://doi.org/10.1002/hep.31175
https://doi.org/10.3390/ph14090836
https://doi.org/10.1016/j.suc.2022.08.016
https://doi.org/10.1016/j.suc.2022.08.016
https://doi.org/10.1016/j.trecan.2016.06.004
https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018025223
https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018025223
https://doi.org/10.2147/IJGM.S333390
https://doi.org/10.1016/j.ccell.2019.04.007
https://doi.org/10.1016/j.ccell.2019.04.007
https://doi.org/10.1093/bib/bbaa164
https://doi.org/10.3389/fgene.2022.874805
https://doi.org/10.1111/jcmm.15109
https://doi.org/10.1186/s12967-020-02492-9
https://doi.org/10.1186/s12967-020-02492-9
https://doi.org/10.2147/OTT.S321669
https://doi.org/10.1038/nri2326
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1075347

	Prognosis and personalized medicine prediction by integrated whole exome and transcriptome sequencing of hepatocellular car ...
	1 Introduction
	2 Materials and methods
	2.1 Patients and tumor materials
	2.2 Common data set
	2.3 Whole exome sequencing and data analysis
	2.4 Principal analysis tools and R packages
	2.5 Statistical analysis

	3 Results
	3.1 Mutations of the main driver genes
	3.2 Impact of main driver gene mutations on the prognosis of HCC patients
	3.3 Biological characteristics related to TP53 mutation and LRP1B mutation
	3.4 TCGA as a training set to construct a prognostic model of TP53 wild-type HCC
	3.5 Evaluation and verification of prediction ability of the model
	3.6 Clinical predictive application of biological differences and risk scores in high and low groups

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


