
Identification of disease-related
genes and construction of a gene
co-expression database in
non-alcoholic fatty liver disease

Hua Ye1, Mengxia Sun2, Mingli Su1, Dahua Chen1, Huiwei Liu1,
Yanyan Ma1, Wenjing Luo1, Hong Li3 and Feng Xu1*
1Department of Gastroenterology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang,
China, 2Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang,
China, 3Department of Hepatobiliary Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo,
Zhejiang, China

Background: The mechanism of NAFLD progression remains incompletely
understood. Current gene-centric analysis methods lack reproducibility in
transcriptomic studies.

Methods: A compendium of NAFLD tissue transcriptome datasets was analyzed.
Gene co-expression modules were identified in the RNA-seq dataset GSE135251.
Module genes were analyzed in the R gProfiler package for functional annotation.
Module stability was assessed by sampling. Module reproducibility was analyzed
by the ModulePreservation function in the WGCNA package. Analysis of variance
(ANOVA) and Student’s t-test was used to identify differential modules. The
receiver operating characteristic (ROC) curve was used to illustrate the
classification performance of modules. Connectivity Map was used to mine
potential drugs for NAFLD treatment.

Results: Sixteen gene co-expression modules were identified in NAFLD. These
modules were associated with multiple functions such as nucleus, translation,
transcription factors, vesicle, immune response, mitochondrion, collagen, and
sterol biosynthesis. These modules were stable and reproducible in the other
10 datasets. Two modules were positively associated with steatosis and fibrosis
and were differentially expressed between non-alcoholic steatohepatitis (NASH)
and non-alcoholic fatty liver (NAFL). Three modules can efficiently separate
control and NAFL. Four modules can separate NAFL and NASH. Two
endoplasmic reticulum related modules were both upregulated in NAFL and
NASH compared to normal control. Proportions of fibroblasts and
M1 macrophages are positively correlated with fibrosis. Two hub genes Aebp1
and Fdft1 may play important roles in fibrosis and steatosis. m6A genes were
strongly correlated with the expression of modules. Eight candidate drugs for
NAFLD treatment were proposed. Finally, an easy-to-use NAFLD gene co-
expression database was developed (available at https://nafld.shinyapps.io/
shiny/).

Conclusion: Two gene modules show good performance in stratifying NAFLD
patients. The modules and hub genes may provide targets for disease treatment.
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Introduction

Due to the drastically changed living style in modern life, non-
alcoholic fatty liver disease (NAFLD) has become an epidemic and
imposes a heavy burden on public health. NAFLD encompasses a
series of progressive liver diseases developing from simple steatosis
(NAFL) to hepatocyte cell death (ballooning) and inflammation
(non-alcoholic steatohepatitis, NASH) (Lefebvre et al., 2017). NAFL
is generally regarded as a reversible benign condition (Govaere et al.,
2020). Mitochondrion plays a role in the phenotypic switching from
NAFL to NASH(Pirola et al., 2013). Patients with NASH may
progress to cirrhosis and hepatocellular carcinoma (HCC)
(Arendt et al., 2015). Although not a prerequisite for diagnosis,
fibrosis can also occur and is associated with adverse outcomes
(Kozumi et al., 2021).

Transcriptomics is a powerful tool to investigate the expression
of thousands of genes concurrently (Liu and Wang, 2020). Large-
scale transcriptome data is valuable for developing diagnostic
biomarkers, as well as for targeting therapy (Sookoian and Pirola,
2020). There is currently no approved therapy for non-alcoholic
steatohepatitis (NASH). The systems biology method may help to
dissect the disease mechanisms and to translate basic research into
useful treatments (Sookoian and Pirola, 2019). The transcriptome of
NAFLD patients has been profiled in several studies (Ahrens et al.,
2013; Murphy et al., 2013; Arendt et al., 2015; Hoang et al., 2019;
Azzu et al., 2021; Pantano et al., 2021). Some of the studies are based
on the microarray, while some are based on state-of-the-art RNA-
Seq technology. However, to what extent the results of these studies
are reproducible is still not known. A systematic meta-analysis of
microarray experiments on liver tissue of NAFLD patients has been
performed, and four genes were identified as biomarkers for patients
at risk of progression to severe NAFLD (Ryaboshapkina and
Hammar, 2017). The study lacks RNA-Seq data. Only one recent
report showed that four genes were consistently identified by all six
NAFLD transcriptome studies (Pantano et al., 2021). The reason for
the phenomenon may include different sample sizes, control
samples chosen, platforms used, and data processing methods
used (Ye and Liu, 2015).

As it is well known that complex human diseases such as
NAFLD and cancer are rarely caused by a single gene but are
more likely influenced by a network of interacting genes
(Sookoian et al., 2020; Paci et al., 2021). Genetic redundancy
accounts that a given biochemical function is redundantly
encoded by two or more genes. Therefore, mutations (or defects)
in one of these genes will have a smaller effect on the fitness of the
organism than expected from the genes’ function (Pearce et al.,
2004). Differential gene lists from individual studies often lack
reproducibility. Module-level differential analysis may help to
overcome problem. A gene co-expression module is a more
stable unit than a single gene in diseases (Zhou et al., 2019). An
example is cancer where the aberrant cell cycle is recurrently present,
but the change of a cell cycle-related gene may present in one dataset
but not another (Zhou et al., 2019). The rationale of gene co-
expression analysis is that gene expressions are correlated.
Weighted gene co-expression network analysis (WGCNA) can
reduce thousands of genes to tens of modules, which are
relatively independent as genes in a module have similar
expression patterns but are different from that of other modules.

Thus, a module may represent a unique function of a bio-system.
Therefore, it is reasonable to reanalyze these valuable datasets by
gene co-expression network.

Here, we first applied WGCNA to the currently largest NAFLD
tissue dataset GSE135251 which was profiled by RNA-Seq.
Identified modules were used as a reference, where new datasets
can be projected, making the comparisons between datasets possible.
We found a sterol biosynthesis module and a collagen-containing
extracellular matrix module. Both modules can efficiently and
recurrently separate patients of NAFLD in different datasets.
Proportions of fibroblasts and M1 macrophages are positively
correlated with fibrosis. Eight candidate drugs were also
identified based on the hub genes of differential modules. The
analysis workflow is summarized in Figure 1.

Materials and methods

Datasets and preprocessing

A total of 11 NAFLD tissue datasets were downloaded from the
National Center for Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO) and the European Bioinformatics
Institute (EBI) ArrayExpress. These datasets were listed in
Table 1. Among these datasets, four are from RNA-Seq and
seven are from the microarray. GSE135251 is currently the
largest NAFLD dataset available from public repositories, which
contains 216 NAFLD samples across the disease spectrum. To focus
on the informative genes, the count matrix provided by the database
was filtered with a mean count >200 and a standard
deviation >0.1 before downstream analysis. Finally, 7,773 genes
were retained for gene co-expression network analysis. Additional
two datasets (GSE200186 and GSE119281) were used for drug
targets validation. As datasets listed in Table 1 are from different
studies and platforms and may have different clinical/histological
information available, these data were analyzed individually not in a
pooled form.

Weighted gene co-expression network
analysis (WGCNA)

Gene co-expression module identification was performed
according to the package manual (Langfelder and Horvath,
2008). Parameters were set as following: softPower = 16,
corOptions = list (use = ‘p’, method = ‘spearman’),
networkType = “signed”, minModuleSize = 30, deepSplit = 4,
MEDissThres = 0.2. Briefly, the pairwise Spearman correlation
coefficient was calculated for each gene in the gene expression
matrix, and then an adjacency matrix was derived by raising the
correlation matrix to a power 16, which generated a biologically
meaningful scale-free network. The weighted network was
transformed into a network of topological overlap (TO)—a
metric that defines the relationship of two genes accounting
for their correlation and shared neighborhood. Genes were
hierarchically clustered based on their TO. Finally, co-
expression gene modules were identified by the Dynamic Tree
Cut algorithm. As genes in a module are highly correlated,
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FIGURE 1
A schematic diagram for the analysis framework. NAFLD transcriptome datasets were collected and analyzed by gene co-expression network
analysis. Independent datasets were used for network validation. Based on the identified network modules, the NAFLD database was constructed.
Module-level differential analysis, ROC analysis, and phenotype correlation were performed. Module hub genes weremined for potential drug discovery.

TABLE 1 Datasets used in the study.

Accession Sample Platform Clinical parameters

GSE135251 206 NAFLD, 10 controls Illumina NextSeq 500 NAS, fibrosis

GSE162694 143 NASH patients of various fibrosis
stages

Illumina HiSeq 3,000 Age, sex, fibrosis, NAS

GSE167523 98 NAFLD patients Illumina HiSeq 3,000 Disease subtype, age, gender

GSE130970 72 NAFLD, 6 control Illumina HiSeq 2,500 Sex, age, lobular inflammation grade, cytological
ballooning grade, steatosis grade, NAS, fibrosis

GSE83452 126 NASH samples, 66 no NASH Affymetrix Human Gene 2.0 ST Array Age, gender

GSE134438 43 NAFLD patients Affymetrix Human Gene 2.0 ST Array Disease subtype

GSE49541 72 NAFLD samples Affymetrix Human Genome U133 Plus 2.0 Array Fibrosis

GSE48452 32 NAFLD, 41 control Affymetrix Human Gene 1.1 ST Array Fat, inflammation, sex, age, BMI, NAS, fibrosis, leptin,
adiponectin

E-MEXP-3291 26 NAFLD samples, 19 control Affymetrix GeneChip Human Gene 1.0 ST Array Age, sex, diagnosis

E-MTAB-4856 88 NAFLD samples Agilent Whole Human Genome Microarray 4 × 44K
014,850 G4112F

Age, sex, disease staging, BMI

GSE89632 29 NAFLD, 24 control Illumina HumanHT-12WG-DASL V4.0 R2 expression
beadchip

Diagnosis, steatosis, fibrosis, lobular inflammation,
ballooning, NAS, age, gender, BMI, waist, AST, ALT,
ALP, TG, TC, LDL, HDL, FPG, fasting insulin,
HOMA-IR, HbA1c, diabetes

NAS: NAFLD, activity score, BMI: body mass index, AST: aspartate transaminase, ALT: alanine transaminase, ALP: alkaline phosphatase, TG: triglycerides, TC: total cholesterol, LDL: low-

density lipoprotein cholesterol, HDL: high-density lipoprotein cholesterol, FPG: fasting plasma glucose, HOMA-IR: homa-insulin resistance, HbA1c: hemoglobin a1c.
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module genes can be reduced to a module eigengene (ME) by
singular value decomposition. ME represents the first principal
component of module expression profiles (Zhang and Horvath,
2005). WGCNA also provides gene connectivity information,
which is the sum of correlations of a gene with all other genes in
the module or network. Hub gene in a co-expression module
tends to have high connectivity and may play important roles in
the network or module. For network module validation, the
expression matrix was first intersected with the reference
dataset, then its values were transformed to ranks before
module projection. Module stability was tested by 1,000 half-
samplings for each module (Liu et al., 2018a). The stability was
presented by the correlation of intra-module connectivity
between the original one and the sampled one in form of
mean ± standard deviation. To test the reproducibility of these
modules, other datasets were projected to the frozen reference for
module preservation analysis (Langfelder et al., 2011).
Parameters for module preservation were set as
networkType = “signed”, nPermutations = 100. The module-

level expression for other datasets was retrieved by the
moduleEigengenes function.

Functional annotation of the modules

The gProfileR package was used for enrichment analysis of
reference modules (Reimand et al., 2016). For drug screening,
hub genes of differential modules were submitted to the
Connectivity Map (https://portals.broadinstitute.org/cmap) (Lamb
et al., 2006). Significant results were retrieved at the level of p < 0.05.
Protein-ligand docking was performed in SwissDock (http://www.
swissdock.ch/docking) (Grosdidier et al., 2011). LigPlot+ was used
to generate a pose view of protein-ligand interaction (Laskowski and
Swindells, 2011). The proportion of immune cell populations was
estimated by TIMER2.0 (http://timer.comp-genomics.org/) (Li et al.
, 2020). Immunohistochemistry images for hub genes Aebp1 and
Fdft1 were retrieved from the Human Protein Atlas database
(https://www.proteinatlas.org/). Survival analysis for genes and

FIGURE 2
Sixteen modules were identified in the NAFLD dataset GSE135251. (A) The relationship between choosing power and corresponding scale-free
topology model fit R2 (B)When power was set at 16, the constructed network follows a power law. (C) Cluster dendrogram shows the partition of genes
into co-expressed modules with different colors (D) The module stability was tested by sampling half of the samples. The stability was expressed as the
correlation of intramodule connectivity between the original one and the sampled one.

Frontiers in Genetics frontiersin.org04

Ye et al. 10.3389/fgene.2023.1070605

https://portals.broadinstitute.org/cmap
http://www.swissdock.ch/docking
http://www.swissdock.ch/docking
http://timer.comp-genomics.org/
https://www.proteinatlas.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1070605


immune cells was retrieved from the GEPIA2021 database (http://
gepia2021.cancer-pku.cn/).

Statistical analysis

Differential module analyses were performed using the Student’s
t-test or ANOVA in R package aov. Tukey’s HSD was used to
calculate p values of multiple pairwise comparisons. An adjusted
p-value smaller than 0.05 was considered statistically significant.

Results

Sixteen modules were identified in the
NAFLD

RNA-Seq dataset GSE135251 was used to construct a frozen
reference network, to which other datasets would be projected. A
scale-free network was constructed (Figure 2A, B), and then a total
of 16 gene co-expression modules were identified (Figure 2C). The
top hub gene with high connectivity for each module was provided
in Table 2. Functional annotation shows that these modules were
associated with nucleus, translation, transcription factors, vesicle,
immune response, mitochondrion, collagen, and sterol biosynthesis
(Table 2). For a full list of genes, their assigned modules,
connectivity, and gene description, readers can refer to
Supplementary Table S1.

In module reproducibility analysis, all the modules had an
average connectivity correlation larger than 0.9 (Figure 2D). Ten
NAFLD datasets from different platforms (Illumina, Affymetrix,
and Agilent in Table 1) were projected on the frozen reference
modules to test reproducibility (Figure 3). All of the modules have an
average Zsummary. pres statistic larger than 4.4 and the average
Zsummary. pres statistic of all modules was 12.4, indicating very
strong preservation of modules except GSE89632 which has weak to
moderate preservation Zsummary. pres statistic.

Modules are correlated with clinical
parameters

By correlating modules with clinical parameters, we can identify
which module contributes to disease. Module-trait relationship
analysis revealed several connections. M25 is positively correlated
with fibrosis in all six datasets that provide fibrosis data
(Supplementary Table S2). As dataset GSE89632 has abundant
clinical parameters, thus we correlated module expression and
these parameters in the dataset. M39 and M35 are positively and
negatively correlated with hepatic fat content in two datasets. M39 is
positively correlated with NAFLD activity score (NAS), fasting
glucose, and diabetes status in GSE89632. M13 and M39 are
positively and negatively correlated with arachidonic acid
(Figure 4). Module-trait relationship results for the other datasets
are provided in Supplementary Figure S1. We also performed
TIMER analysis to estimate the immune cell populations in the

TABLE 2 Functional enrichment analysis for the sixteen modules identified in the NAFLD dataset GSE135251.

Module (No. genes) Function (p-value) Hub TIMER cell type with highest correlation

3 (813) Nucleus (2E-30) Factor: E2F (9E-15) Taf1c Memory CD4 T cells

6 (813) Ribosome (3E-92) Translation (2E-81) Ndufa2 Macrophage

7 (2,410) Factor: HDAC2 (1E-61) hsa-miR-21–5p (2E-54) Tmem106b Th1 CD4 T cell (−)

10 (1,621) Factor: Churchill (8E-76) Factor: Sp1 (1E-75) Anapc2 Th1 CD4 T cell

11 (205) Vesicle (2E-13) Mitochondrion (5E-13) Tm9sf2 Memory CD4 T cells (−)

13 (171) Immune response (1E-21) Myeloid leukocyte activation (3E-16) Mpeg1 Macrophage

14 (170) Mitochondrion (5E-13) Factor: ER81 (2E-11) Rbis Lymphoid progenitor

15 (153) Nucleus (8E-17) RNA metabolism (1E-15) Tia1 M1 Macrophage (−)

20 (337) Vesicle (2E-18) Endoplasmic reticulum (5E-11) Sp1 (3E-10) hsa-
miR-484 (5E-10)

Clptm1 Lymphoid progenitor (−)

25 (69) Collagen-containing extracellular matrix (1E-26) Aebp1 Fibroblast

26 (234) Endomembrane system (6E-9) Endoplasmic reticulum (2E-4) Kctd20 Macrophage (−)

32 (54) Leukocyte activation involved in immune response (7E-8) Stk10 Microenvironment score*

34 (92) Nucleoplasm (3E-6) Trrap Lymphoid progenitor (−)

35 (386) hsa-miR-21–5p (1E-12) Factor: ETF (2E-9) Dennd4c Granulocyte monocyte progenitor

38 (33) Translation (1E-11) Structural constituent of ribosome (3E-10)
Mitochondrial inner membrane (7E-10)

Stoml2 CD4 T cell (−)

39 (30) Sterol biosynthesis (8E-39) Factor: YB-1 (1E-5) Fdft1

(−), the estimated fraction of cell type is negatively correlated with module eigengene (ME); All the correlations in the “TIMER, cell type with highest correlation” column are >0.6 and p < 0.01.
aMicroenvironment score, the sum of all immune and stromal cell types.
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liver tissues of patients with NAFLD dataset GSE135251. Fibroblasts
and M1 macrophages are positively correlated with fibrosis. The
correlation coefficients are 0.42 and 0.35, and the p values are 2E-10

and 1E-7 respectively. Further analysis shows that the two
components are upregulated during NAFLD progression. Patients
with NASH and advanced fibrosis had greater fractions of fibroblasts

FIGURE 3
Gene network modules from GSE135251 are well preserved in the other ten datasets. The y-axis represents preservation statistics and the x-axis is
the number of genes in each module. The dashed blue and green lines indicate the thresholds Z = 2 and Z = 10, respectively. Zsummary <2 implies no
evidence for module preservation, 2 < Zsummary <10 implies weak to moderate evidence, and Zsummary >10 implies strong evidence for module
preservation.

FIGURE 4
Module-trait relationship heatmap for GSE89632. Cells represent the correlation between modules expression and clinical parameters. Numbers in
the bracket indicate the statistical significance.
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and M1 macrophages than patients with NAFL and mild fibrosis
(Figure 5A). The fraction of M2 macrophages is downregulated
during NAFLD progression but not significant. NAFLD-related
HCC has been reported in a significant number of patients
(Margini and Dufour, 2016). Thus, we also analyzed the two
components in the TCGA HCC dataset and found that low
M1 macrophage fraction group patients had longer overall
survival (Figure 5B). M15 is negatively correlated with
M1 macrophage proportion (Table 2). M15 hub gene
TIA1 expression suggests a positive contribution to HCC patient
survival (Figure 5B).

Differentially expressed modules associated
with steatosis, fibrosis, and steatohepatitis

M25 was consistently upregulated in advanced fibrosis
compared to mild fibrosis in five datasets (t-test, p < 0.05). In
GSE135251 only M25 was differently expressed across fibrosis
stages (Figure 6). M14 and M20 were the most significantly
upregulated in NAFL samples compared to the control.
M25 and M39 were the only two differential modules

upregulated in NASH compared to NAFL (p = 0.0003 and p =
0.02). M25 and M14 were the most significantly upregulated and
downregulated in NASH samples compared to no NASH (p =
0.001 and p = 0.04) (Figure 7). The box figures for all the modules
can be viewed in the “Differential module analysis” tab of the
NAFLD database at http://nafld.shinyapps.io/shiny/.

Modules can consistently separate NAFLD
patients

To check if these modules can efficiently separate patients, we
calculated specificity and sensitivity to plot the receiver operating
characteristic (ROC) curve. Modules such as M20, M26, and
M39 can recurrently separate control and NAFL patients in
different datasets with AUCs ranging from 0.76 to 1.00
(Supplementary Figure S2). M20, M25, M26, M32 can separate
samples from NAFL and NASH with AUCs larger than 0.88
(Supplementary Figure S3). M25 could consistently separate
samples from mild fibrosis and advanced fibrosis in six datasets
with AUCs 0.89, 0.96, 0.97, 0.84, 0.82, and 0.76. (Supplementary
Figure S4).

FIGURE 5
Fibroblast andM1macrophage in NAFLD and HCC. (A)Differentially expressed fractions of M1macrophages and fibroblasts in patients with different
NAFLD stages and fibrosis stages in GSE135251 (B)M1macrophage and hub gene Tia1 are associated with HCC patients survival in the TCGA dataset. Tia1
is the hub gene of M15 which is negatively correlated with M1 macrophage proportion. The log-rank derived p-value indicates the significance of the
comparison between groups. Statistical significance was calculated by Student’s t-test for mild and advanced fibrosis comparison, or ANOVA for
normal, NAFL, and NASH comparison.
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FIGURE 6
Differentially expressed modules associated with steatohepatitis stages in GSE135251. The asterisk under the box indicates the significance of the
comparison between disease and normal control by ANOVA test with adjusted p values. *: p < 0.05, **: p < 0.01.

FIGURE 7
Differentially expressed modules associated with NAFLD disease stages in GSE135251. The asterisk under the box indicates the significance of the
comparison between disease and normal control by ANOVA test with adjusted p values. *: p < 0.05, **: p < 0.01.
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Hub genes are important in NAFLD
progression

To demonstrate the utility of the co-expression modules
identified, two important modules M25 and M39 were visualized.
Aebp1 is the hub gene of M25 (Figure 8A). It has been reported that
adipocyte enhancer-binding protein 1 (AEBP1) is a ubiquitously
expressed, multifunctional protein and is a transcriptional repressor
involved in adipogenesis, inflammation, cholesterol homeostasis,
and atherogenesis (Majdalawieh et al., 2020). AEBP1 expression
increases with the severity of fibrosis in NASH possibly by encoding
the aortic carboxypeptidase-like protein (ACLP) that associates with
collagens in the extracellular matrix (ECM) (Blackburn et al., 2018;
Gerhard et al., 2019). In our analysis, M25 indeed is associated with
fibrosis, and Aebp1 is highly correlated with ECM genes Col1a1,
Col1a2, Col3a1, Col4a1, Col4a2, Col5a1, Col6a3, And Col14a1
(Figure 8A). Aebp1 has a good performance in separating mild
and advanced fibrosis patients (Figure 8B). Fdft1 is the hub gene of
M39 (Figure 8C). Fdft1 is one of the causative loci for steatosis, NAS,
degree of fibrosis, lobular inflammation, and serum levels of alanine
aminotransferase (ALT) (Stattermayer et al., 2014; Sharma et al.,

2015). Interestingly, we found that M39 is highly correlated with
steatosis, NAS, lobular inflammation, ALT, and diabetes (Figure 4).
Fdft1 has a moderate performance in separating healthy control and
NAFL patients (Figure 8D). The two proteins were positively stained
in HCC liver tissues. As hepatic fibrosis presents in a majority of
HCC patients, we also checked the two gene expression in TCGA
pan-cancer datasets and found that the two genes were not liver-
specific genes and were not prognostic for HCC overall survival
(Supplementary Figure S5). All the module information can be
explored at the NAFLD co-expression database at http://nafld.
shinyapps.io/shiny/, where users can browse gene lists, hub
genes, functional annotation, network, correlation analysis, and
differential module expression information.

Correlation between modules and enzymes
regulating m6A mRNA methylation

N6-methyladenosine (m6A) modification contributes to
metabolic reprogramming in NAFLD (Qin et al., 2021). To
discover potential m6A regulators of modules, we selected

FIGURE 8
Hub genes in M25 and M39 can separate patients. (A, C)Module visualization for the top 100 connections within M25 and M27 by using Cytoscape.
Yellow nodes indicate the hub gene of modules (B, D) ROC curves show that hub genes of M25 andM39, Aebp1, and Fdft1 can separate advanced fibrosis
or NAFL patients. Immunohistochemical plots also show the positive staining of AEBP1 and FDFT1 in normal and HCC tissues.
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24 related genes within the dataset and correlated them with MEs by
Spearman correlation. Some of the m6A genes were highly correlated
with module expression. For example, YTHDF3, YTHDC2,
METTL14, CBLL1, and M7 all had significant correlations larger
than 0.75. YTHDF3, YTHDC2, METTL14, CBLL1, and M10 had
significant correlations smaller than −0.70. FTO-M26, Eif3A-M35,
and VIRMA-M35 all had significant correlations larger than 0.70
(Supplementary Table S3). These results were consistent with the

reverse correlations with Th1 CD4 T cells between M7 and M10.
M26 was correlated with macrophage proportion, which is
important in NASH. Fto is correlated with M26, indicating the
role of Fto in NASH progression.

In silico drugs screening based on highly
connected genes in differentially expressed
modules

To identify candidate drugs for NAFLD, we selected ten genes
from differentially expressed modules and submitted them to the
Connectivity Map tool. As listed in Table 3, eight candidates were
found with p < 0.05. Protein-ligand docking analysis showed the
interactions between hub genes Aebp1 (M25), Fdft1 (M39) and
Trichostatin A (TSA), Tanespimycin (Figure 9A). Pose view
analysis showed that the interactions may occur at sites
Asn724 in AEBP1 and Lys117, Thr50, Tyr73 in FDFT1
(Figure 9B). Independent datasets were used to validate the
results. Interestingly, TSA can significantly downregulated
Aebp1 in HepaG2 and fibroblast cell lines. Additionally, the
expression of fibrosis-related genes Mmp15, Mmp17, and
Acta2 also changed after 6 h TSA treatment (Figure 9C). As
for tanespimycin, Fdft1 was significantly downregulated after

TABLE 3 Candidate NAFLD drugs identified by Connectivity Map.

No. Drug p-value

1 Trichostatin A 2E-7

2 Geldanamycin 4E-4

3 Tanespimycin 0.015

4 Diphenylpyraline 0.024

5 6-bromoindirubin-3′-oxime 0.024

6 Pha-00851261E 0.028

7 Lisuride 0.028

8 Clebopride 0.029

FIGURE 9
Protein-ligand docking analysis and expression validation for hub genes AEBP1 in M25 and FDFT1 in M39. (A) 3-D structure models for AEBP1-
Trichostatin A and FDFT1-Tanespimycin (B) Pose view for the interaction sites. The hydrogen bonds were visualized in the green dashed line (C)
AEBP1 and fibrosis-related genes MMP15, MMP17, and ACTA2 expression changed after TSA treatment in HepG2 and fibroblast cell lines from dataset
GSE200186. FDFT1 and lipid metabolism-related genes ACLY, UCP1, and CD36 expression changed after tanespimycin treatment in HepG2 from
dataset GSE119281. All the gene expression was detected with three replicates and had a p < 0.05 by Student’s t-test.
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treatment in HepaG2. Additionally, the expression of genes Acly
(lipogenic gene), Ucp1 (thermogenic gene), and Cd36 (lipid
uptake) also changed after 6 h tanespimycin treatment
(Figure 9C). All the candidate drugs are worth validation in
future studies.

Discussion

We collected a comprehensive compendium of NAFLD
transcriptome datasets. Traditional transcriptome data
analysis is based on differential analysis methods. However,
the number of sample groups in a study may not just be two, if
considering different fibrosis stages or other parameters. The
subject size varies in studies. Thus, it is somewhat hard to reach
a favorable overlap of differential genes between studies. Only
four genes, namely, Col1a2, Efemp2, Fbln5, and Thbs2 were
found consistently across six published transcriptomic studies
on NASH(Pantano et al., 2021). There can be many reasons for
the low overlap, such as the inherent complexity of the liver
which is composed of heterogeneous cell types, different biopsy
sites or methods, different sample preparation workflows, and
different transcriptome profiling platforms. We turned to the
module-centric analysis, as the module represents a high level of
the regulatory scenario (Wang et al., 2008). Several genes may
participate in a common biological function. The gene change in
one dataset may not replicate in other datasets, but the
biological function may replicate in other datasets. We used
one dataset for reference module identification, and verify
modules in the other 10 datasets. Results suggest that gene
co-expression networks from microarray and RNA-Seq are
generally reproducible. Based on these modules, we can
correlate modules with different clinical data from different
studies.

We identified several biological processes that have been
known in NAFLD progressions, such as mitochondrion,
endoplasmic reticulum, collagen, sterol biosynthesis, and
leukocyte activation (Simoes et al., 2018). Some of the
identified modules do not have obvious function annotations,
such as M35. In our analysis, M35 was downregulated in NAFL
compared to normal (GSE89632) and in higher-grade fibrosis
compared to control (GSE162694 and GSE130970). Recent
reports suggest that activated hsa-miR-21–5p can promote
steatosis and fibrosis (Calo et al., 2016; Tadokoro et al., 2021).
The Hub gene of M35 Dennd4c has not been reported in NAFLD.
Thus, it can serve as a potential therapeutic target in future
studies. The Hub gene of M38 Stoml2 is also currently not
reported to be associated with NAFLD. In our analysis,
M38 was downregulated in NAFL compared with the control.
Therefore, it can serve as a potential therapeutic target for
steatosis in future studies.

In our module-based analysis, the AUCs for predicting NAFL
and advanced fibrosis were 0.93 (M20) and 0.89 (M25), respectively,
which were comparable to a recent report (Kozumi et al., 2021). The
M20 hub Clptm1 has a perfect performance (AUC = 0.99) in
separating NAFL and normal control. CLPTM1 is located in the
endoplasmic reticulum (ER) and is involved in ER stress (Liu et al.,
2018b). M20 is the most significant differential module in the

spectrum of NAFLD, indicating the important role of ER in
disease progression.

One of the important findings in this study is that the gene co-
expression modules can efficiently separate NAFLD patients.
Although signature genes have been proposed for patient
stratification, few genes showed good reproducibility across
studies (Vandel et al., 2021). The present study incorporates
data from a large number of NAFLD patients and has been
validated with multiple databases, showing a satisfactory
performance in NAFLD prognosis. In addition, the hub genes
of the two modules can be used as biomarkers for NAFLD patient
stratification.

We also found that modules were correlated with NAFLD
clinical features. As the number of clinical features is variable
across datasets, we focused on the common correlations. It may
be hard to explain the differences between datasets, as the reason
for differences is hard to trace. Correlations detected in more
than two datasets may be more reliable module-trait associations.
Besides modules M39 and M35, we found M32 was associated
with fibrosis and NAS in four datasets (Supplementary
Figure S1).

Finally, we proposed drug repurposing by analyzing highly
connected genes in the Connectivity Map tool. Some of the
identified drugs have been indicated in roles of fibrosis,
inflammation, or fat metabolism although not in the liver. For
example, TSA is an HDAC inhibitor that could alleviate atrial
fibrosis and subsequent atrial fibrillation (Liu et al., 2008). It also
can reduce systemic inflammation and improve the survival of the
mice model of sepsis (Cui et al., 2019). 17-AAG also known as
tanespimycin, a derivative of the antibiotic geldanamycin that has
a higher affinity to HSP90, could inhibit fibroblast activation and
reduce ECM production (Sontake et al., 2017). Tanespimycin is
an Hsp90 inhibitor that can prolong survival, attenuate
inflammation, and reduce lung injury in mouse models of
sepsis (Chatterjee et al., 2007). Thus, these drugs are
promising candidates for the treatment of NASH. Only a
recent study showed that antidepressants such as
diphenylpyraline could activate FAM3A to suppress hepatic
gluconeogenesis and lipogenesis, finally improving
hyperglycemia and steatosis in obese diabetic mice (Chen
et al., 2020). It was found that inhibition or downregulation of
the canonical Wnt/β-catenin pathway contributes to the disease
progression of NAFLD (Shree Harini and Ezhilarasan, 2022).
While Glycogen synthase kinase 3 (GSK3) inhibitors could
activate canonical Wnt/β-catenin signaling and then promote
hepatocyte differentiation (Huang et al., 2017). In an animal
model, it was proved that GSK3 inhibitor 6-bromoindirubin-3′-
oxime (6BIO) could modulate bioenergetic pathways and
decrease lipid and glucose tissue load (Tsakiri et al., 2017).
Thus, the two drugs are promising candidates for future
validation.

However, there are still some limitations to our study.
WGCNA generates an undirected network, lacking
information on the regulation direction between genes. The
collected transcriptome is still not large enough, and some lack
detailed clinical information, making the integration of datasets
from studies difficult. The identified modules can be used as
biomarkers for prognosis, but not sufficiently to reveal of disease
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mechanism. More work is needed to validate upstream genes that
control the co-expression of modules.
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