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Purpose: Our aim is to build and validate a clinical-radiomic model for non-
invasive liver steatosis prediction based on non-contrast computed
tomography (CT).

Methods: We retrospectively reviewed 342 patients with suspected NAFLD
diagnoses between January 2019 and July 2020 who underwent non-contrast
CT and liver biopsy. Radiomics features from hepatic and splenic regions-of-
interests (ROIs) were extracted based on abdominal non-contrast CT imaging. The
radiomics signature was constructed based on reproducible features by adopting
the least absolute shrinkage and selection operator (LASSO) regression. Then,
multivariate logistic regression analysis was applied to develop a combined
clinical-radiomic nomogram integrating radiomics signature with several
independent clinical predictors in a training cohort of 124 patients between
January 2019 and December 2019. The performance of models was
determined by the area under the receiver operating characteristic curves and
calibration curves. We conducted an internal validation during 103 consecutive
patients between January 2020 and July 2020.

Results: The radiomics signature was composed of four steatosis-related features
and positively correlated with pathologic liver steatosis grade (p < 0.01). In both
subgroups (Group One, none vs. steatosis; Group Two, none/mild vs. moderate/
severe steatosis), the clinical-radiomicmodel performed best within the validation
cohort with an AUC of 0.734 and 0.930, respectively. The calibration curve
confirmed the concordance of excellent models.

Conclusion: We developed a robust clinical-radiomic model for accurate liver
steatosis stage prediction in a non-invasive way, which may improve the clinical
decision-making ability.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) refers to a
circumstance characterized by overmuch hepatic fat
accumulation, and its prevalence is growing at an incredible rate
around the world due to the obesity epidemic (Allen et al., 2018). As
a hepatic presentation of the metabolic syndrome, NAFLD is often
accompanied by obesity, dyslipidemia or insulin resistance (Loomba
and Sanyal, 2013). In recent years, NAFLD has become the most
common cause of serum aminotransferase abnormalities as well as a
chronic liver disease within western countries, and the more severe
liver steatosis is proven to has a closer relationship with non-
alcoholic steatohepatitis (NASH) and the increased risk of liver
cancer (Chalasani et al., 2008; White et al., 2012; Piscaglia et al.,
2016; Leoni et al., 2018; Wang et al., 2022a). Due to its high
incidence and potential risks, it can be predicted that early
detection of high-risk individuals and timely intervention of
NAFLD will become one of the most vital tasks in the field of
liver disease in the coming decades (Hu et al., 2020).

NAFLD is a spectrum characterized by pathological features of
diffuse hepatic steatosis and triglyceride accumulation (Fan et al.,
2019). Although biopsy is widely recognized as the standard method
for evaluating diffuse liver diseases, there are several shortcomings,
including interobserver variability, costs, tissue sampling errors and
complications such as pain, bleeding, infection or even mortality
(Samir et al., 2015; Tang et al., 2015; Homayounieh et al., 2020).
Simple and cost-effective diagnostic modalities and non-invasive
ways to minimize the need for a liver biopsy are now recommended
in both European and American clinical guidelines of NAFLD
(Marchesini et al., 2016; Chalasani et al., 2018). For this, various
non-invasive methods have been developed these years, including
several diagnostic panels of clinical and serological evaluations, such
as hepatic steatosis index (HIS), fatty liver index (FLI) and NAFLD
liver fat score (NAFLD-LFS), etc, (Bedogni et al., 2006; Lee et al.,
2010; Fedchuk et al., 2014). However, none of them was able to
distinguish between moderate and severe stages of hepatic steatosis.

Nowadays, imaging modalities behave well with favourable
capacity in diagnosing hepatic steatosis, including US, MRI, CT,
etc, (Marchesini et al., 2016). Compared to CT andMRI, US remains
the first-line imaging tool for NAFLD diagnosis due to the advantage
of simplicity, reproductivity and inexpensiveness (Monica et al.,
2021). However, it has insufficient sensitivity and even fails to detect
steatosis when <20% or facing high body mass index (BMI)
individuals (Ryan et al., 2002; Saadeh et al., 2002; Fishbein et al.,
2005). Among the exiting approaches, 1H-MRS is the only way can
obtain a quantitative liver fat estimation, but it is costly and not
suitable for routine clinical application (Musso et al., 2010). CT can
diagnose moderate and severe steatosis robustly and offer extra
hepatobiliary information. Therefore, it is still the most frequently
used method for hepatic steatosis assessment. In addition, many
patients only accept non-contrast CT in China due to the low
radiation exposure and reasonable cost-effectiveness (Marrero
et al., 2018).

Radiomics is emerging as a promising field of imaging analysis
technology, in which numerous quantitative features could be
extracted from various invisible images (Gillies et al., 2016). We
expect it a promisingmethod to characterize the hepatic histological.
Prior studies have indicated the potential of radiomics to detect

NASH, fibrosis and cirrhosis within the field of benign liver disease
(Naganawa et al., 2018; Wang et al., 2020). However, to our best
knowledge, few studies focused on differentiating liver steatosis stage
based on a combined clinical-radiomic analysis. We hypothesized
that a clinical-radiomic model based on radiomics features extracted
from the easily acquired non-contrast CT images combined with
standard clinical parameters may improve steatosis grading
accuracy. Therefore, our study aimed to develop and validate a
clinical-radiomic model for staging liver steatosis making use of
non-contrast CT.

Materials and methods

Patients

The Ethics Committee at our institution approved this study at
our institute, and the informed consent was exempted due to the
retrospective nature. We reviewed 342 patients who received liver
biopsies to diagnose suspected NAFLD from January 2019 to
December 2020 at our institution. All patients have done
standardized non-contrast CT and serological tests during the
treatment. The median interval between biopsy and imaging
examination was 14 days. The exclusion criteria are shown in the
patient selection flow diagram (Figure 1). Finally, a whole number of
227 patients were incorporated into this study, who were then
assigned to two cohorts based on the admission time point: 1) A
training cohort of 124 patients between January 2019 and December
2019 for model construction 2) A validation cohort of 103 patients
between January 2020 and December 2020 for internal validation.

All clinical characteristics and laboratory results were acquired
from medical records. Clinical data included age, gender, body mass
index (BMI), hypertension, diabetes, smoking, blood routine tests

FIGURE 1
Patient selection flow diagram.
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(red blood cell [RBC], white blood cell [WBC] and platelet [PLT]),
liver function examinations (alanine aminotransferase [ALT],
aspartate aminotransferase [AST], y-glutamic transpeptidase
[GGT], total bilirubin and albumin) and lipid metabolism tests
(cholesterol and triglycerides). Two fibrosis-related indexes (APRI,
aminotransferase-to platelet ratio index; FIB-4, fibrosis-4 index)
were also calculated from data obtained from the laboratory tests.
APRI was calculated as (aspirate trans inane [international units/
liter]/upper normal limit × 100/platelet counts [×109/liter]) and
fibrosis-4 index as (age[years] × aspirate transaminase [international
units/liter])/(platelet counts [×109/liter] × alanine aminotransferase
[international units/liter]1/2) (Bedogni et al., 2006; Lee et al., 2010).

Liver biopsy

All patients underwent percutaneous biopsy in the right lobe of
the liver under ultrasound guidance by experienced ultrasound
radiologists. Samples were formalin-fixed and paraffin-embedded
for further analysis. Two pathologists (with more than 6 years of
experience in liver pathology) histologically analyzed the liver
biopsy specimens in consensus, who were blinded to the clinical
information and study design. Liver steatosis was graded by the liver
parenchyma involvement of steatosis as S0 (none, <5%), S1 (mild,
5%–33%), S2 (moderate, 33%–66%) and severe (>66%). Hepatic
fibrosis and inflammation activity assessment were also recorded.
All the grading and staging is according to the standard Kleiner
Classification (Kleiner et al., 2005).

CT image acquisition and attenuation
measurements

All participants underwent CT scan in supine position using
multidetector spiral CT scanners (Lightspeed, VCT, or GE
Healthcare, US). The unified CT parameters were as follows: tube
voltage, 120 kVp; tube current, 250-350 mA; collimating slice
thickness, 5 mm; reconstruction slice thickness, 1.25 mm; slice
interval 1.25 mm, rotation time 0.6 s, helical pitch 1.375x, the
field of view between 35 and 40 cm, matrix 512 × 512. A
standard reconstruction algorithm was employed.

Two imaging physicians with 5 and 7 years of abdominal
imaging experience retrospectively assessed all non-contract CT
scans, and all observers were blinded to the clinical or
pathological details. Any disagreement was solved through
regular discussions. After some substandard images had been
excluded, all the CT images were assigned to them to measure
hepatic and splenic attenuation. Two liver-related attenuation
indices were attained for each enrolled image using the non-
contrast CT images, where L represents hepatic attenuation and
S represents splenic attenuation (Park et al., 2006; Sang et al., 2007).
The first index, the liver-to-spleen attenuation ratio (CTL/S), was
calculated as L/S, the second index, the difference between the
hepatic and splenic attenuation (CTL-S) was obtained by L—S.
Hepatic attenuation was calculated as three ROIs’ mean
Hounsfield units, and each ROI consisted of a 2-cm diameter
circle. Lands were settled within three adjacent locations in the
right liver lobe, where they matched the biopsy sites as accurately as

possible. Splenic attenuation was acquired through the average of
three Hounsfield units at three different sections of the spleen (upper
third, middle and lower third). A circular ROI with 2 cm in diameter
was used for each measurement (Figure 2).

Region-of-interest segmentation and
radiomics feature extraction

All the image data were obtained from PACS (Picture Archiving
and Communication system) and imported into ITK-SNAP
software (version 3.8.0; http://www.itksnap.org). Two radiology
residents, both with over 5 years of experience within imaging
diagnosis and processing, were involved in the manual
segmentation of the liver and spleen of all patients. ROIs for the
liver were delineated along the margin of the right hepatic lobe at the
level of the right portal vein by avoiding large hepatic vessels of two
contiguous sections. Two 2 × 2 cm rectangular ROIs were placed at
the middle of the spleen on two contiguous slices.

We applied an open-source R tool package called Pyradiomics
(http://www.radiomics.io/pyradiomics.html) for image preprocessing
and feature extraction. The voxel spacing was standardized with 1 ×
1 × 1mm, and voxel intensity values were discretized with a bin width
of 25 HU to reduce the image noise interference and normalize
intensities. Eight hundred thirty-seven radiomics features were
composed of 18 first-order features, 75 textual features and
744 wavelet-based transformations. Features related to shape and
size were excluded because they mainly reflected the manually
delineated ROIs. To evaluate the reliability of each radiomics feature,
we used the inter-and intraobserver intraclass correlation coefficient
(ICC) based on 30 randomly picked subjects. First, Reader 1 conducted
the ROI segmentation twice in the one-month interval. Then, Reader
two performed all the ROI segmentation independently to calculate
inter-and intraobserver ICC. We considered an ICC of 0.8 as the
prescribed minimum of this study.

Feature selection and radiomic model
establishment in the training cohort

Radiomics features went through a selection process of two
steps to overcome the shortcomings of traditional logistic
regression methods. Firstly, features with high reproducibility
(ICC >0.8 in intra- and interobserver settings) were retained for
further analysis. Secondly, LASSO regression analysis with
penalty parameter tuning conducted by 10-fold cross-
validation was used to select the training cohort’s steatosis-
related features with non-zero coefficient. We selected LASSO
because of its interpretation advantage and its excellent
performance in multiple studies about radiomics (Ji et al.,
2019; Wang et al., 2022b; Wang et al., 2022c). We adopted
Support vector machine (SVM) based on selected radiomics
feature for model training on R software (version 3.6.1, http://
www.r-project.org). SVM is a type of machine learning algorithm
which is widely used to implement classification tasks (Hodgdon
et al., 2015; Moller et al., 2016; Ta et al., 2018). The radiomics
signature for the prediction of liver steatosis was constructed
using SVM algorithm as a classifier to distinguish the steatosis
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stage. The type of SVM was “eps-classification”, of which the
kernel function was radial basis. We divided our data into two
groups to distinguish the liver steatosis stage. We divided our
data into two groups to distinguish the liver steatosis stage.
Group One recognizes the existence of NAFLD between stage
S0 and S1-S3; Group Two distinguishes the mild and moderate-
severe liver steatosis between stage S0-S1 and S2-S3. Both models
of the two groups were established as binary classification models
instead of multinomial ones because the latter one is complicated
and generated multiple possible values for different steatosis
stages. Compared to the complex model, a binary model is
composed of a more straightforward equation and returns a
single probability value, contributing to ease of interpretability
(Park et al., 2019).

Clinical factors selection

We performed two steps to select steatosis-related clinical
factors. First, we applied Spearman correlation analysis for
preliminary screening of all the parameters with significant
correlation (p < 0.05). Next, forward conditional logistic
multivariable analysis (input and output p-value: 0.05 and 0.1,
respectively) was conducted for further selection. The cutoff
value of each independent factor was determined by receiver
operating characteristic (ROC) analysis (maximizing the Youden
index).

Development and validation of prediction
models

We applied multivariate logistic regression analysis to develop
models for liver steatosis prediction in the training cohort, including
both clinical ones and clinical-radiomic ones. A nomogram was
constructed in the training cohort to attain a more easily understood
measure. Our models’ performance was then tested in the
independent validation cohort by employing the formula and
cutoff values acquired from the training cohort. Previous studies
have developed some clinical models to detect steatosis. FLI (Fatty
liver index) has been deemed as an accurate surrogate marker of

hepatic steatosis in Asian andWestern countries. We also calculated
FLI using our clinical parameters for comparison to evaluate our
models better, and an FLI >60 was considered as fatty liver (Bedogni
et al., 2006).

Statistical analysis

Categorical variables were compared with χ2 test or Fisher exact
test. Continuous variables were compared with Mann-Whitney U
test. The diagnostic performance of the established models was
assessed through ROC curves and the area under the curve (AUC)
values. A two-tailed p-value less than 0.05 was accepted statistically
significant. All statistical analyses were performed using R software
(version 3.6.1, http://www.rproject.org) or Statistical Product and
Service Solutions (IBM SPSS, version 22.0; New York, NY).

Results

Patient characteristics

The baseline information of all participants was summarized in
Table 1. No statistical differences were observed within clinical-
radiological-pathological parameters between the training (n = 124)
and validation cohorts (n = 103). The rates of patients with NAFLD
are 38.7% (48 in 124) and 29.1% (30 in 103), and the rates of patients
with moderate-severe NAFLD is 10.5% (13 in 124) and 8.7% (9 in
103) in the training and validation cohorts, respectively, while no
difference was found between the two cohorts (c2, p = .450).

Feature selection and radiomics signature
establishment

A total of 837 radiomics features were extracted from non-
contrast CT, 158 and 89 (based on liver and spleen in two models,
respectively) most stable features of liver and spleen that with high
reproducibility were picked for further processing in both two
groups. Four stable steatosis-related features with non-zero
coefficients screened from the lasso regression model were

FIGURE 2
Non-contrast CT image of a 42-year-old man with mild liver steatosis. The ROI of liver (A) and spleen (B) is indicated by the red area. The ROI of liver
was delineated along the margin of the right hepatic lobe at the level of right portal vein by avoiding large hepatic vessels and the ROI for spleen is 4 cm2

square of two contiguous sections. CT, computed tomography, ROI, region of interest.
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selected based on the training cohort in the two radiomic models,
respectively (both were three from the liver and one from the
spleen). (hepatic features in Figure 3, spleen features in
Supplementary Figure S1). The detailed description of radiomics
features can be found in Supplementary Materials.

The radiomics signature was established making use of the SVM
algorithm. The radiomics score indicated a positive correlation with
pathologic liver steatosis grade (p < .01, Figure 4). In Group One, we
found a difference in radiomics score between patients with and
those without steatosis in the training cohort
(mean, −0.591 vs. −0.191, p < .001), and then confirmed in the
validation cohort (mean, −0.526 vs. −0.426, p < .001). In Group Two,
the radiomics score was compared between patients with none-mild
steatosis and patients with moderate-severe steatosis in the training
cohort (mean, −0.255 vs. −0.219, p < .001), and then confirmed in
the validation cohort (mean, −0.236 vs. −0.101, p = .001). The
radiomics signature showed favourable classification ability with an
AUC of 0.808, 0.791 (training cohort and validation cohort) in
Group one and 0.835, 0.851 (training cohort and validation cohort)
in Group two.

Steatosis-related clinical factors

In the trainingcohort, BMI, ALT/AST, albumin, triglycerides,
CTL-S and CTL/S were found to be related to liver steatosis in Group
one (p < .05, Spearman correlation analysis). Using the same
method, BMI, ALT/AST, albumin, cholesterol, triglycerides,
CTL-S and CTL/S were found to be significantly relevant to
moderate-severe steatosis in Group two. Next, the multivariable
conditional logistic regression analysis identified BMI, triglycerides,
CTL-S as independent steatosis predictors in both two of the models
(Table 2). Cutoff values of BMI, triglycerides, CTL-S were 24.82 kg/
m2, 0.77 mmol/L, 7.2 HU in Group one 1 and 25.5 kg/m2,
1.17 mmol/L, 5.42 HU in Group two, respectively.

Development, performance and validation
of the established models

In Group one (none vs. steatosis), the formula of the clinical model
was: Y1 (clinical) = 0.206 × BMI +1.242 × Triglycerides—0.164 ×

TABLE 1 Baseline characteristics.

Parameter Training (n=124) Validation (n=103) P value

Age* (years) 58 (52.75-65.25) 57 (50-65) .224

Gender (male/female, n) 98/26 80/23 .804

BMI* (kg/m2) 23.2 (21.07-25.00) 24.06 (21.64-25.81) .244

Hypertension 38 (30.6) 31 (30.1) .929

Diabetes 21 (16.9) 21 (20.4) .505

Smoker 21 (16.9) 27 (26.2) .088

CT attenuation*(HU)

CTL 59.65 (53.89-63.21) 59 (54.34-65) .277

CTS 50.45 (46.81-53) 46 (44.75-53) .064

Laboratory findings*

AST (IU/ml) 24.6 (18.08-36.83) 27.7 (18.15-48.90) .073

ALT(IU/ml) 26.1 (19.2-34.5) 27.2 (21-37.65) .239

AST/ALT 0.94 (0.91-1.06) 1.09 (1.02-2.32) .514

GGT(IU/ml) 45.1 (26.58-69.4) 48.1 (26.05-89.55) .303

Total bilirubin (ng/ml) 13.5 (10.08-17.4) 13.6 (9.35-18) .865

Albumin (g/L) 40 (37.5-41.73) 39.6 (37.8-41.15) .278

Cholesterol (mmol/L) 3.63 (3.04-4.15) 3.67 (3.36-4.17) .211

Triglycerides (mmol/L) 0.94 (0.69-1.45) 0.98 (0.66-1.29) .729

APRI 0.56 (0.35-0.86) 0.47 (0.32-1.03) .745

FIB-4 2.65 (1.75-3.87) 3.11 (1.35-3.98) .273

Histologic grade

Steatosis .450

S0 (none) 76 (61.3) 73 (70.9) .130

S1 (mild) 35 (28.2) 21 (20.4) .173

S2 (moderate) 10 (8.1) 6 (5.8) .512

S3 (severe) 3 (2.4) 3 (2.9) .818

Fibrosis (F0/F1/F2/F3/F4) 12/26/17/32/37 9/14/19/27/34 .597

Activity (A0/A1/A2/A3/A4) 0/50/58/14/2 3/36/47/16/1 .287

Data are the number of patients; data in parentheses are percentages unless otherwise indicated.

BMI, body mass index; HU, hounsfield unit; ALT, alanine aminotransferase; AST, aspartate aminotransferase, GGT = γ-glutamyl transpeptadase, APRI, aspartate aminotransferase-to-platelet

ratio, FIB-4, fibrosis-4 index.

*Data are medians, with interquartile range in parentheses.
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CTL-S—5.494 and the formula of the combined clinical-radiomicmodel
was Y1 (clinical-radiomic) = 0.189 × BMI +1.215 ×
Triglycerides—0.127 × CTL-S + 1.273 × Radiomics Signature—4.771.
As shown in Figure 5A, a combined clinical-radiomic model that
integrated the radiomics signature, triglycerides, BMI and CTL-S was
developed and presented as a nomogram. ROC analysis compared the
discrimination capacities of the clinical-radiomic nomogram to those of
the clinical model, radiomic model, CTL-S and FLI in Figure 5B. As
summarized in Table 3, the combined clinical-radiomic model
performed best with an AUC value of 0.734 (95%CI: 0.638, 0.816;
p < .001), which was higher than that of the clinical model (AUC,
0.657 [95%CI: 0.557, 0.748]; p = .015), the radiomic model (AUC,
0.705 [95%CI: 0.607, 0.790]; p < .001) or FLI (AUC, 0.595 [95%CI:
0.494, 0.691]; p = .04) and statistically significant (p < .05). The
calibration curve was plotted to assess the nomogram, which
showed great consistency between predicted and actual in the
validation cohort (Figure 5D). The Hosmer-Lemeshow test yielded a
p-value of 0.318, indicating no departure from the good fit.

In Group two (none-mild vs. moderate-severe steatosis), the
formula of the clinical model was: Y2 (clinical) = 0.269 × BMI
+2.103 × Triglycerides—0.297 × CTL-S—10.273 and the formula of
the combined clinical-radiomic model was Y2 (clinical-radiomic) = 2
.503 × Triglycerides—0.369 × CTL-S + 110.818 × Radiomics Signature

FIGURE 3
Feature selection using the least absolute shrinkage and selection operator (LASSO) regression within features extracted from liver. (A) Selection of
tuning parameter (λ) was determined by the LASSO model using 10-fold cross validation viaminimum criteria. The AUC curve was plotted versus log (λ).
Dotted vertical lines were drawn at the optimal values by using the minimum criteria and the 1 standard error of the minimum criteria (the 1—Standard
error criteria). The optimal λ value of 0.135 with log (λ) of −2 was chosen in Group One. (B) Feature selection in Group 2 and the optimal λ value of
0.083 with log (λ) of −2.49 was chosen. LASSO coefficient profiles of the 158 initially selected features in Group One (C) and Group Two (D). A vertical line
was placed at the optimal λ value, which resulted in three features with non-zero coefficients in both subgroups.

FIGURE 4
Box-and-whisker plot of the radiomics score for each pathologic
liver steatosis stage calculated from the radiomics model in the
training cohort. Themedian values of the radiomics score for stage S0,
S1, S2 and S3 were −0.250, −0.248, −0.232, and −0.203,
respectively.
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+22.013. ROC analysis compared the discrimination ability of the
clinical-radiomic nomogram to those of the clinical model, the
radiomic model and two independent factors (CTL-S and
triglycerides) in Figure 5C. As summarized in Table 3, similarly, the
combined clinical-radiomic model showed the best result with an AUC
value of 0.930 (95%CI: 0.863, 0.971; p < .001), higher than that of the
clinical model (AUC, 0.904 [95%CI: 0.830, 0.953]; p < .001), the
radiomic model (AUC, 0.807 [95%: 0.718, 0.878]; p < .001), CTL-S

(AUC, 0.814 [95%: 0.726, 0.884]; p < .001), Triglycerides (AUC,
0.802 [95%: 0.712, 0.874]; p < .001). We found that there was a
statistical difference between the combined clinical-radiomic model
and the radiomics model. However, though the results of the combined
clinical-radiomic model are better than the clinical model, no statistical
difference was observed between them. The favourble calibration was
also confirmed in the validation cohort by the calibration curve
(Figure 5E) and the Hosmer-Lemeshow test (p = 0.481).

Discussion

In this retrospective study, we attempted to use clinical-radiomic
analysis for non-invasive prediction of liver steatosis severity by using

non-contrast CT based on 342 patients with the suspected diagnosis of
NAFLD. The radiomics signature was comprised of four stable
radiomics features and had excellent discrimination ability in two
subgroups. For ease of clinical utility, we developed a clinical-
radiomic nomogram which integrated radiomics signature with
several clinical indicators, including BMI, triglycerides and CTL-S,
and achieved satisfactory results.

During radiomic features selection and radiomics signature
establishment, Lasso regression and SVM algorithm were applied.
We chose the LASSO model owing to its model interpretability
benefit and its excellent performance in multiple radiomics-related
research (Ji et al., 2019; Wang et al., 2022b; Wang et al., 2022c). The
advantage of the SVM is that an SVM classifier relies merely on the
support vectors, and the classifier function is not affected by the whole
dataset. The SVM’s another trait is the possibility to tackle a large
number of features thanks to kernel functions’ exploitation (Kim et al.,
2011). Among the four radiomics features finally selected, three are
from the liver and one is from the spleen, which may reflect the
calibration effect of the image of the spleen on liver steatosis.

We included several clinical parameters during our model
development which were selected by using univariate correlation
analysis and multivariable analysis. BMI, triglycerides and CT values

TABLE 2 Clinical characteristics selection in the training cohort related to liver steatosis.

Model 1(S0 vs S1-S3) Model 2 (S0-S1 vs S2-S3)

Spearman correlation
analysis

Multivariable analysis Spearman correlation
analysis

Multivariable analysis

Variables r2 value P value b coefficient P value r2 value P value b coefficient P value

Age 0.001 .795 NA NA 0.001 .700 NA NA

Sex 0.000 .977 NA NA 0.002 .605 NA NA

BMI 0.120 <.001 0.206 .025 0.078 .002 0.269 .048

Hypertension 0.014 .191 NA NA 0.000 .992 NA NA

Diabetes 0.001 .362 NA NA 0.003 .536 NA NA

Smoker 0.000 .950 NA NA 0.000 .876 NA NA

ALT 0.017 .149 NA NA 0.004 .460 NA NA

AST 0.000 .848 NA NA 0.003 .562 NA NA

ALT/AST 0.057 .008 NA NA 0.033 .045 NA NA

GGT 0.010 .268 NA NA 0.009 .298 NA NA

Total bilirubin 0.003 .583 NA NA 0.001 .694 NA NA

Albumin 0.076 .002 NA NA 0.073 .002 NA NA

Cholesterol 0.025 .081 NA NA 0.052 .011 NA NA

Triglycerides 0.185 <.001 1.242 .006 0.141 .000 2.103 .018

APRI 0.009 .307 NA NA 0.023 .092 NA NA

FIB-4 0.029 .059 NA NA 0.028 .064 NA NA

CTL-S 0.211 <.001 -0.164 <.001 0.200 <.001 -0.297 <.001

CTL/S 0.205 <.001 NA NA 0.203 <.001 NA NA

b coefficients are from multivariable logistic regression. Clinical variables found to be significantly related to liver steatosis through Spearman correlation analysis entered into forward

conditional logistic multivariate analysis.
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have also been reported in previous steatosis-related studies. Although
about one in six of the NAFLD patients has a normal BMI (“lean
NAFLD”), obesity relates to an increased risk of NAFLD and the risk
increases with increasing BMI (Alferink et al., 2019; Pang et al., 2019).
Hypertriglyceridemia is known as a risk factor for developing newly
NAFLD and has been included in several clinical models (Fedchuk
et al., 2014). CT values may represent as the earliest indicator of hepatic
steatosis, which includesmany calculation forms including CT values of
liver alone, CT liver/spleen ratio (CTL/S), blood-free hepatic
parenchymal attenuation (CTL/P), etc., we included two of the most
commonly applied indices into our statistical analysis (Park et al., 2006;
Kodama et al., 2007; Sang et al., 2007).

Within the comparison between the combined model and other
models, In Group One (none vs. steatosis), we established radiomic
model, clinical model and combined clinical-radiomic model, and we
found that the integratedmodel performed best followed by the radiomic
model and clinical model. Statistically significant differences have been
validated by the Delong test, which illustrated that the radiomics
signature played a vital role in distinguishing stage S0 from S1-S3. In

Group Two (none/mild vs. moderate/severe steatosis), we also
established models using the same method. The combined model still
performed the best, but the difference did not achieve a statistical
significance. Several possible reasons may help explain this. First is
the small sample size of our internal validation cohorts. Second, an
unbalanced proportion may account for the statistical results. Last but
not least, patients with severe fatty liver may show prominent clinical
characteristics and imaging features that were visible with naked eyes.
Therefore, although the comprehensive model performs slightly better
than the clinical model, it does not show statistical significance.

Our study also had several limitations. First, there might exist
inevitable selection bias owing to the retrospective nature of our study.
There were a larger number of patients in the lower steatosis stage, and
the uneven population distribution may overestimate diagnosis
performance. However, we found no significant difference of
clinical-radiological-pathological characteristics between the training
and validation cohorts. Second, our model was developed and
validated on the basis of a single-centre database and experience
where multi-institutional validation is required in the future. Third,

FIGURE 5
Nomogram developed with receiver operating characteristic curves and calibration curves. (A) A clinical-radiomic nomogram for distinguishing
none from steatosis based on the training cohort, with BMI, triglycerides, CTL-S and radiomics signature incorporated. (B)Comparison of ROC curve in the
validation cohort of Group One (S0 vs. S1-S3) (C) comparison of ROC curve in the validation cohort of Group Two (S0-S1 vs. S2-S3). Calibration curves of
the validation cohort in Group One (D) and Group Two (E).
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although we tried to avoid visible hepatic vessels by manually
delineating ROIs in the right lobe of liver, it can be challenging for
the naked eyes to identify vessels under the background of the fatty liver
because of the similar CT value. However, the vessel area has less
influence due to the small area in the peripheral zone of liver. Forth, we
use ROI instead of VOI for feature selection which may result in loss of
partial image information. But if the 2D method can achieve similar
results compared with the 3D method, it can greatly simplify the
application. After all, manually delineation of all the liver and spleen
is relatively labor intensive, and it has been proved and practiced in
previous studies (Kim et al., 2011; Meng et al., 2021).

In conclusion, we established and validated a non-invasive and
convenient clinical-radiomics model to predict the steatosis severity
based on traditional non-contrast CT. Open-source software and a
standard toolkit were used to delineate ROIs and extracted
radiomics features, and four stable steatosis-related radiomics
features were chosen from 837 features and establish models with
the SVM algorithm. Then, we further included the clinical factors
and developed the integrated model to predict the steatosis stage
accurately. The clinical-radiomic model can early detect the high-
risk population and may help clinical decision-making.
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TABLE 3 Diagnostic performance of all methods for predicting liver cirrhosis in the validation cohort.

Group One (none vs. steatosis) Group Two (none/mild vs. moderate/severe
steatosis)

Methods AUROC (95%CI) Cutoff value AUROC (95%CI) Cutoff value

Integrated model 0.734 (0.638-0.816) 0.20 0.930 (0.863-0.971) -0.32

Radiomics model 0.705 (0.607-0.790) 0.48 0.807 (0.718-0.878) -0.22

Clinical model 0.657 (0.557-0.748) -0.10 0.904 (0.830-0.953) -2.88

FLI 0.595 (0.494-0.691) NA NA NA

CTL/S 0.600 (0.499-0.695) 7.67 0.814 (0.726-0.884) 7.67

Triglycerides 0.681 (0.582-0.769) 0.96 0.802 (0.712-0.874) 1.53

Comparison of AUROC (Delong test)

Integrated model vs. Clinical model P = .005 P =.397

Integrated model vs. Radiomics model P = .035 P =.016

Integrated model vs. FLI P = .026 NA

AUROC, area under the receiver operating characteristic; FLI, fatty liver index.
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