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Panels of informative biallelic single nucleotide polymorphisms (SNPs) have been
proposed to be an economical method to fast-track the population genetic
analysis of Plasmodium falciparum in malaria-endemic areas. Whilst used
successfully in low-transmission areas where infections are monoclonal and highly
related, we present the first study to evaluate the performance of these 24- and 96-
SNP molecular barcodes in African countries, characterised by moderate-to-high
transmission, where multiclonal infections are prevalent. For SNP barcodes it is
generally recommended that the SNPs chosen i) are biallelic, ii) have a minor allele
frequency greater than 0.10, and iii) are independently segregating, to minimise bias in
the analysis of genetic diversity and population structure. Further, to be standardised
and used in many population genetic studies, these barcodes should maintain
characteristics i) to iii) across various iv) geographies and v) time points. Using
haplotypes generated from the MalariaGEN P. falciparum Community Project
version six database, we investigated the ability of these two barcodes to fulfil these
criteria in moderate-to-high transmission African populations in 25 sites across
10 countries. Predominantly clinical infections were analysed, with 52.3% found to
be multiclonal, generating high proportions of mixed-allele calls (MACs) per isolate
thereby impeding haplotype construction.Of the 24- and 96-SNPs, loci were removed
if they were not biallelic and had low minor allele frequencies in all study populations,
resulting in 20- and 75-SNPbarcodes respectively for downstreampopulationgenetics
analysis. Both SNP barcodes had low expected heterozygosity estimates in these
African settings and consequently biased analyses of similarity. Both minor and major
allele frequencies were temporally unstable. These SNP barcodes were also shown to
identifyweakgenetic differentiation across largegeographic distances basedonMantel
Test and DAPC. These results demonstrate that these SNP barcodes are vulnerable to
ascertainment bias and as such cannot be used as a standardised approach for malaria
surveillance in moderate-to-high transmission areas in Africa, where the greatest
genomic diversity of P. falciparum exists at local, regional and country levels.
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1 Introduction

Plasmodium falciparum malaria remains a persistent threat for
sub-Saharan Africa, where approximately 95% of total malaria cases
and 96% of all malaria deaths occur (World Health Organisation,
2022). With unprecedented rebounds in prevalence since 2016,
made worse with the COVID-19 pandemic (World Health
Organisation, 2022), elimination targets that have been set to be
achieved by 2030 are ambitious. The potential contribution of
molecular surveillance to determine changes in population
diversity and structure in routine monitoring and evaluation of
control and elimination strategies is a topic of active research, with a
variety of approaches using putatively neutral variation or antigen-
encoding loci being explored.

In the microbiological world, P. falciparum presents a special
case in the use of these molecular surveillance methods for several
reasons. There is a spectrum of population structures from clonal in
epidemic settings, to highly diverse in the high burden countries of
Africa. This is directly related to transmission intensity (Anderson
et al., 2000). With frequent exposure to infected mosquitoes in
moderate and high transmission settings, the majority of infections
in humans contain multiple distinct P. falciparum genomes (ranging
from 1 to 20 diverse genomes in a microlitre of blood), which can
frequently recombine due to the obligatory sexual (meiotic) phase of
the life cycle in the mosquito (Babiker et al., 1994; Paul et al., 1995).
Identifying markers that are informative, regardless of
recombination intensity, which remain stable across time is
challenging, due to the high rate of genetic recombination in P.
falciparum populations (Escalante et al., 2015). Given the “many
epidemiologies of malaria” with associated diverse population
structures, the development and performance of molecular
surveillance methods need to be evaluated in a range of
transmission settings (see (Escalante and Pacheco, 2019) for an
extensive review of population genetics in Plasmodium spp.). One
methodmay not be the solution for all malaria endemic areas nor for
comparative studies.

“Molecular barcodes” of single nucleotide polymorphisms
(SNPs) have been proposed as a molecular surveillance tool and
heralded as the new frontier of malaria surveillance, revisiting
research in human, animal, and plant genetics almost 20 years
ago (Syvänen, 2001; Vignal et al., 2002; Ohashi and Tokunaga,
2003; Langridge and Chalmers, 2005). This has been prompted by
the needs of scientists in endemic countries for genotyping
methods that can be used with standard laboratory equipment,
at reasonable costs and without specialised skills. As malaria
control and elimination interventions are actioned locally, it is
therefore imperative for analyses of genetic diversity and
population structure to be performed in-country (Vignal et al.,
2002). SNPs are typically biallelic and the benefits of using SNPs
include the abundance of annotated markers, low-scoring error
rates, transferability of data across laboratories, the ability to
genotype neutral and non-neutral regions in the same run, and,
in contrast to multiallelic markers such as microsatellites, can
largely be fully automated (Khlestkina and Salina, 2006). While
microsatellites have been successfully used in moderate-to-high
transmission, genotyping these markers are more laborious and
cannot be fully automated. Therefore, we wish to evaluate
whether SNP barcodes would be useful in these settings.

Small molecular barcodes have been applied to evaluate changes
in diversity and population structure of P. falciparum as a result of
malaria interventions; detect geographic origins of infection,
whether local or imported; distinguish parasite clones from one
another, using neutral theory; as well as identify spatial
differentiation between parasite populations. 24-SNP (Daniels
et al., 2008) and 96-SNP (Nkhoma et al., 2013) barcodes have
been successfully deployed in low-transmission countries such as
those in Southeast Asia (Thailand (Daniels et al., 2008), Thai-
Cambodia border (Nkhoma et al., 2013)), South America
(Charles et al., 2016), and also in areas of Africa having
undergone intense malaria control programmes (Senegal (Daniels
et al., 2008; Daniels et al., 2013; Daniels et al., 2015; Bei et al., 2018),
Ndirande, Malawi (Sisya et al., 2015) and Madagascar (Rice et al.,
2016)). Other genome-wide SNP genotyping panels have been
successful to detect intercontinental (Neafsey et al., 2008) and
within-country (Aydemir et al., 2018; Tessema et al., 2020; Verity
et al., 2020) population structure but require many more SNPs
(>500) for the same purpose. However, their utility in highly diverse
moderate-to-high transmission settings, where the burden of
malaria remains the highest, has not been rigorously assessed.

The immediate problem with the use of SNP barcodes on
samples from moderate-to-high transmission settings is the high
prevalence of multiclonal infections and whether haplotypes can be
accurately constructed for population genetic analysis. This is
known as phasing and is more challenging with biallelic SNPs
(Chang et al., 2017; Zhu et al., 2018; Gerlovina et al., 2022),
compared to more polyallelic microsatellite markers (Anderson
et al., 1999). The standard empirical solution in malaria
population genetics (Anderson et al., 2000; Tessema et al., 2020)
used by the originators of the 24-SNP barcode (Daniels et al., 2008)
is to use only single-clone infections with the consequence of
drastically reducing the numbers of loci and sample size for
analysis. Here we illustrate this point with an analysis of a 24-
SNP barcode dataset of asymptomatic infections from a high-
transmission malaria endemic region in Obuasi, Ghana
(Supplementary Material, ethics approval: CPN 11/04-05). In this
dataset, approximately 80% of infections were multiclonal, resulting
in a median of 25%–33% of loci with mixed-allele calls (MACs)
(i.e., heteroallelic calls) per haplotype. These MACs severely limited
the number of isolates available for haplotype construction,
necessary to perform population genetics analysis. Motivated by
the difficulties in analysing the Obuasi dataset due to the high
prevalence of multiclonal infections, we decided to explore further
whether this issue was more widespread in other endemic areas in
Africa. We tested the suitability of two published SNP barcodes
(Daniels et al., 2008; Nkhoma et al., 2013) to identify genetic
diversity and population structure in 25 moderate-to-high
transmission settings in Africa.

It is recommended that SNP barcodes i) are biallelic, ii) have a
minor (least frequent) allele frequency greater than 0.10 and iii)
independently segregating, so that genetic diversity and
population structure analyses are not biased. Further, for these
barcodes to be standardised as a one-size-fits-all panel, they iv)
should work across a range of geographies and v) be temporally
stable. SNP genotypes of isolates obtained from the MalariaGEN
P. falciparum community Project version 6 (MalariaGEN et al.,
2021) were used to test these criteria in SNP barcodes across
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TABLE 1 Epidemiological and Study Population Information. Genetic data were obtained for N = 2,317 isolates from the Pf6 MalariaGen repository and epidemiological metadata were obtained from study references as
indicated in the table.

Region Country Study
location

Year Latitude Longitude Isolates Endemicity Transmission Malaria disease
status

References

West Benin Homel 2014 6.3607027 2.4381709 36 Moderate Double Peak Clinical Bertin et al. (2013)

The Gambia Basse 2014 13.30944 −14.21925 81 High Seasonal Clinical Amambua-Ngwa et al. (2018)

Brikama 2014 13.27479 −16.64092 42 Moderate Seasonal Clinical Amambua-Ngwa et al. (2018)

Ghana Cape-Coast 2014 5.55602 −0.1969 100 High Perennial Clinical Kamau et al. (2015), Mensah et al. (2020)

Kintampo 2012 8.0564 −1.72446 35 High Perennial Clinical Mensah-Brown et al. (2015)

Navrongo 2009 10.885568 −1.086617 46 High Seasonal Clinical MalariaGEN et al. (2021)

Navrongo 2010 10.885568 −1.086617 135 High Seasonal Clinical MalariaGEN et al. (2021)

Navrongo 2011 10.885568 −1.086617 93 High Seasonal Clinical MalariaGEN et al. (2021)

Navrongo 2012 10.885568 −1.086617 39 High Seasonal Clinical Duffy et al. (2015)

Navrongo 2013 10.885568 −1.086617 241 High Seasonal Clinical Kamau et al. (2015)

Navrongo 2015 10.885568 −1.086617 57 High Seasonal Clinical MalariaGEN et al. (2021)

Guinea Faranah 2011 10.0438 −10.7351 37 High Perennial Clinical Mobegi et al. (2014)

Nzerekore 2011 7.753857 −8.818703 112 High Perennial Clinical Mobegi et al. (2014)

Mali Faladje 2013 13.1333 −8.3333 124 Moderate Seasonal Clinical Kone et al. (2013), Kone et al. (2020), Ghansah et al. (2014),
Kamau et al. (2015)

Nioro du Sahel 2014 15.23199 −9.58863 49 Moderate Unstable Clinical Duffy et al. (2018), Diakité et al. (2019)

Central Cameroon Buea 2013 4.14638 9.245531 235 High Seasonal Clinical/
Asymptomatic

Apinjoh et al. (2015)

Democratic Republic of
Congo (DRC)

Kinshasa 2012 −4.36939 15.320977 171 High Double Peak Clinical Onyamboko et al. (2014)

Kinshasa 2013 −4.36939 15.320977 108 High Double Peak Clinical Onyamboko et al. (2014)

East Kenya Kisumu 2014 −0.0917 34.76796 34 High Perennial Clinical Ngalah et al. (2015), U.S. President’s Malaria Initiative (2015),
U.S. President’s Malaria Initiative (2017), Laurent et al. (2018)

Kombewa 2014 -0.1035 34.5183 26 High Perennial Clinical Ngalah et al. (2015), U.S. President’s Malaria Initiative (2015),
U.S. President’s Malaria Initiative (2017), Laurent et al. (2018)

Malawi Chikwawa 2011 -16.193575 34.7715 221 High Perennial Clinical Ocholla et al. (2014), Ravenhall et al. (2016)

Zomba 2011 −15.3891 35.3292 33 High Perennial Clinical U.S. President’s Malaria Initiative (2012), Ravenhall et al. (2016)

(Continued on following page)
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African populations. We describe high levels of multiclonal
infections and MACs that hindered accurate haplotype
construction for population genetics analyses. Nonetheless,
there was sufficient data to show haplotype variation with
large-scale geographic distance across Africa. Whilst proven to
be practical and meaningful in low-transmission settings with a
high proportion of monoclonal infections, we suggest that other
molecular surveillance methods, not restricted by these
limitations, are needed to guide malaria control programmes
in endemic settings characterised by moderate-to-high
transmission in Africa.

2 Methods

2.1 MalariaGEN Africa P. falciparum dataset

SNP genotypes in African countries were obtained from the
MalariaGEN Plasmodium falciparum Community Project (version 6,
https://www.malariagen.net/resource/26) (MalariaGEN et al., 2021),
hereinafter referred to as the “Pf6 dataset”. All samples in the
Pf6 dataset were obtained from blood samples from patients with P.
falciparum malaria with informed consent from the patient or parent/
guardian with ethical approval as described in (MalariaGEN et al.,
2021). Standard laboratory protocols were used to determine the DNA
quantity and proportion of human DNA per sample (Manske et al.,
2012; Miles et al., 2016). As P. falciparum samples were obtained from
human blood samples, the parasite is in its haploid stage.

Available metadata included the study ID, country, location and
year that each isolate was collected. Isolates were filtered for the
following criteria: i) used Whole Genome Sequencing library
strategy, ii) passed the quality control (“QC pass”), and iii)
sequencing was performed using the Illumina HiSeq 2000 paired-
end sequencing platform (MalariaGEN et al., 2021). We used the
term “study population” to represent isolates collected from the
same location and year. From a total of 2,922 African isolates in the
database, study populations that had greater than or equal to 25 isolates
and were from study populations defined as moderate- or high-
transmission by their respective study and, if not specified, defined
by us using the World Health Organisation (WHO/GMP, 2017) were
then selected to undergo further analysis (N = 2,317 isolates) (Table 1;
Supplementary Figure S1). This threshold was used to minimise
statistical bias while maximising the number of populations included
in the study (Pruett and Winker, 2008; Hoban and Schlarbaum, 2014;
Flesch et al., 2018; Qu et al., 2020). These isolates were sampled across
10 countries from 25 study populations in West Africa (Benin, The
Gambia, Ghana, Guinea, and Mali), Central Africa (Cameroon and
DRC), and East Africa (Kenya, Malawi, and Tanzania) (Figure 1).
Supplementary Figure S1 outlines the inclusion/exclusion criteria used
to filter isolates and SNP loci to generate final datasets for downstream
analyses.

2.2 Description of SNP barcodes

To be able to understand the genetic diversity and population
structure of each parasite isolate and test whether small panels or
“barcodes” provide enough information, we chose to analyseTA
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published 24- and 96-SNP barcodes (Daniels et al., 2008; Nkhoma
et al., 2013) that were found to successfully work in low-
transmission settings.

2.2.1 24-SNP barcode
We mined each parasite isolate genome for their genotype at

the 24 genome-wide SNPs in the “molecular barcode” Taq-Man
assay as described (Daniels et al., 2008). Briefly, Daniels et al.
(2008) first genotyped over 2,100 SNPs that were discovered
through comparative genome sequencing (Volkman et al., 2007)
before developing a panel of 24-SNPs that were found to be
biallelic, with a high minor allele frequency (MAF >0.35), and
had a conserved region around the SNP to design locus-specific
primers for amplification (i.e., type-able for genotyping). These
24-SNPs were also chosen as they were unlinked and
independently segregating from each other as determined by
linkage disequilibrium analysis. These 24-SNPs were verified to
detect genetic diversity and population structure of 22 and
16 clinical isolates from Senegal and Thailand, respectively
(Daniels et al., 2008).

2.2.2 96-SNP barcode
We also examined each parasite isolate genome for their

genotypes at the 96 SNPs in a genome-wide panel using the
Illumina GoldenGate platform as described (Nkhoma et al.,
2013). These SNPs were gleaned from PlasmoDB version 6.2
(www.plasmodb.org) and were chosen if they were highly

polymorphic for parasites from the Thai-Burma border,
assayable, not in genes encoding surface proteins (e.g., var, rifin,
surfin, stevor), transporters or telomeric genes that may be under
strong selection, were distributed across all 14 chromosomes and
were found to have MAFs between 0.10 and 0.50. No formal linkage
or neutrality analysis was reported in regard to the generation of the
SNP barcode. The 96-SNP panel was used to analyse genetic
diversity and population structure of asymptomatic and clinical
isolates from pregnant women and children younger than 5 years
old at the Thai-Burma border (N = 1,731) from 2001 to 2010
(Nkhoma et al., 2013).

2.3 Genotype extraction from the
Pf6 database

Published positions of the 24- and 96-SNP barcodes (Daniels
et al., 2008; Nkhoma et al., 2013) were based on versions 5.0 and
6.2 of the P. falciparum 3D7 genome on PlasmoDB (Bahl et al.,
2003), respectively (Supplementary Table S1). Variants in the
Pf6 database were called through read mapping to the P.
falciparum 3D7 v3 reference genome (see Methods in
(MalariaGEN et al., 2021)). Using blastn (Altschul et al., 1990),
we aligned sequences containing the SNP loci of interest to the
Pf3D7 v3 reference genome to obtain their corresponding positions
in the Pf6 dataset. Genotypes with read depths of five or greater were
retained (read depth, DP ≥ 5). In addition, alleles were only included

FIGURE 1
Map of countries and locations in the Pf6 database from Africa included in this study. 2,317 isolates were chosen from locations per year where there
was a minimum of 25 isolates (see Methods). Colours indicate the country that isolates were obtained from, and diamonds indicate the specific regions
that individuals were sampled with P. falciparum infections. Themap is segregated into three regions: West Africa (green hues; n = 5), Central Africa (blue
hues; n = 2), and East Africa (red hues; n = 3). Latitude/Longitude coordinates for study locations were obtained from the MalariaGEN Plasmodium
falciparum community Project version 6 (MalariaGEN et al., 2021) isolate study and metadata.
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if supported by at least two reads (allelic depth, AD ≥ 2) or 5% of
reads for genotypes with higher read depths (DP > 50) (Hamilton
et al., 2019). Alleles for a locus were excluded if they were single
nucleotide insertions or deletions (indels), as they are strictly not
defined as SNPs (Khlestkina and Salina, 2006). This excluded
0.0014% (N = 1) and 0.0036% (N = 10) of alleles in the filtered
24- and 96-SNP datasets, respectively.

2.4 Addressing multiple P. falciparum
infections

2.4.1 Defining monoclonal and multiclonal P.
falciparum infections

To determine the clonality of infections, we obtained data on the
within-host inbreeding index (FWS) for each isolate from the
Pf6 dataset (MalariaGEN et al., 2021). This metric estimates the
allele frequency of parasites within an individual isolate (HW)
relative to the allele frequency within the total parasite
population (HS) using the read count for each locus in the
Pf6 dataset. FWS is presented as a proportion that ranges from
0 to 1, where FWS values closer to 1 indicate high inbreeding rates
(less genetically diverse) and lower FWS values indicate low
inbreeding rates (more diverse/mixed genotypes) in the parasite
population. An infection is said to predominantly contain a single
genotype when FWS ≥ 0.95 (Manske et al., 2012; Mobegi et al., 2014;
Duffy et al., 2018; Amambua-Ngwa et al., 2019; Amegashie et al.,
2020). Based on this,N = 1,105 isolates were found to predominantly
have a monoclonal infection (Figure 2A). To maintain study
population sizes ≥25, nine study populations with <25 isolates
were removed from analysis, resulting in N = 956 isolates
(Supplementary Figure S1).

2.4.2 Mixed-allele calls (MACs)
To determine whether multiclonal infections could be used

for downstream population genetics analyses, we needed to
ensure constructed multilocus haplotypes did not include
more than 5% of the barcode with mixed-allele calls (MACs,
reported as “N” in other studies e.g. (Daniels et al., 2008)).
Including haplotypes with many MACs would consequently
introduce a high degree of uncertainty into each haplotype
and affect subsequent results. Further, in studies where whole-
genome sequence data is not available, the clonality of isolates is
determined by the percentage of MACs for an isolate. Isolates in
which more than one allele was observed for greater than or equal
to 5% of loci are conventionally termed as multiclonal infections,
and monoclonal infections are those with less than 5%, e.g.,
(Daniels et al., 2008; Rice et al., 2016). We therefore kept a tally of
the number of MACs per locus to understand the genetic
complexity per locus and if it was evenly distributed. The
Pearson’s correlation coefficient was calculated using the
function “cor.test” in the R package “stats” v. 3.6.2, to test the
association between MACs and FWS.

2.4.3 Investigating two approaches to handling
multiclonal infections

We tested two common methods of accounting for multiclonal
infections in SNP or whole-genome data analysis. The first approach

(i.e., “dominant allele”method) attempts to include both mono- and
multiclonal infections (N = 2,317) in analyses by constructing the
“dominant” haplotype for each isolate that has a MAC. This
artificially generates a monoclonal infection for all genotypes. A
“dominant” allele was defined as an allele call with the highest
number of supporting reads (i.e., higher AD) per SNP locus using
the ratio of AD (dividing the larger AD by the smaller AD). For loci
where both alleles were supported equally (i.e., AD ratios = 1), an
allele was selected at random to complete the construction of
haplotypes without MACs (Manske et al., 2012). Higher AD ratio
values (i.e., AD ratios >1) indicated that one allele had more
supporting reads than the other.

The second more “conservative” method removes all
multiclonal infections, as defined by FWS, retaining only
monoclonal infection data for subsequent analysis (N = 1,105).
The percentage of data loss for the latter method was calculated as
the number of multiclonal infections divided by the total number of
infections per study population.

2.5 Using the performance criteria to analyse
SNP barcodes

Performance of the 24- and 96-SNP molecular barcodes were
analysed to estimate genetic diversity and population structure as
described below.

2.5.1 Minor allele frequency (MAF) calculation
MAFs are central to analyses using SNP data and is therefore

important to accurately estimate. Subsequent to our investigation of
methods for handling multiclonal infections that found the
conservative approach (Anderson et al., 2005; Taylor et al., 2017;
Amegashie et al., 2020; Han et al., 2022) as the more stringent and
reliable method, MAFs in downstream analyses were estimated
using only monoclonal infections. A custom R script was used to
calculate the MAFs according to the genotype data that was input
(available on GitHub at: https://github.com/UniMelb-Day-Lab/
SNP_MinorAlleleFreq). In short, MAFs for each locus were
calculated by removing MACs from the numerator and
denominator to reduce bias. This custom script generates a table
describing in each row a locus with the number of isolates with data,
the number of MACs, the major and minor alleles, and the minor
allele frequency calculated. Because samples were haploid, Hardy-
Weinberg Equilibrium was not applicable in this study.

2.5.2 Spatial analysis of MAFs
A MAF <0.10 indicated that a locus was not representative

and that alleles were moving towards fixation in the population,
while a MAF ≥0.10 indicated that the locus can discriminate
between isolates in the population. As MAFs impact the
inference of population structure (Anderson et al., 2005),
MAFs were analysed by region, country and study population
(study location per year). Four loci were removed from the 24-
SNP panel and 21 loci were removed from the 96-SNP panel as
they were not strictly biallelic and/or had MAFs <0.10, resulting
in 20-SNP and 75-SNP barcodes analysed downstream for
informative population genetics analyses (Supplementary
Figure S1).
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FIGURE 2
Clonality of infections inAfrican studypopulationswithmoderate-to-highmalaria transmission. (A)Within-host diversity usingwithin-host inbreeding index (FWS).
The dotted red line indicates the FWS ≥ 0.95 threshold below which isolates were considered to have diverse multiclonal infections. The country for the study
population is indicated for reference on the top with total number (N) of isolates represented for that country. (B, C) Correlation between FWS and the proportion of
mixed-allele calls (MACs) per isolate for the (B) 24 SNPbarcode and (C)96 SNPbarcode. Each dot represents one isolate per study population (location by year).
For thebothbarcodes, the FWS andMACsper isolatewere significantly negatively correlated (Pearson’s correlationcoefficient (r) andp-value are shown). (D)Positively-
skewed distributions of allelic depth ratios (AD ratio) from exploring the potential use of the “dominant allele”method. AD ratios close to one indicate approximately
similar read coverage for both alleles whereas large AD ratio values represent a substantial difference in read coverage for two alleles. Numbers above the box plots
represent thenumberof genotypeswithMACsconsidered in thesecalculations.Horizontal central solid line represents themedian, thebox represents the interquartile
range (IQR) from the 25th to 75th percentiles, thewhiskers indicate themost extremedata point, which is nomore than 1.5 times the interquartile range from the box,
and thedots show theoutliers. (E)Data loss in all studypopulations fromusing the “conservative”approachof excludingmulticlonal infections. Total numberof isolates
per study population with monoclonal and multiclonal infections are shown as light and dark orange bars, respectively. Data is separated by study population (study
location by year) and values above each bar indicate the percent of data lost when removing multiclonal infections (FWS < 0.95) from the analysed datasets.
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2.5.3 Testing multilocus association within SNP
barcodes

The standardised index of association (�rd) was used to estimate the
extent of multilocus linkage disequilibrium (LD) i.e., the non-random
association of alleles (Agapow and Burt, 2001), across the 20- and 75-
SNP barcodes. Pairwise �rd was calculated to determine whether any
patterns of LD were due to any pairs of SNP loci, or if there were any
significantly associated pairs of loci masked by an overall LD. If the SNP
loci were putatively neutral, thenmultilocus LDwould provide evidence
of past and/or current selection on the local parasite population
(Ruybal-Pesántez et al., 2017a). The �rd and pairwise �rd among loci
were estimated using a Monte Carlo simulation method of
999 samplings, where alleles were reshuffled at random among
haplotypes, using the R package poppr v. 2.7.1 (Kamvar et al.,
2014). To calculate �rd and pairwise �rd, only isolates with complete
infection haplotypes (i.e., no missing data) were used so that the
permutation analysis shuffled the alleles per haplotype without bias.

2.5.4 Genetic diversity
In order to calculate genetic diversity estimates of the number of

multilocus haplotypes (h), expected heterozygosity (He) and population
genetics analyses,MACswere replacedwith no value (“NA”), hereinafter
known as the “cleaned monoclonal infections” dataset (Supplementary
Figure S1). The mean values of h and He were calculated for both
barcodes across each region, country and study population using the
“cleaned monoclonal infection” haplotypes (where MACs were
removed) via R package “poppr” v. 2.7.1 (Kamvar et al., 2014).

2.5.5 Allelic differentiation by locus and over spatial
scales

Pairwise population genetic distances across each population
scale were determined by Weir and Cockerham’s FST using the R
package “hierfstat” v. 0.5-10 (Winter 2012). FST is a measure of
the extent an allele is fixed between populations (Jost et al., 2018),
and was calculated as the proportion of allelic variance between
loci for the 20- and 75-SNP genotypes. FST values range from 0 to
1, where values close to 1 indicated that populations were fixed
for different alleles, while values close to 0 denote that allele
frequencies were identical in both populations. Pairwise FST was
used to calculate estimates of allele differentiation between pairs
of regional, country and study population levels. Only cleaned
multilocus haplotypes (i.e., with no missing data) were used to
calculate FST and pairwise FST, referred to as the “complete
monoclonal infections” dataset (Supplementary Figure S1),
which resulted in 653 and 690 isolates for the 20- and 75-SNP
barcodes respectively. A Mantel test was calculated using the R
package “vegan” v. 1.3.3 (Oksanen et al., 2020) with 999 iterations
to evaluate the relationship between geographic distance (latitude
and longitude, Table 1) and genetic divergence (pairwise FST).
Given that there were only three regions to generate a matrix,
comparisons between regions could not be performed.

2.5.6 Population structure analysis
Population differentiation between study populations, countries,

and regions was evaluated by discriminant analysis of principal
components (DAPC) using the “complete monoclonal infections”
dataset of the 20- and 75-SNP barcodes (Supplementary Figure S1).
DAPC is a multivariate method that aims to summarise genetic

differentiation between groups and was calculated using the R
package “adegenet” v. 2.1.5 (Jombart, 2008). The DAPC can detect
population structure below a threshold detectable by FST, providing an
estimate of how much data was required to find population structure
given genetic differentiation in the population (Patterson et al., 2006).
Pairwise distance matrices (i.e., PCA) were first built from evaluating
the proportion of SNPs that had different alleles for two isolates. The
outputs were a series of uncorrelated eigenvectors (principal
components) that determined the directionality of space in the PCA
plot, and eigenvalues that determined the magnitude or variation of
genetic diversity along the axis. Eigenvalues greater than one accounted
for more variance than one of the original variables in the data.
Discriminant analyses of these matrices identified the contribution
of alleles to possible clusters that may have been driving genetic
differentiation between populations. Ellipses were drawn that
contained 95% of the genotypes per population. The term
“discriminant function” (DF) was used to explain the principal
components input to calculate the DAPC. Plots of DF eigenvalues
and the contribution of each allele to explain population structuring
were generated using “adegenet” for each corresponding DAPC
(Jombart, 2008).

2.5.7 Genetic similarity
To identify finer-scale levels of structure without geospatial location

data for each individual isolate, we calculated the pairwise allele sharing
(PAS) score for isolates within each study population for each barcode
using the “completemonoclonal infections” haplotypes with nomissing
data. PAS is an identity-by-state (IBS) measure of genetic similarity that
can be used across relatively few loci and was calculated as the number
of alleles shared between two multilocus haplotypes (NAB) divided by
the number of SNP loci (NL) (PAS = NAB/NL) (Ruybal-Pesántez et al.,
2017a; Argyropoulos et al., 2021). The PAS score characterised variation
in multilocus haplotypes from clones (PAS = 1.0) to genetically
dissimilar (PAS ≤ 0.25) (Argyropoulos et al., 2021). Larger-scale
genomic measures like identity-by-descent (IBD) are performed for
larger genome sequences (a minimum of 200 biallelic loci) to infer
similarity or “relatedness” over a range of DNA segments (Henden
et al., 2018; Schaffner et al., 2018; Taylor et al., 2019) and therefore were
unable to be pursued.

2.5.8 Temporal analysis of genetic diversity and
similarity

Study locations with isolate data in more than one time point were
used to investigate whether the SNP loci in each panel were able to be
used longitudinally. Temporal data using the “cleaned monoclonal
infections” dataset were available for Navrongo, Ghana (2010, 2011,
and 2013) and Kinshasa, DRC (2012 and 2013) (Supplementary Figure
S1). MAFs and He were compared within each study location over time
using the cleaned monoclonal infections data. The function “Hs.test” in
“adegenet”was used to test the difference inHe between two time points
(x and y) using the equation He(x) - He(y) using 999 Monte-Carlo test
simulations (Jombart, 2008). Subsequent analysis of variation of loci on
chromosome 7 of the 20-SNP barcode led to a closer investigation with
its association to a known gene under selection, Plasmodium falciparum
chloroquine resistance transporter (pfcrt), which may be in close
proximity to these SNP loci. We obtained data on the drug resistance
classification (sensitive/resistant/undetermined) and marker genotypes
for each isolate from the Pf6 dataset (MalariaGEN et al., 2021).
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Resistance against chloroquine (CQ) and other 4-aminoquinolines,
including the artemisinin drug combination amodiaquine (AQ), is
primarily governed by the K76T mutation in pfcrt on chromosome 7.
A chi-squared test (χ2) was used for univariate analyses of discrete
variables to compare proportions. PAS were compared between study
locations over time using the “complete monoclonal infections” data. As
such, isolates from Navrongo 2011 were removed as there
were <25 complete infection haplotypes for analysis. A non-
parametric Wilcoxon rank-sum test was used to compare the PAS
between two time points in Base R v. 3.5.0 (R Core Team, 2018).

2.6 Statistical tests

All statistical analysis were carried out in R (R Core Team, 2018)
implemented in RStudio v. 1.1.383 (RStudio Team, 2015) with Base
R and the R package “tidyverse” v. 1.3.1 (Wickham et al., 2019) for
data curation and visualisation. A test was deemed statistically
significant if the p-value was <0.05.

3 Results

3.1 Description of the Pf6 database study
populations and epidemiology

The availability of SNP genotypes in the Pf6 database allowed us to
test the performance of the 24- and 96-SNP barcodes to examine
population diversity and structure. There were 2,922 isolates sampled in
Africa thatmet the selection criteria (seeMethods). Of these, haplotypes
were generated for 2,317 (79%) isolates from 25 study populations
(study location by year) across 10 moderate-to-high transmission
countries in Africa. Study population sample sizes varied from
26 isolates (Kombewa, Kenya, 2014) to 235 isolates (Buea,
Cameroon, 2013) (Table 1). There were seven study populations
across three countries in East Africa (Kenya, Malawi, and Tanzania),
three study populations across two countries in Central Africa
(Cameroon and DRC), and the remaining 15 study populations
across five countries in West Africa (Benin, The Gambia, Ghana,
Guinea, and Mali) (Table 1; Figure 1). The number of isolates,
MACs, major and minor alleles, and minor allele frequencies
(MAFs) were generated per locus for each study population
(Supplementary Tables S2, 3 for the 24- and 96-SNP barcodes,
respectively). Malaria transmission in these study populations was
predominantly seasonal and year-round (perennial), with few
populations exhibiting double peak (two higher-transmission
seasons) and unstable (large variation year-to-year) transmission
(Table 1). All isolates in these studies were obtained from clinical
malaria cases across all ages, from newborns to above 65 years old, with
only one study collecting additional data from individuals across all ages
with asymptomatic malaria infections (Table 1).

3.2 Majority of overall infections in African
study populations were multiclonal

We investigated the clonality of infections using the within-host
inbreeding index, FWS, where values ≥0.95 indicated that infections

predominantly contained a single genome.We showed that 52.3% of
overall infections were found to be multiclonal and that these
multiclonal infections dominated in most study populations
(Figure 2A). Similarly, more than half of infections in the 24-
SNP barcode (53.0%) and the 96-SNP barcode (56.4%) had more
than 5% mixed-allele calls (MACs) in a haplotype (Supplementary
Table S4), which is the threshold typically used to determine
clonality of infections (see Methods). Comparisons of FWS values
to proportions of MACs for each same infection revealed a
significant negative correlation between the two metrics for both
barcodes (24-SNP: r = -0.948 [95% CI: −0.952, −0.944], p < 0.001;
96-SNP: r = -0.977 [95% CI: −0.979, −0.975], p < 0.001),
demonstrating that proportions of MACs in an isolate’s
haplotype is a reliable predictor of within-host diversity for an
isolate for cases where FWS is unavailable (Figures 2B,C).

Given that such large proportions of infections in all study
populations were reported as multiclonal, we further explored
two prevailing approaches that have been used in the literature to
either include or exclude multiclonal infections in downstream
analyses (see Methods for detailed descriptions of both
approaches). For the “dominant allele” method, distributions
of AD ratios were both positively skewed for both barcodes
(Figure 2D). The median of AD ratios for genotypes with
MACs of the 24-SNP and 96-SNP barcode was 2.63 (IQR:
1.58-4.68) and 2.62 (IQR: 1.59-4.75), respectively, indicating
that most MACs were due to alleles that were found in
approximately similar proportions. Given this result, the use
of this “dominant allele” method potentially introduces
uncertainty in downstream calculations of MAF as the
assignments of most alleles would be at random or possibly
confounded by systematic biases in read coverage. This poses
the risk of reconstructing inaccurate haplotypes for the majority
of infections.

Consequently, we chose to perform all subsequent analyses
using the “conservative” approach of excluding isolates with
multiclonal infections (FWS < 0.95). While this approach ensured
a higher confidence in the constructed haplotypes, the result was a
reduction in the total number of isolates from 2,317 to 1,105
(Supplementary Figure S1). When inspected by study
populations, the exclusion of multiclonal infections resulted in
data loss for every study population analysed (Figure 2E). The
smallest reduction in the number of isolates was observed for
Homel 2014, Benin (30.6% of infections) whereas the largest
reduction in the number of isolates was reported for Navrongo
2013, Ghana (64.3% of infections).

3.3 Criteria I and II: low minor allele
frequencies (MAFs) and non-biallelic nature
of multiple SNP loci resulted in reduced
barcode sizes and lower expected
heterozygosity

Themonoallelic, triallelic, andmultiallelic loci observed in >70%
of the study populations were removed from downstream analysis,
resulting in 20-SNP and 81-SNP barcodes (Supplementary Table
S5). See Supplementary Results section 1.2.2 for a detailed
description of the observed polymorphisms in the two molecular
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barcodes. Using the “cleaned monoclonal infections” dataset, six loci
in the 81-SNP barcode had MAFs below 0.10 (Supplementary Table
S6), indicating that these loci would not be informative to
differentiate isolates from each other in the population. These
loci were removed from downstream analyses, resulting in a 20-
SNP and 75-SNP barcode, respectively. Table 2 shows MAFs by
region, country, and study population. The median MAF across all
loci was 0.352 (IQR: 0.254-0.422) and 0.333 (IQR: 0.234-0.419) for
the 20- and 75-SNP panels, respectively, across all 25 study
populations, and was similar across all regions, countries, and
study populations for both barcodes (Table 2).

There were 96.8% and 97.2% unique multilocus haplotypes (h)
observed in the 20-SNP and 75-SNP molecular barcodes,
respectively, using the “cleaned monoclonal infections” dataset
for all locations (Table 2; Supplementary Figure S2). Of the
haplotypes that were repeated, they were only found in two or
three isolates for both barcodes in Basse 2014, The Gambia and
Mkuzi-Muheza 2013, Tanzania (Supplementary Figure S2). Despite
finding many unique haplotypes, the mean expected heterozygosity
(He) was low when using both barcodes (20-SNP: He = 0.433; 75-
SNP: He = 0.432) (Table 2) and did not vary between regions
(Kruskal–Wallis: p = 0.368; p = 0.368), countries
(Kruskal–Wallis: p = 0.444; p = 0.444) nor study populations
(Kruskal–Wallis: p = 0.451; p = 0.451). This is best explained by
the low minor allele frequencies for individual loci per barcode
across the continent.

3.4 Criteria III: overall, loci in the 20- and 75-
SNP barcodes were found to be
independently segregating from each other

The standardised index of association was used to assess
multilocus linkage disequilibrium (LD), or non-random
associations among SNP loci, using “complete monoclonal
infection” haplotypes with no missing data. Overall, there was
no evidence of linkage disequilibrium for both SNP barcodes (�rd:
p < 0.05, Supplementary Table S7). However, at the regional-,
country- and study population scale, there was significant LD
when using the 20-SNP barcode in Basse 2014 (The Gambia),
Cape-Coast 2014 and Navrongo 2013 (Ghana), and when using
the 75-SNP barcode in Basse 2014 (The Gambia), Navrongo
2010 and 2013 (Ghana), Kinshasa 2013 (DRC) and Mkuzi-
Muheza 2013 (Tanzania) (Supplementary Table S7). For the
20-SNP barcode, significant pairwise �rd values (p < 0.05) were
found in 63 pairs of loci across all populations; the most
common pairs were Pf3D7_02_v3_842805 vs. Pf3D7_10_v3_
1402510, and Pf3D7_07_v3_628392 vs. P3D7_10_v3_82375 that
were observed in only 3/63 pairs (4.76%) each (Supplementary
Table S8). For the 75-SNP barcode, significant pairwise �rd (p <
0.05) was found in 1,179 pairs of loci across all populations, with
the most common pair, Pf3D7_06_v3_1184506 vs. Pf3D7_06_
v3_1206498, found in only 12/1,179 pairs (1.02%), indicating
weak evidence of physical linkage of two markers on
chromosome 6 (Supplementary Table S9). Overall, there was
no evidence of prevalent LD when using the 20- and 75-SNP
barcodes in these populations.

3.5 Criteria IV: genetic differentiation over
geographic space found to be consistent
with isolation-by-distance despite high
genetic similarity (PAS)

We investigated the level of allelic differentiation by calculating
pairwise Weir and Cockerham’s FST between regions, countries, and
study populations using the complete monoclonal infections dataset
(i.e., no missing data, Supplementary Figure S1). Overall, FST was low
for each locus for the 20-SNP (mean FST: 0.0165) and 75-SNP (mean
FST: 0.00339) barcodes (Supplementary Table S10) and pairwise FST
values were very low across regions, countries, and study populations
per SNP barcode (Supplementary Figure S3). The greatest genetic
differentiation was between East and West Africa (20-SNP: FST =
0.0026, 75-SNP: FST = 0.0046) at the regional-level, between Guinea
and Tanzania (20-SNP: FST = 0.0078) and Malawi and Cameroon (75-
SNP: FST = 0.0080) at the country-level, and between Nzerekore 2011
(Guinea) and Mkuzi-Muheza 2013 (Tanzania) (20-SNP: FST = 0.0087)
and Chikwawa 2011 (Malawi) and Buea 2013 (Cameroon) (75-SNP:
FST = 0.0080) at the study population level (Supplementary Figure S3).
Genetic and geographic variation were found to be positively correlated,
signifying that genetic variation increased across greater geographic
distance and vice versa, by country (20-SNP: Mantel: r = 0.373, p =
0.038, Figure 3A; 75-SNP: Mantel: r = 0.794, p = 0.006; Figure 3B) and
by study population (75-SNP: Mantel: r = 0.657, p < 0.001, Figure 3D),
consistent with a pattern of isolation-by-distance, except for the 20-SNP
barcode at the study population level (Mantel: r = -0.068, p = 0.661,
Figure 3C).

DAPC was used to explore the extent of population structure of
P. falciparum across the African continent using “complete
monoclonal infection” haplotypes. All principal components of
the PCA were retained during the preliminary variable
transformation which accounted for 100% of the total genetic
variability. Genetic structure was captured by the first two DFs
for the 20-SNP (Figure 3E, inset) and 75-SNP (Figure 3F, inset)
barcodes. The first DF separates West and East Africa, and the
second DF separates Central Africa from West and East Africa. The
same patterns were reflected when the DAPCs were calculated with
prior information for the country and study population per isolate
for the 20-SNP (Supplementary Figures 4A, B) and 75-SNP
(Supplementary Figures 4C, D) barcodes. We observed a sharp
decrease in DFs when calculating DAPC by country and study
populations for both barcodes, but ellipses were removed due to high
overlap, indicating that smaller scale structure was not as easily
identifiable (Supplementary Figure S4).

To understand local population structure, we calculated the
genetic similarity of barcode haplotypes within the same study
population using PAS scores, an IBS method. To minimise bias,
“complete monoclonal infection” haplotypes with no missing data
were used to generate PAS scores (Supplementary Figure S1). Across
each study population, using both 20- and 75-SNP barcodes, we
found that the majority of infection haplotypes shared more than
50% of their alleles (20-SNP: median PAS = 0.550; 75-SNP: median
PAS = 0.573) (Figure 4; Supplementary Table S11). Using the 75-SNP
barcode, we saw an absence of isolate pairs that did not share any
alleles (i.e., PAS = 0) and very few (8.9%) sharing up to 50% of alleles
(0.2 ≤ PAS < 0.5) (Supplementary Figure S12).
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3.6 Criteria V: temporal analysis found an
interchange of major and minor alleles for
many loci and dynamic PAS scores

Given the likelihood of high outcrossing in these moderate-
to-high transmission settings, we investigated the trends of the
SNP barcodes over time. We analysed the two study locations
with available temporal data: Navrongo, Ghana (2010, 2011 and
2013) and Kinshasa, DRC (2012 and 2013). Firstly, we used the
“cleaned monoclonal infections” dataset to investigate whether
the genetic diversity was stable over time. The mean He values
were not significantly different over time (Hs test: p > 0.05,
Table 3). MAFs across loci were similar over time in Navrongo
and Kinshasa for both 20- and 75-SNP barcodes (Supplementary
Tables S2, 3). Interestingly, for 8/20 and 23/75 SNP loci,
respectively, the nucleotide base that was defined as the minor
allele changed to the major allele from one year to the next in
both Navrongo and Kinshasa (Figure 5). There were five SNP loci
with interchanging bases on chromosome 7 for the 20-SNP
barcode (Figure 5A), while the 75-SNP barcode had loci with

interchanging bases spread across 10 of the 14 chromosomes
(Figure 5B). Therefore, we analysed the level of drug resistance
marker pfcrt that is also found on chromosome 7, moderated by
the K76T mutation, in the two study locations over time. For
pfcrt, 59.3% of the overall African population included in this
study had the sensitive K76 allele (Figure 5C). Over time, we
observed near fixation of this allele in Navrongo and Kinshasa
(Figure 5D). Only the Pf3D7_07_v3_435497 ‘A’ allele was
significantly related to the prevalence of CQ sensitivity in
Navrongo and Kinshasa (χ2: p < 0.001, Supplementary Table
S13) and should be reconsidered for population genetic analyses
using neutral theory.

Moreover, to understand whether isolates were genetically
similar over time, we calculated the PAS scores between study
locations over time using the “complete monoclonal infections”
data. PAS scores were significantly different in Kinshasa over time
(Wilcoxon: 20-SNP: p = 0.031 and 75-SNP: p < 0.001) and in
Navrongo from 2010 to 2013 for the 20-SNP barcode (Wilcoxon:
p = 0.032) but not the 75-SNP barcode (Wilcoxon: p = 0.078)
(Table 3).

TABLE 2 Patterns of P. falciparum genetic diversity of monoclonal infections in African study populations in Pf6 database for the 20- and 75-SNP barcodes.

N h He MAFs

Population 20-SNP 75-SNP 20-SNP 75-SNP 20-SNP 75-SNP

West Africa 0.425 0.429

Benin 0.432 0.421 0.320 [0.270–0.410] 0.320 [0.208–0.400]

Homel 2014 25 25 25 0.432 0.421 0.320 [0.270–0.410] 0.320 [0.208–0.400]

The Gambia 0.411 0.433 0.326 [0.186–0.452] 0.333 [0.255–0.431]

Basse 2014 51 45 45 0.411 0.433 0.326 [0.186–0.452] 0.333 [0.255–0.431]

Ghana 0.422 0.427 0.345 [0.258–0.423] 0.337 [0.240–0.419]

Cape-Coast 2014 58 57 57 0.422 0.417 0.362 [0.272–0.448] 0.293 [0.198–0.400]

Navrongo 2010 69 69 69 0.426 0.428 0.350 [0.247–0.407] 0.348 [0.261–0.398]

Navrongo 2011 39 39 39 0.408 0.439 0.315 [0.250–0.433] 0.359 [0.266–0.436]

Navrongo 2013 86 84 84 0.421 0.422 0.345 [0.262–0.384] 0.349 [0.238–0.424]

Guinea 0.407 0.432 0.327 [0.239–0.458] 0.373 [0.239–0.436]

Nzerekore 2011 59 58 59 0.407 0.432 0.327 [0.239–0.458] 0.373 [0.239–0.436]

Mali 0.436 0.429 0.381 [0.226–0.421] 0.355 [0.230–0.419]

Faladje 2013 62 62 62 0.435 0.427 0.377 [0.280–0.407] 0.355 [0.232–0.419]

Nioro du Sahel 2014 31 31 31 0.442 0.436 0.392 [0.226–0.452] 0.355 [0.226–0.419]

Central Africa 0.439 0.431

Cameroon 0.446 0.425 0.353 [0.287–0.429] 0.336 [0.234–0.408]

Buea 116 113 112 0.446 0.425 0.353 [0.287–0.429] 0.336 [0.234–0.408]

Democratic Republic of Congo (DRC) 0.430 0.430 0.345 [0.261–0.417] 0.336 [0.247–0.429]

Kinshasa 2012 73 72 72 0.436 0.430 0.388 [0.268–0.431] 0.356 [0.243–0.434]

Kinshasa 2013 49 47 48 0.420 0.429 0.310 [0.261–0.366] 0.327 [0.265–0.418]

East Africa 0.436 0.420

Malawi 0.421 0.416 0.358 [0.244–0.409] 0.310 [0.228–0.409]

Chikwawa 2011 88 86 86 0.421 0.416 0.358 [0.244–0.409] 0.310 [0.228–0.409]

Tanzania 0.441 0.419 0.354 [0.259–0.411] 0.312 [0.198–0.406]

Mkuzi-Muheza 2013 91 82 83 0.436 0.415 0.380 [0.201–0.426] 0.333 [0.222–0.418]

Muleba 2013 27 26 26 0.436 0.415 0.321 [0.259–0.416] 0.333 [0.222–0.434]

Nachingwea 2013 32 32 32 0.439 0.429 0.344 [0.281–0.406] 0.312 [0.188–0.375]

Total 956 925 929 0.433 0.432 0.352 [0.254–0.422] 0.333 [0.234–0.419]

h = multilocus haplotypes; He = mean expected heterozygosity; MAF = minor allele frequency.

He andMAF are provided for each study population, country and region;MAF are presented as medians with interquartile ranges (IQRs). Bold values signify the rows that correspond to regions

and countries.
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4 Discussion

Here we present the first study to critically evaluate the use of
two SNP barcodes in moderate-to-high transmission countries in
Africa with a high proportion of multiclonal P. falciparum
infections. Both 24- and 96-SNP barcodes could recapitulate a
signal of large-scale genetic differentiation by geographic distance

as shown by Mantel Test and DAPC, consistent with minimal
divergence of loci with high gene flow across the African
continent (Mobegi et al., 2012; Mobegi et al., 2014; Duffy et al.,
2017; MalariaGEN et al., 2021). But finer-scale estimates of genetic
diversity (He) and similarity (PAS) were not reflective of highly
outcrossing populations, likely because these small molecular
barcodes were not strictly biallelic and had similar and low

FIGURE 3
Pairwise allelic differentiation formonoclonal infections using the 20-SNP and 75-SNP barcodes. Pairwise FST values betweenWest, Central and East
Africa were calculated fromN = 653 andN = 690 isolates for the 20- and 75-SNP barcodes, respectively. Pairwise FSTwas calculated as the proportion of
allelic variance for the (A, C) 20- and (B, D) 75-SNP genotypes by (A, B) country or (C, D) by study population (study location per year). The Mantel’s test (r)
and p-values are indicated for each SNP panel and population level (country and study population). Further, a discriminant analysis of principal
components (DAPC) based onmonoclonal infections with no missing data for the (E) 20-SNP and (F) 75-SNP barcode are shown. Two eigenvalues were
used to plot the DAPC, as indicated in the bottom insert. The plot can be segregated into three regions (ellipticals): West Africa (green dots), Central Africa
(blue dots), and East Africa (red dots).
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minor allele frequencies (Table 4). Although multilocus SNP
haplotypes were found to be largely unique, they only differed at
one or two loci. This paucity of informative loci led to the erroneous
conclusion that they appeared to be clonal or genetically similar,
which may result in a less suitable solution to control. Additionally,
analysing two study locations with temporal data showed that the
allele frequencies per locus changed rapidly over short one-year
periods, concordant with a large effective population size and high
outcrossing rates (Anderson et al., 2000). Our results highlight two
key points for SNP barcodes in moderate-to-high transmission
settings in Africa, i) the high number of multiclonal infections
led to approximately half of the data loss and ii) the low minor
allele frequencies across SNP loci biased genetic diversity and
population genetic estimates.

Biallelic SNP markers have proven highly informative in
molecular surveillance for P. falciparum in low-transmission
settings. But our results underline that in moderate-to-high

transmission settings, where the number of multiclonal infections
outweighs monoclonal infections, the use of SNP barcodes as a
molecular marker for surveillance is constrained. We demonstrated
that reconstructing haplotypes from assigning a dominant allele is
random as alleles in a mixed infection are found at equal
proportions. This led to only retaining monoclonal infections,
removing half of the isolate data to perform reliable genetic
diversity and population genetics analyses. This is concerning
due to possible introduced bias in reducing sample size when
performed in the real-world, seen with our case study in Obuasi
where only approximately 15%–20% of the surveyed population had
monoclonal infections. This is further exacerbated when accounting
for the cost of equipment, reagents, and labour involved in the data
generation. An additional cost that has not been considered is the
need to survey large numbers of individuals to get enough
monoclonal infections. The lack of useable data differs from
many other scenarios in the literature where SNPs have been

FIGURE 4
Genetic similarity within each study population using the (A) 20-SNP and (B) 75-SNP barcodes. 653 and 690 complete multilocus monoclonal
haplotypes (i.e., with no missing data) for the 20- and 75-SNP barcodes were used to calculate the pairwise allele sharing (PAS) scores comparing isolates
within each study population. Therewere 18,346 and 20,266 pairwise comparisons between haplotypes using the 20- and 75-SNP barcodes, respectively
(see Supplementary Table S11). Colours represent populations in West Africa (green hues), Central Africa (blue hues) and East Africa (red hues).
Horizontal central solid line represents the median, the box represents the interquartile range (IQR) from the 25th to 75th centiles, the whiskers indicate
the most extreme data point, which is no more than 1.5 times the interquartile range from the box, and the dots show the outliers.
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used in low-transmission regions with predominantly monoclonal
infections.

While software packages such as THE REAL McCOIL (Chang
et al., 2017), DEploid (Zhu et al., 2018), and DEploidIBD (Zhu et al.,
2019) attempt to phase or reconstruct SNP datasets with multiclonal
infections using Bayesian and/or Markov Chain Monte Carlo
methods, they introduce a large degree of uncertainty and
assumptions, particularly when there are three or more genotypes
per infection with a high number of MACs (Labbé et al., 2023). In
fact, in areas of such high transmission and endemicity, it is not
uncommon for infections to contain five or more distinct P.
falciparum clones per microlitre of blood (Chang et al., 2017;
Tiedje et al., 2017; 2022; World Health Organisation, 2018). This
drawback extends to larger SNP-based panels (>500 SNPs) due to
the high occurrence of MACs, frequent outcrossing, and large
effective population size in high-transmission settings. For
example a study by Verity et al. (2020) sequenced 2,537 isolates
in the Democratic Republic of Congo, Ghana, Tanzania, Uganda
and Zambia using a panel of 739 geographically informative SNPs
and another panel of 1,151 putatively neutral SNPs across the P.
falciparum genome. Of these isolates, only 1,382 (54.5%) and 674
(26.6%) respectively passed the quality control and filtering steps,
resulting in an enormous loss of data and expense. These issues of
cost-effectiveness are of relevance to public health where only
approximately $1-10 per person per annum is spent on malaria
control in endemic countries in Africa (World Health Organisation,
2022).

Of the remaining monoclonal samples that were able to be
analysed, our results from SNP barcodes did not reflect diversity,
similarity and structure estimates as found in other studies using a
higher magnitude of genome-wide SNPs (Mobegi et al., 2014;
Daniels et al., 2015; Amambua-Ngwa et al., 2019; Moser et al.,
2020; Verity et al., 2020; MalariaGEN et al., 2021), putatively neutral
microsatellites (Anderson et al., 2000; Mobegi et al., 2012; Duffy
et al., 2017; Argyropoulos et al., 2021) and antigenic markers
(Ruybal-Pesántez et al., 2017b; Day et al., 2017; Rorick et al.,
2018). One possible explanation for these observed discrepancies
is the “ascertainment bias” phenomenon, where polymorphisms
that were discovered in few samples or locations can result in a
deviation from an expected allele frequency distribution (Kuhner

et al., 2000; Wakeley et al., 2001; Helyar et al., 2011). While these loci
were polymorphic in Senegal and Thailand (24-SNP barcode
(Daniels et al., 2008)) and along the Thai-Burma border over
10 years (96-SNP barcode (Nkhoma et al., 2013)), when applied
to these African populations, some loci were mono or triallelic,
indicating fixation or hypermutable sites respectively, and other loci
had low average MAFs than would be useful. This consequently
biases estimates which rely on allele frequencies, such as expected
heterozygosity, linkage disequilibrium, genetic similarity, and
population structure (Wakeley et al., 2001; Nielsen and
Signorovitch, 2003; Helyar et al., 2011; Speed and Balding, 2015;
Taylor et al., 2019) To minimise these biases and for barcodes to
potentially work across multiple populations, loci must be carefully
selected by local- and large-scale geospatial sampling and whole-
genome sequencing of multiple isolates (Helyar et al., 2011); if these
loci were to be analysed using neutral theory, as with these barcodes
discussed, then these SNP loci must also be assessed for signals of
selection (e.g., using Tajima’s D). A study of this magnitude is
currently very expensive (approximately $86 USD per isolate)
(Tessema et al., 2020), laborious, and is not guaranteed to
produce a SNP barcode that is temporally stable, particularly in
highly recombining settings (as reviewed in (Escalante et al., 2015)),
due to the profound effects of sexual recombination.

Longitudinal investigations using SNP barcodes must err on the
side of caution. Given the recent changes in antimalarial drug policy
and use (World Health Organisation, 2022), it is possible that
selection of the K76 allele of pfcrt (i.e., chloroquine sensitivity) is
driving variation at Pf3D7_07_v3_435497 in the 20-SNP barcode.
This observation corresponds to the policy change to artemether-
lumefantrine (AL) and artesunate-amodiaquine (ASAQ) in Ghana
in 2007, where reports have indicated a higher use of AL (World
Health Organisation, 2015) that selects for the K76 allele (Sisowath
et al., 2009; Venkatesan et al., 2014); increased prevalence of K76 has
also been reported in a nearby region of Bongo District, Ghana
(Narh et al., 2020). In DRC, there has been low yet steady increase in
ACT use from 2% in 2010 to 30% in 2017–2018 (U.S. President’s
Malaria Initiative, 2020), coinciding with the slow increase in
chloroquine sensitivity (pfcrt K76). This provides an example of
how important longitudinal investigations of molecular panels are to
ensure population genetics theories are being upheld. Any temporal

TABLE 3 Temporal changes in genetic diversity (expected heterozygosity, He) and genetic similarity (pairwise allele sharing scores, PAS) in Navrongo, Ghana (2010,
2011, and 2013) and Kinshasa, Democratic Republic of Congo (DRC) (2012 and 2013) for the 20- and 75-SNP barcodes.

He* PAS ‡

Study populations over time 20-SNP 75-SNP 20-SNP 75-SNP

Navrongo (Ghana) 2010 and 2013 0.656 0.500 0.032 0.078

2010 and 2011 0.125 0.494

2011 and 2013 0.204 0.465

Kinshasa (DRC) 2012 and 2013 0.135 0.631 0.013 <0.001

He = expected heterozygosity, PAS = pairwise allele sharing, N = number of isolates.

*Data are presented as the p-value calculated by “Hs.test” function.

‡ Data are presented as the p-value calculated by Wilcoxon test.

He was calculated using all multilocus haplotypes for both 20- and 75-SNP, barcodes: Navrongo N = 194, Kinshasa N = 122.

PAS was calculated using complete multilocus haplotypes (no missing data): 20-SNP: Navrongo N = 108, Kinshasa N = 86; 75-SNP: Navrongo N = 120, Kinshasa N = 81. Navrongo 2011 was

removed as there were ≤25 complete infection haplotypes for analysis.
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variation in allele frequencies related to outcrossing must complicate
the calculation of priors for Bayesian inference.

A key assumption when analysing SNPs in population genetics is
that they are biallelic (Schlötterer, 2004), but as shown when using the
whole-genome sequence data to generate our barcode haplotypes, this is
not always the case. The two SNP barcodes used in our analysis,
however, were designed to be genotyped using platforms that are only

able to detect two previously identified bases (alleles) per locus (e.g.,
Taq-Man or Illumina GoldenGate). How then can we monitor genetic
diversity and population structure in moderate-to-high transmission
settings? The answer likely lies in the use of polymorphic markers such
as putatively neutral markers that permit the inclusion of “dominant”
infections (e.g., short tandem repeats (STRs) or microsatellites)
(Anderson et al., 1999; Tessema et al., 2020). For example,

FIGURE 5
Longitudinal changes in two P. falciparum populations over time with monoclonal infections and chloroquine (CQ) resistance in Africa over time.
Temporal study locations include Navrongo, Ghana (2010, 2011 and 2013) and Kinshasa, DRC (2012 and 2013). Changes in the minor allele using (A) 20-
SNP and (B) 75-SNP barcodes are shown for Navrongo, Ghana and Kinshasa, DRC, and include interchanging base from 1 year to the next (red), changes
from or to a minor allele frequency (MAF) below 0.10 approximating fixation at that locus (black), and no base or significant MAF change over time
(grey). Chloroquine (CQ) drug resistance patterns are shown (C)within each study population and (D) temporal study locations. Note, colours correspond
to the classification on the Pf6 database for resistance (pink), sensitive (green), and undetermined (blue). See methods for resistance classification for
these drugs.
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microsatellites were able to resolve global P. falciparum structure with
only 12 markers (Anderson et al., 2000), while 9-10 microsatellite
markers were able to give realistic assessments of these measures related
to both long-lasting insecticidal net (LLIN) (Kattenberg et al., 2019) and
indoor residual spraying (IRS) (Argyropoulos et al., 2021) interventions,
respectively, in moderate-to-high transmission settings. With respect to
neutral variation, STR loci are more useful to detect recent population
expansions than SNPs as they accumulate new mutations at a faster
rate, are multiallelic often in excess of 10 alleles, and have more private
alleles; thus they remain the most informative putatively neutral
markers in population genetic studies across many organisms
(Ellegren, 2004; Selkoe and Toonen, 2006; Guichoux et al., 2011),
including in P. falciparum and P. vivax genomes across various
geographic populations (Han et al., 2022). Microhaplotypes, regions
of 100–200 bp with high genetic diversity unbroken by recombination,
of SNPs and STR loci are currently proposed as a high-throughput and
automated alternative to microsatellite genotypingmethods that rely on
capillary electrophoresis (Tessema et al., 2020). However current
microhaplotype genotyping for P. falciparum is largely SNP-based
and yet to be deployed in high-transmission settings in the field.

Alternatively, adaptive genes may present an innovative
approach (Barton, 2010) consistent with the large parasite
population size seen within and between human hosts in sub-
Saharan Africa. Antigenic markers, which rely on size- or
coding-sequence polymorphisms (e.g., msp2, csp, ama1, var), can
distinguish highly diverse multiclonal infections, but cannot
construct haplotypes (Snounou et al., 1999; Ruybal-Pesántez
et al., 2017b; Nelson et al., 2019). A recent study (Ghansah et al.,
2023) compared the use of SNPs, microsatellites and var DBLa
typing (“varcoding”) to evaluate genetic diversity and population
structure in a high-transmission setting in Ghana and found that
while microsatellites provided greater resolution than SNPs,
varcoding was superior in identifying finer-scale relatedness and
population structuring.

Molecular barcodes are a practical and low-cost solution to avoid
relying on whole-genome sequencing for surveillance. However here we
show the application of SNP barcodes encounters challenges in sub-
Saharan Africa in moderate-to-high transmission settings due to the
high number of multiclonal infections, frequent outcrossing, and large
effective population size of P. falciparum as well as spatial and temporal
variation. Alternative markers such as STRs and microhaplotypes are
possible solutions to study P. falciparum population structure using
neutral theory.
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Metric of interest Purpose 24-SNP barcode 96-SNP barcode

Clonality (mono- or
multiclonal)

To perform downstream analyses on
genetic diversity and population

structure

Only useful for MOI = 1 (Due to high
MACs >5%); >50% of isolates removed from

data analysis

Only useful for MOI = 1 (Due to high
MACs >5%); >50% of isolates removed from

data analysis

Biallelic (polymorphism) Common assumption and is required to
capture variation

Must remove 16.7% loci: 20-SNP barcode Must remove 25% of loci: 81-SNP barcode
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Independent segregation of
loci/selectively neutral

Variation maintained irrespective of
areas under genetic selection

SNPs on chromosome 7 may be in LD to pfcrt Yes

Genetic diversity (He) Reflects variation in the gene pool of
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