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Introduction: Immune cell infiltration andmetabolic reprogrammingmay have great
impact on the tumorigenesis and progression of malignancies. The interaction
between these two factors in cervical cancer remains to be clarified. Here we
constructed a gene set containing immune and metabolism related genes and
we applied this gene set to molecular subtyping of cervical cancer.

Methods: Bulk sequencing and single-cell sequencing datawere downloaded from the
Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database
respectively. Immune andmetabolism related genes were collected from Immport and
Kyoto encyclopedia of genes and genomes (KEGG) database respectively. Unsupervised
consensus clustering was performed to identify the molecular subtypes. Cibersort was
applied to evaluate the immune cells infiltration status. Differential expression analysis
andGene set enrichment analysis (GSEA)were performed to characterize themolecular
pattern of different subtypes. Multivariate Cox regression analysis was used for
prognosis prediction model construction and receiver operating characteristic (ROC)
curvewas used for performance evaluation. The hubgenes in themodelwere verified in
single-cell sequencing dataset and clinical specimens. In vitro experiments were
performed to validate the findings in our research.

Results: Three subtypes were identified with prognostic implications. C1 subgroup
was in an immunosuppressive state with activation of mitochondrial cytochrome
P450 metabolism, C2 had poor immune cells infiltration and was characterized by
tRNA anabolism, and the C3 subgroup was in an inflammatory state with activation of
aromatic amino acid synthesis. The area under the ROC curve of the constructed
model was 0.8, which showed better performance than clinical features. IMPDH1
was found to be significantly upregulated in tumor tissue and it was demonstrated
that IMPDH1 could be a novel therapeutic target in vitro.

Discussion: In summary, our findings suggested novel molecular subtypes of cervical
cancer with distinct immunometabolic profiles and uncovered a novel therapeutic target.
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Introduction

Cervical cancer (CC), a malignancy associated with high-risk
human papillomavirus (HPV), remains the second leading cause of
death in women aged 20–39 despite widespread early screening and
prophylactic vaccination. It was demonstrated that a total of
4,152 women died of CC in 2019 (Siegel et al., 2022). It has been
observed that there are significant individual differences in the
prognosis of cancer patients despite controlling for factors such as
age and clinical stage, which is likely due to tumor heterogeneity (Punt
et al., 2017). For example, polymorphisms of TLRs that play a key role
in innate immunity were found to be correlated with susceptibility to
cervical cancer (Pandey et al., 2011). However, the tumor
heterogeneity has not been fully clarified and the prognostic effect
of the International Federation of Gynecology and Obstetrics (FIGO)
staging system does not meet the clinical needs (Kupets and Covens,
2001). Therefore, it is necessary to explore the molecular heterogeneity
and establish a more complete prognostic evaluation system, which
may help improve the precision treatment for cervical cancer.

Cancer cells tend to be in the spotlight of many studies on cancer
biology.However, it has been confirmed that the tumormicroenvironment
(TME) is a non-negligible factor in tumorigenesis, in which cancer cells
may interact with extracellular matrix (ECM) and stromal cells. The TME
is composed of a variety of cells, including fibroblasts, endothelial cells,
mesenchymal cells and immune cells (Hanahan and Coussens, 2012).
During interactions with tumor cells, the phenotype of both stromal cells
and immune cells can be shaped to support tumor cell growth (Coussens
et al., 2013). In the context of choric inflammation caused by cancer cells,
myeloid cell precursorsmay be induced to proliferate and differentiate into
the myeloid derived suppressor cells (MDSCs) with the binding of soluble
tumor necrosis factor to the corresponding receptor (Sobo-Vujanovic et al.,
2016). Once differentiated, MDSCs may be home to the TME and the
subsequent vicious cycle of chronic inflammation, immunosuppression,
tumor growth and differentiation cannot be stopped, which may result in
poor prognosis (Ugel et al., 2015). Tumor associatedmacrophages (TAMs)
were abundant in solid tumors and their appearance promoted tumor cell
invasion and metastasis (Qian et al., 2009; Qian et al., 2011). It was
demonstrated that the differentiation states of macrophages can be
influenced by cancer cells (Mantovani and Sica, 2010). For example,
Yang Cheng et al. found that PKN2 derived from colon cancer cells
can inhibit M2 phenotype polarization, which may help promote anti-
tumor immune response and improve prognosis (Cheng et al., 2018).
CD8+ T cells play an important role in tumor suppression but they can be
exhausted during the progression of cancer. Yongshuai Jiang et al.
found that PRMT5 derived from cancer cells could suppress the
function of tumor infiltrating T cells and promote the development of
cervical cancer (Jiang et al., 2021). In addition, dendritic cells (DCs)
expressing PD-1 were found to be correlated with advanced stages,
elevated preoperative squamous cell carcinoma antigen levels and
lymph-vascular space invasion, which suggests its role in immune
surveillance dysfunction in cervical cancer (Wang et al., 2022). Overall,
tumor-infiltrating immune cells were one of the important factors for the
survival and prognosis of cancer patients, but the heterogeneity of TME in
cervical cancer has not been fully elucidated and deserves further
exploration.

It is well known thatmetabolic reprogramming is another characteristic
of malignancies and plays an important role in tumor progression. Otto
Warburg found that tumor cells generate energy through glycolysis under
aerobic conditions and produce a lot of lactic acid, which shapes a hypoxic
and acidic tumor microenvironment (Koppenol et al., 2011). Cytotoxic
T cells are themost important cells in the anti-tumor immune response and
their function was restricted by the glucose metabolism of tumor cells,
resulting in tumor progression (Chang et al., 2015). It was shown that
tumor glycolysis impacted T cell infiltration in the TME and impaired the
efficacy of adoptive T cell therapy (Cascone et al., 2018). Aerobic glycolysis
in tumor cells has been shown to promote the infiltration of MDSCs,
thereby suppressing anti-tumor immune responses in triple-negative breast
cancer (Li et al., 2018). On the other hand, immunomodulatory cells like
M2macrophages and regulatory T cells may impact the function of T cells
by depleting the arginine in the TME (Speiser et al., 2016). Glutamine
metabolism in tumor cells was enhanced in the TME where aerobic
glycolysis produced large amounts of lactate, which caused glutamine
deprivation to infiltrated immune cells and affected their proliferation
(Carr et al., 2010). Tryptophan metabolism was found to play a role in
immunosuppression state in various tumors (Platten et al., 2019). IDO1,
one of tryptophan metabolizing enzymes, was demonstrated to correlate
with low tumor infiltration of T cells in colorectal cancer (Brandacher et al.,
2006), ovarian cancer (Inaba et al., 2009), and endometrial cancer (Ino et al.,
2008). High levels of IDO and TDO have also been shown to contribute to
impaired anti-tumor immune responses (Munn et al., 2005). Luc Pilotte
et al. found that activation of tryptophan metabolism-related enzyme
TDO2 in tumor cells can significantly inhibit the activation of T cells
(Pilotte et al., 2012). Mutations of the isocitrate dehydrogenase genes
IDH1 and IDH2 were found in the lower-grade glioma (LGG) and the
mutated forms could convert α-ketoglutarate (α-KG) to the oncometabolite
R-2-hydroxyglutarate (2HG) (Ichimura, 2012). Kohanbash G et al. found
that IDH-MUT glioma reduced the production of T cells attracting
chemokines and the accumulation of T cells was suppressed
(Kohanbash et al., 2017). Therefore, tumor metabolic status can have an
impact on infiltrating immune cells and may be a target for improving the
efficacy of tumor immunotherapy.

In order to explore the heterogeneity of the TME in cervical
cancer, an immune-metabolism related gene set was constructed and
was applied to the identification of subgroups with prognostic
significance in cervical cancer from The Cancer Genome Atlas
Project (TCGA). Immune cell infiltration and metabolism status
were evaluated respectively and the interaction was explored.
Besides, we constructed a prognostic model in cervical cancer and
validated the expression of key genes on a single-cell dataset from
Gene Expression Omnibus (GEO). Our findings suggested the
existence of immuno-metabolic subgroups of cervical cancer and
uncovered novel therapeutic targets for cervical cancer.

Methods and materials

Human cervical cancer cohorts

The gene expression data of cervical cancer and the corresponding
clinical information in the Cancer Genome Atlas (TCGA) were
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downloaded from the UCSC data portal (https://xenabrowser. net),
which consists of 306 cervical tumor samples and 3 normal samples.
We used the corresponding annotation file from the same database to
convert the transcriptome raw count value in TCGA cohort to
transcripts per kilobase million (TPM) values.

Construction of the immunometabolism
gene set and identification of the subtypes

851 immune related genes were downloaded from the Immport
database (https://www.immport.org/home) and 1,401 metabolism
related genes were downloaded from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database (https://www.genome.jp/
kegg). We applied the univariate Cox proportional hazards model
to evaluate the association of these genes with overall survival. We
included the genes with HR < 0.8 or HR > 1.2 and p values < 0.05 in the
subsequent sample clustering. ConsensusClusterPlus, an R package
designed for unsupervised consensus clustering, was used to identify
the subclusters of the TCGA-CESC cohort.

Evaluation of differences in gene expression
and metabolism pathways among the
subtypes

R (4.2.1) was used to identify the differentially expressed genes
(DEGs) among the cervical cancer subtypes with the EdgeR
package. Genes with an absolute value greater than 2 and an
FDR value less than 0.05 were considered as DEGs. To clarify
the pathway status among subtypes, Gene set variation analysis
(GSVA) was performed with GSVA package to calculate the
enrichment score of different pathways in every single CESC
sample, including “hallmark gene set,” “KEGG gene set,” “GO
biological processes,” “GO cellular components” and “GO
molecular functions” downloaded from the Molecular Signatures
Database (MsigDB, https://www.gsea-msigdb.org/gsea/msigdb).

Evaluation of the immuno-metabolic
microenvironment

Cibersort, a deconvolution algorithm for dissecting the cell
component in bulk sequence data, was used to characterize the
abundance of various immune cells infiltrated and the
corresponding cell states (Newman et al., 2015). As for the
evaluation of difference in metabolic status, 85 metabolic pathways
and the corresponding gene sets were acquired from the KEGG
database and the single sample gene set enrichment analysis
(ssGSEA) algorithm was used to calculate the enrichment scores.
Subsequently, Limma package was used to perform the differential
analysis of the metabolic pathways.

Generation of the prognostic gene signature

The entire cohort was randomly divided into a training dataset
(70%) and a validation dataset (30%). In the training cohort, the Lasso-
Cox regression analysis was used to select the genes with prognostic

value, Then, a multivariate Cox hazard ratio model was constructed
with 10 genes selected. The risk score was calculated based on the
expression data in the validation cohort and the corresponding
coefficients in the model. According to the coefficients in the
model, the formula for calculating the risk score is: risk score =
FLT3LG*(−0.147) + IMPDH1*(-0.011) + OPRD1*0.836 +
MOCS1*0.163 + IL1B*0.331 + GALNT10*0.489 +
TNFRSF11B*(−0.048) + LDHC*(−1.075) + ISG20*(−0.444) +
TRAV12_3*(−0.134). Finally, We used the survivalROC package to
evaluate the prognostic value. With the median value of risk score, we
divided the entire cohort into high and low risk groups, for which
survival analysis was performed.

Gene expression analysis at single cell
resolution

To elucidate the cell specificity of gene expression and validate the
difference between tumor and normal samples. GSE168652, a single
cell sequencing data of cervical cancer derived from Hua’s research (Li
et al., 2021) was downloaded from Gene Expression Omnibus (GEO)
datasets. Seurat (version 4.1.1) was used to perform quality control,
data filtration, data scale, dimension reduction, clustering and cell type
annotation, in which the criteria were set the same as the original
research. For pseudo-time trajectory analysis, Monocle (version
2.20.0) was used to analyze the cell state transition of cancer cells
and visualize the gene expression patterns along the trajectory.

Immunohistochemistry

Human cervical cancer tissue sections were retrospectively
obtained from surgical resections that were fixed in buffered
formalin, embedded in paraffin, and stored at the Zhujiang
Hospital, Southern Medical University, Guangzhou, China. The
corresponding clinical data were obtained from medical records
and identified. The ethics committee of Zhujiang Hospital
approved the use of the clinical specimens. For IHC staining,
antigen retrieval was performed by heat treatment in a microwave
oven for 21 min in Tris-ethylene diamine tetraacetic acid (EDTA)
buffer solution (0.05 mol/L Tris, 0.001 mol/L EDTA; pH 8.5).
Endogenous peroxidase activity was inactivated using 0.3% H2O2

for 10 min followed by washing with PBS (Gibco, C14190500BT).
After blocking by 5% BSA for 20 min, the slides were incubated
overnight at 4°C with the following primary antibodies used
(proteintech, 22092-1-AP-50UL). After washing with PBS, the
sections were incubated with HRP conjugated goat anti-rabbit IgG
secondary antibodies (Cell Signalling, 7074) for 50 min. Finally,
immunoreactivity was detected using 3,3-diaminobenzidine
(Servicebio, G1211), followed by re-staining with hematoxylin.
Images were obtained by using 3D HISTECH (Pannoramic MIDI II).

Cell culture

Human cervical cancer cell lines HeLa, SiHa, Caski and c33a were
purchased from the Procell Life Science&Technology Co.,Ltd. Cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with
supplement of 10% fetal bovine serum (FBS) (Gibco, 10099-141C) and
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100 units/mL penicillin and streptomycin (Sigma, St. Louis, MO,
United States) at 37°C with a humidified atmosphere of 5% CO2

maintenance.

Western blotting

Cells were homogenized in RIPA lysis buffer (sc-24948; Santa
Cruz Biotechnology, Inc.), and protein contents were measured using
Bicin-choninic Acid (BCA) protein assay kit (CWBIO, CW0014S).
Incubate cell protein with SDS-PAGE loading buffer (CWBIO,
CW0052S) at 100°C for 10 min to denature the protein. After
electrophoresis with SDS-PAGE, the separated proteins from the
gel were transferred onto polyvinylidene fluoride (PVDF)
membrane and then were subjected to western blotting with
specific primary antibodies followed by detection with horseradish
peroxidase-conjugated secondary antibody (solarbio, SE134-1mL,
SE131-1 mL) and enhanced chemiluminescence (Merck millipore,
WBKLS0100). The antibodies used in this study include the
following: anti-IMPDH1 antibody (proteintech, 22092-1-AP-50UL,
1:2000); GAPDH (MC4) Mouse Monoclonal Antibody (Beijing Ray
Antibody Biotech, RM 2002, 1:50000). ImageJ software was used to
quantify the protein bands. Target protein expression was normalized
to GAPDH to correct for loading.

Quantitative real-time PCR

Total RNA from cells was isolated by TRIzol extraction according
to the manufacturer’s instructions (Thermo Fisher, 15596026), and
cDNA was synthesized with a reverse-transcription kit (Vazyme,
R323-01). The quantitative real-time PCR (qRT-PCR) experiment
was conducted using SYBR Green Real-Time PCR Master Mix Kit
(Vazyme, Q711-02) with the Light Cycler LC480 (Roche). Primer
pairs for quantitative real-time PCR were synthesized from Tsingke
Biotechnology Co., Ltd. IMPDH1(F: 5′-CAGCAGGTGTGACGT
TGAAAG-3′, R: 5′-AGCTCATCGCAATCATTGACG-3′);
ACTB(F: 5′-AGAGCTACGAGCTGCCTGAC-3′, R: 5′-AGCACT
GTGTTGGCGTACAG-3′) Values were calculated by the change in
threshold method (ΔΔCT).

CCK8

Cells were seeded at 5,000 cells per well in 96-well plates according
to the manufacturer’s guidelines. Cells were allowed to adhere
overnight, and treated with different interventions (n = 3 wells/
group) for the indicated time. A total of 10 μL Cell Counting Kit-8
(CCK8) reagents (APExBIO, K1018-5) were added and incubated for
1 h. Then, the absorbance was read at 450 nm. Statistical analysis
(mean ± SD) with triplicates is shown.

Flow cytometry

After induction of apoptosis, cells from each treatment condition
were washed once in PBS. The apoptotic rate was evaluated according
to the protocols provided by the Annexin V-FITC Apoptosis
Detection Kit (Beyotime, China). Generally, 1 × 10̂5 cells were

diluted within buffer, and stained with FITC-conjugated Annexin
V and PI according to the manufacturer’s instructions. The cell
mixture was cultured at room temperature for 20 min and then
analyzed by the CytoFLEX instrument (Beckman).

Transfection

For knockdown assays, short interfering RNAs (siRNAs) targeting
IMPDH1 were synthesized by RiboBio Co., Ltd. (Guangdong, China).
The sequence are listed: genOFFTM st-h-IMPDH1_001: 5′-GGTGAT
GACGCCAAGGATT-3′; genOFFTM st-h-IMPDH1_002: 5′-GCA
CCGACCTGAAGAAGAA-3′; genOFFTM st-h-IMPDH1_003: 5′-
GTACAAGGTGGCTGAGTAT-3′; All cells were transfected using
Lipofectamine 3000 Reagent (Invitrogen, Carlsbad, CA, United States)
according to the manufacturer’s instructions.

Statistical analysis

Cox regression model was used to evaluate the hazard ratio and
prognostic significance of genes in the OS. KM and Cox regression
analysis were applied to calculate the significance of difference in
OS, PFS and DSS. Log-rank test was used to evaluate the statistical
difference of the KM curves. For evaluation of the predictive power
of immuno-metabolism risk score to OS, the time-dependent area
under the receiver operating characteristic curve (AUC) and
C-index (also termed concordance index) were calculated.
Higher value of these two indicators represented better
accuracy. In terms of correlation analysis, the Spearman method
was used to calculate the correlation coefficient and the p-value.
Kruskal–Wallis test was used when the statistical difference of
distribution in three or more groups was examined and Wilcoxon
test was used when comparisons contain only two groups. If not
specified, p values were two-sided and p < 0.05 was defined as
statistically significant.

Results

Identification of the immune-metabolism
subtypes of cervical cancer

The immune related genes and the metabolism related genes were
downloaded from the Immport database and KEGG database
respectively. We constructed an immune-metabolism gene set and
determined the candidate genes with prognostic values using
Univariate Cox proportional hazards regression model analysis. As
a result, the top three immune related genes with unfavorable
prognosis were SHC4(HR = 5.3, p = 0.044, 95%CI, 1–26), LEPR
(HR = 3.4, p = 0.0064, 95%CI, 1.4–8.1) and OPRD1(HR = 3.3, p =
0.00082, 95%CI, 1.6–6.6) while TRGC1(HR = 0.016, p = 0.0051, 95%
CI, 0.00092–0.29), TRGC2(HR = 0.048, p = 0.0029, 95%CI,
0.0065–0.35) and ANGPTL6(HR = 0.079, p = 0.00017, 95%CI,
0.021–0.3) were the top three significant protective factors
(Figure 1A). It was reported that SHC4 was involved in the
progression of hepatocellular cancer (Urabe et al., 2020) and
prostate cancer (Zhang et al., 2022). LEPR was found to be
overexpressed in epithelial ovarian cancer indicating poor
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progression-free survival (Uddin et al., 2009) and its somatic mutation
was found to increase the susceptibility to hepatocarcinogenesis (Ikeda
et al., 2014).

In terms of metabolism, we identified ACSL6 (HR = 20, p = 0.0023,
95%CI, 2.9–140), PDE4D (HR = 4.7, p = 0.011, 95%CI, 1.4–16) and
PDE2A (HR = 2.8, p = 0.0015, 95%CI, 1.5–5.2) as the top three risk

FIGURE 1
Identification of the Immune-metabolism Subtypes of Cervical Cancer (A) Hazard ratio of top 30 immune related genes that meet the requirements of
HR < 0.8 or HR > 1.2 and p < 0.05 associated with overall survival. (B) Hazard ratio of top 30 metabolism related genes that meet the requirements of HR <
0.8 or HR > 1.2 and p < 0.05 associatedwith overall survival. (C–E) Kaplan-Meier curves of overall survival, progression free interval and disease specific survival
among the subtypes in TCGA cohort. (F–H) The volcano plots of differentially expressed genes among the three subtypes in TCGA cohort. (I)Heatmap of
differentially enriched hallmark pathways from GSEA database among three subtypes in TCGA cohort.
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FIGURE 2
Characterization of the Immune Microenvironment Among Different Subpopulations (A) Heatmap of the abundance of 22 immune cells among three
subgroups in TCGA cohort. (B–E) Boxplots of abundance of M1 macrophages, M2 macrophages, CD8+ T cells and Tregs among three different subtypes in
TCGA cohort. The differences were compared using the Kruskal–Wallis test. (F,G) Heatmap of differential expression of MHC molecules among three
subtypes in TCGA cohort. (H,I) Difference of co-stimulatory and co-inhibitory molecules expression level in three subtypes. (J) Multivariate cox
regressionmodel constructed based on the immune cells with prognostic value in univariate cox analysis. (K) Kaplan-Meier curves of overall survival between
cohorts in TCGA with high and low abundance of activated mast cells and neutrophils infiltrated.
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factors. AMPD1 (HR = 0.039, p = 0.018, 95%CI, 0.0027–0.57), DBH
(HR = 0.19, p = 0.031, 95%CI, 0.043–0.86) andHPGDS (HR = 0.21, p =
0.041, 95%CI, 0.047–0.94) were identified as the top three protective
factors (Figure 1B). PDE4D was demonstrated to be a tumor-
promoting factor in prostate cancer (Rahrmann et al., 2009) and
BRAF-mutated melanoma (Delyon et al., 2017). Inhibition of PDE4D
helped to overcome tamoxifen resistance in ER-positive breast cancer
(Mishra et al., 2018).

Those genes with HR > 1.2 or HR < 0.8 and p < 0.05 in the Cox
regression model were selected for the subsequent clustering analysis,
which contained 154 immune-related genes and 195 metabolism
related genes. We applied the unsupervised cluster analysis for the
dataset and it was indicated that the entire cohort could be divided into
three subgroups (Supplementary Figures 1A–1F). Survival analysis
showed that overall survival (OS), progression free survival (PFS) and
disease specific survival (DSS) differed significantly among these three
subgroups. The C2 subgroup showed worst prognosis (Figures 1C–E).
There were distinct gene expression patterns among the three
subpopulations so we analyzed the differentially expressed genes
(DEGs) among them (Figures 1F–H). Finally, we identified
97 DEGs between C1 and C2, 197 DEGs between C1 and C3 and
337 DEGs between C2 and C3. To explore the difference in signal
pathway status, we performed GSVA analysis in the three cervical
cancer subgroups. It was indicated that C2 was characterized by some
cancer-related pathways such as angiogenesis, hypoxia, and epithelial-
mesenchymal transition while C3 was shown to have inflammatory
signature, with inflammatory response, interferon gamma response
and reactive oxygen species pathway significantly upregulated. As for
C1 subgroup, it was characterized by estrogen response, KRAS
signaling and xenobiotic metabolism activation (Figure 1I). It is
well known that the rapid progression of malignancy may create a
hypoxic microenvironment and hypoxia can stimulate the expression
of some angiogenesis related factors, which may exacerbate tumor
immunosuppression and adversely affect patient outcomes (Rahma
and Hodi, 2019). Taken together, We identified three subgroups of
cervical cancer with unique molecular features and prognostic
significance.

Characterization of the immune
microenvironment among different
subpopulations

Emerging evidence showed that solid tumor harbor rather
complex components, which included immune cells, fibroblasts,
endothelial cells and mesenchymal cells and tumor cells. Tumor
microenvironment plays an important role in cancer development,
immune escape and metastasis (Quail and Joyce, 2013). Different
immune microenvironment components were closely related to the
responsiveness of chemotherapy, immunotherapy and patient
prognosis (Liu et al., 2022). With Cibersort, we evaluated the
abundance of 22 immune cells infiltrated in the three subgroups. It
was shown that most immune cells infiltrated poorly in the
C2 subgroup while abundantly in the C3 subgroup, moderately in
the C1 subgroup, which indicated that C3 subgroup had better anti-
tumor immune response than others (Figure 2A).Pandey et al. (2009)
found that TLRs, the pathogen recognition receptors mainly expressed
on immune cells, were correlated with susceptibility to cervical cancer.
Therefore we analyzed the expression of TLR2, TLR3 and

TLR4 among three subtypes and found that C3 had the highest
level, which may account for better innate immunity and better
prognosis in the C3 subgroup (Supplementary Figures 2A–2C).
Anti-tumor immune response includes multiple steps and various
kinds of immune cells were involved in it such as dendritic cells,
B cells, macrophages, nature killer cells, and T cells (Motz and Coukos,
2013). Macrophages can be influenced by tumor cells to differentiate
into M1 or M2 subtypes, wherein M1 is a pro-inflammatory and anti-
tumor subtype while M2 is an anti-inflammatory and tumor-
promoting subtype. We compared the abundance of macrophages
among the three subgroups and found that C2 subpopulation had the
lowest abundance of both subtypes of macrophages while C1 and
C3 were dominated by M2 and M1 macrophages respectively (Figures
2B, C). CD8+ T cells are an important part of anti-tumor immunity but
are prone to depletion phenotype transformation in the tumor
microenvironment, which is one of the reasons for the low
response rate of tumor immunotherapy. We found that CD8+

T cell abundance was highest in the C3 subpopulation, lowest in
the C2 subpopulation, and intermediate in the C1 subpopulation,
which may indicate that C2 has the worst anti-tumor immune status
(Figure 2D). As for regulatory T cells, both C1 and C3 were
significantly more abundant than C2 while there was no significant
difference between C1 and C3, suggesting that C1 has
immunosuppressive characteristics (Figure 2E). Antigen
presentation is an important step in immune response, which is
dependent on the expression of major histocompatibility complex
(MHC). It was reported that cancer cells can evade attack by immune
cells through downregulating the expression of MHC molecules
(Marincola et al., 2000; van der Burg et al., 2016). So we evaluated
the expression of several MHC I/II molecules and found that C1 and
C2 subpopulations showed lower expression level than
C3 subpopulation (Figures 2F, G). Activation and expansion of
T cells require the co-stimulatory molecules and we found that
C1 and C2 had significantly lower levels of co-stimulatory
molecules compared to C3 (Figure 2H). In addition, high levels of
co-inhibitory molecules were detected in the C3 subpopulation, which
may indicate that C3 subpopulation benefits from immune checkpoint
blockade (ICB) therapy (Figure 2I). It is well known that cytotoxic
T cells depend on interferon gamma (IFN-γ) and granzyme B to attack
cancer cells (Jenkins and Griffiths, 2010). In our study significantly
lower expression level of these two genes and lower enrichment score
of IFN-γ signaling were found in C1 and C2, suggesting impaired
T cells function in these two subpopulations (Supplementary Figures
2D–2E). Finally, we assessed the prognostic significance of various
immune cells in the cohort. Multivariate cox regression analysis
showed that the abundance of memory B cells was an independent
protective factor and that activated mast cells and neutrophils were
independent risk factors (Figure 2J). Survival analysis showed that the
population with higher mast cell abundance had a significantly worse
prognosis than the population with lower mast cell abundance while
neutrophil abundance did not significantly distinguish the cohort for
survival differences (Figure 2K).

Overall, we identified three subgroups of the cervical cancer cohort
based on the immune-metabolism gene set and analyzed the immune
infiltration status of the three subgroups. We found that C3 had the
highest abundance of immune cell infiltration and was characterized
by inflammation, C2 had the least abundance of immune cells and had
the worst prognosis, and C1 had some immune cell infiltration but
mainly had an immune-exhausted phenotype.
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FIGURE 3
Metabolic characteristics of cervical cancer subgroups (A)Heatmap of differentially enrichedmetabolic pathways in three subtypes in TCGA cohort. The
enrichment analysis was performed with GSVA algorithm. (B–D) Volcano plot of differentially enriched metabolic pathways among three subtypes in TCGA
cohort. The differential analysis was performed based on the GSVA analysis. (E) Multivariate cox regression model constructed based on the metabolic
pathways with prognostic value in univariate cox analysis. (F–H) Kaplan-Meier curves of overall survival between cohorts in TCGA with high and low
enrichment score of nitrogenmetabolism, steroid biosynthesis and various types of N glycan biosynthesis. The enrichment analysis was performedwith GSVA
algorithm. (I) Correlation matrix of the specific metabolic pathways and the 22 immune cells infiltrated in the whole cohort. Correlation coefficients are
represented in the form of heatmap using colored scale ranging from blue (minimum correlation) to red (maximum correlation) and the p-value were
presented.
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Metabolic characteristics of cervical cancer
subgroups

It was known that malignancies undergo metabolic
reprogramming in order to adapt to the needs of rapid
proliferation (Martínez-Reyes and Chandel, 2021), resulting in
abnormal accumulation of metabolites in the solid tumor
microenvironment, thereby affecting various cellular components in
the tumor microenvironment (Li et al., 2019).

Using the GSVA algorithm, we performed an enrichment analysis
of 85 metabolic pathways in the KEGG database for the cervical cancer
cohort. The enrichment score heatmap showed a distinct pattern in
metabolic status among the three subgroups (Figure 3A). Next, we
performed differential analysis of metabolic pathways among the three
subgroups and the results showed that a total of 107 differential
metabolic pathways were identified. After ranking by logFC value,
the top 5 pathways were included in subsequent analysis, and only
those upregulated in comparison with other subgroups were considered
significantly enriched pathways. It was illustrated that the drug
metabolism-cytochrome P450 pathway, metabolism of xenobiotics by
cytochrome P450 pathway and retinol metabolism pathway were
significantly upregulated in the C1 subpopulation (Figure 3B). The
metabolic pathways that were significantly upregulated in C2 were
aminoacyl-tRNA biosynthesis pathway and terpenoid backbone
biosynthesis pathway (Figure 3C). As for C3, phenylalanine, tyrosine
and tryptophan biosynthesis were most significantly upregulated
(Figure 3D). To explore the prognostic significance of multiple
metabolic pathways in the whole cohort, we performed a univariate
cox analysis for each metabolic pathway, and only those metabolic
pathways with statistical significance were included in the subsequent
multivariate cox regression analysis. The results showed that steroid
biosynthesis, various type of N-glycan biosynthesis and nitrogen
pathway were independent risk factors in multivariate cox regression
analysis (Figure 3E). Based on the median of these three metabolic
pathways enrichment scores, we divided the cohort into groups with
high and low levels of the corresponding pathways, and then performed
survival analysis. We found that higher activity of the three metabolic
pathways was associated with worse prognosis (Figures 3F–H). Next, we
performed a correlation analysis between immune cell abundance and
the enrichment scores of metabolic pathways with independent
prognostic value (Figure 3I). The data showed that both nitrogen
metabolism (r = 0.22, p < 0.01) and steroid biosynthesis (r = 0.23,
p < 0.01) pathway were significantly positively correlated with activated
dendritic cell. M1 macrophages were significantly negatively correlated
with the various type of N-glycan biosynthesis pathway (r = −0.24, p <
0.01) while M2 macrophages were significantly negatively correlated
with the nitrogen metabolism pathway (r = −0.14, p = 0.017). The
abundance of CD8+ T cells (r = −0.31, p < 0.01) and activated NK cells
(r = −0.16, p = 0.004) showed significantly negative correlation with
steroid biosynthesis pathway. Regulatory T cells (Tregs) are significantly
negatively correlated with the various type of N-glycan biosynthesis
(r = −0.12, p = 0.031) and steroid biosynthesis pathway (r = 0.14, p =
0.016). According to the published research, it was demonstrated that
metabolic reprogramming in tumor cells could impair the anti-tumor
immunity (Hung et al., 2021; Kao et al., 2022). Therefore, it was
indicated that correlation and interaction existed between tumor cells
and infiltrated immune cells in cervical cancer. The phenotype and
function of immune cells may be affected by tumor metabolic
reprogramming, which may promote immune escape in CC.

Construction of an immuno-metabolic
prognostic model for cervical cancer

Based on the immune-metabolism gene set, we identified patient
subgroups with significantly different prognosis. Therefore, the
immunometabolism gene set was applied to construct a cervical
cancer prognosis prediction model. Firstly, we divided 70% of the
cervical cancer cohort into the training cohort and the remaining
30% into the validation cohort. Then, with the lasso-cox regression
method, we screened the 10 genes with the prognostic value from the
immune metabolism gene set (Figures 4A, B), which included FLT3LG,
IMPDH1, OPRD1, MCOS1, IL1B, GALNT10, TNFRSF11B, LDHC,
ISG20 and TRAV12-3. Next, a multivariate cox regression model based
on the 10 prognostic-related genes was constructed in the training
cohort and the risk scores were calculated based on the corresponding
gene coefficients in the model (Figure 4C). With the risk scores, we
performed a prognostic prediction in the validation cohort and the area
under the receiver operating curve of the prediction model was 0.8,
which was higher than that of the clinical stage prediction model of 0.69
(Figure 4D). Based on the median risk score, the whole cohort was
divided into a high-risk group and a low-risk group, and there was a
significant difference in survival between the two groups (p < 0.0001)
(Figure 4E), indicating that immuno-metabolic factors were important
for the prognosis of cervical cancer patients. Additionally, a multivariate
cox regression analysis incorporating immuno-metabolic risk model
scores with FIGO stage, TMN stage, and age was performed, and risk
score was found to be an independent adverse prognostic factor
(Figure 4F). Finally, a nomogram for prognosis prediction was
constructed for cervical cancer (Figure 4G).

IMPDH1was a significant prognostic risk gene
in cervical cancer

Bulk sequencing failed to distinguish the effects of cellular
components in the TME on tumorigenesis while single-cell
sequencing can make up for this limitation. To verify the cellular
origin of genes in prognostic models, a single-cell transcriptome
dataset of cervical cancer was downloaded from Gene Expression
Omnibus (GEO) database and used for analysis. Data filtration,
integration, and dimensionality reduction clustering were performed
according to the parameter in original research. A total of 13 cell clusters
were identified and cancer cells, endometrial stromal cells, endothelial
cells, fibroblasts, lymphocytes, macrophages, and smooth muscle cells
were annotated respectively according to corresponding cell surface
markers (Figures 5A, B). IMPDH1 and ISG20 were mainly expressed in
tumor cells, while the remaining genes were less specific to tumor cell
origin (Figure 5C). Then we performed a pseudo-time analysis of tumor
cells and compared the expression differences of these genes between
normal cells and tumor cells (Figure 5D). The results showed that the
expression levels of FLT3LG, GALNT10, IL1B, IMPDH1 and
ISG20 were higher in tumor cells than in normal cells, while the
remaining genes could not be identified because of the low
expression levels in tumor cells (Figure 5E). In addition, we found
that with the evolution of tumor cell status, the expression levels of
FLT3LG, GALNT10, IL1B, and IMPDH1 remained stable while
ISG20 gradually increased (Figure 5F). It was shown that
IMPDH1 was one of the isoforms of inosine-5′-monophosphate
dehydrogenase (IMPDH) which contributed to the formation of
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cytoophidia and tumor progression (Ruan et al., 2020a). For further
analysis of IMPDH1, IMPDH2 and ISG20, we divided the TCGA cohort
into high and low level groups based on the mean expression levels of

correspondingmolecules. The results showed that there were significant
prognostic differences between groups with different expression levels of
IMPDH1 but not IMPDH2 or ISG20 (Figure 5G).

FIGURE 4
Construction of an immuno-metabolic prognostic model for cervical cancer (A,B) Fit and cvfit plots of LASSO screen. (C) Forest plot of Multivariate cox
regression model constructed based on the genes screened out from LASSO in training cohort. (D) ROC curves measuring the predictive value of risk score
and clinical stage. The area under the ROC curve was 0.82 and 0.69 for the risk score and clinical stage, respectively. (E) Kaplan-Meier curves of overall survival
between the cohorts of TCGA with low and high risk score. (F) Forest plot of the multivariate cox regression model constructed with clinical stage, age
and risk score. (G) Nomogram for predicting probability of survival at 3 and 5 years in cervical cancer.
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FIGURE 5
IMPDH1was A Significant Prognostic Risk Gene in Cervical Cancer (A,B) The t-distributed stochastic neighbor embedding (t-SNE) plot demonstrating the
main cell clusters in cervical cancer and identification of the main cell types. (C)Heatmap shows the expression of genes in the risk models. (D)Development
trajectory plot of cervical cancer cells in pseudo-time analysis. (E) Differential expression of the genes involved in the risk model between the normal cervix
cells and cervical cancer cells. (F) Pseudo-time analysis showing the expression patterns of the genes in the risk model along the tumor progression. (G)
Kaplan-Meier curves of overall survival of the cohorts with low and high expression level of IMPDH1, IMPDH2 and ISG20 in TCGA.

Frontiers in Genetics frontiersin.org11

Lai et al. 10.3389/fgene.2023.1067666

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1067666


In vitro validation

It was found at single cell resolution that IMPDH1 was mainly
expressed in cervical cancer cells. Therefore we validated our finding on
clinical specimens with immunohistochemistry. Compared with normal

cervix tissue, the expression of IMPDH1 in cervical cancer was
significantly increased, suggesting IMPDH1 may contribute to the
progression of cervical cancer (Figure 6A). Then we examined the
expression level of IMPDH1 in four cervical cancer cell lines Hela, Caski,
c33a and Siha with western blotting. It was shown that 4 cell lines have

FIGURE 6
In vitro validation (A) IMPDH1 protein expression in normal cervix tissue and cervical cancer determined using immunohistochemistry. (B) Different
expression level of IMPDH1 in Hela, Siha, Caski and c33a cell lines. (C) CCK8 assay of cell viability under intervention at different concentrations of MPA. (D)
Flow cytometry analysis of apoptosis rate of cells transfected with siRNA. *p < 0.05, **p < 0.01, ***p < 0.001.
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different expression level (Figure 6B). Mycophenolic acid (MPA) was a
pan-inhibitor of IMPDH and it was demonstrated that targeting
IMPDH with MPA can significantly inhibit growth of the ASCL1low

small cell lung cancer cell (Huang et al., 2018). In our research, we found
that the cell viability of cervical cancer cell lines could also be
significantly inhibited with MPA, which indicated IMPDH could be
targeted in cervical cancer (Figure 6C). In addition, siRNA was used to
knock down the expression of IMPDH1 in Hela, Caski and c33a cell
lines. Western blotting and qRT-PCR confirmed the knockdown
efficiency (Supplementary Figures 3A–3C). With flow cytometry, we
found that the apoptosis rate was higher in cells transfected with siRNA
(Figure 6D). Taken together, IMPDH1 may contribute to the growth of
cervical cancer and it can be a novel therapeutic target in cervical cancer.

Discussion

In the present study, we identified three molecular subgroups with
distinct prognosis in cervical cancer from immuno-metabolic
perspective. The differences in tumor infiltrating lymphocytes and
metabolic characteristics among the three subgroups were evaluated
with Cibersort algorithm and GSVA algorithm respectively. In addition,
a risk model based on immune and metabolism related genes was
constructed for prognosis prediction in cervical cancer, which showed
higher accuracy than current FIGO stage in the validation cohort. With
the single cell sequencing data from Hua’s research (Li et al., 2021), we
explored the hub genes’ cellular localization and their expression
patterns during cancer progression. Finally, we found that
IMPDH1 may be a key gene in tumorigenesis, whose expression
may help shape the TME and promote tumor progression.

Tumor heterogeneity is an important factor affecting the survival
and prognosis of patients with cancer. Molecular stratification has been
applied to multiple malignancies in order to help inform appropriate
clinical decisions, including prostate cancer (Tang et al., 2022), breast
cancer (Wolf et al., 2022), hepatocellular carcinoma (Molina et al.,
2022), intrahepatic cholangiocarcinoma (Martin-Serrano et al., 2022)
and small cell lung cancer (Rudin et al., 2019). It was demonstrated that
multiple molecular subtypes of cervical cancer may be uncovered from
different aspects (Meijer and Steenbergen, 2017). Integration analysis
from The Cancer Genome Atlas Research Network revealed different
molecular features of cervical cancer, which may help personalize
clinical management (Cancer Genome Atlas Research Network et al.,
2017). Maud Kamal et al. discovered the different integration signatures
of HPV genome in cervical cancer that may imply prognostic
significance (Kamal et al., 2021). With the 50 genes having the
largest expression variation, Xiaojun Zhu et al. demonstrated two
molecular subgroups in cervical cancer and explored the
heterogeneity, which provided novel targets for diagnosis and
treatment (Zhu et al., 2022). Here we provided a novel classification
approach to dissect the heterogeneity of cervical cancer from the
immunological and metabolic perspectives. Three immuno-metabolic
subtypes were identified in cervical cancer with significantly different
prognosis. The immune infiltration status was poorer in C2 subgroup
than the other two subgroups and C2 had the worst prognosis. The
expression level of immune checkpoint molecules was higher in the
C3 subgroup, which suggested better response to immune checkpoint
blockade therapy. Due to the limited number of samples, there was no
significant prognostic difference between C1 and C3 subgroups but they
showed distinct metabolism status, indicating novel therapeutic targets

for tumor metabolism. Therefore, this stratification strategy may
contribute to individualized treatment for cervical cancer.

Immunemicroenvironment was one of themost important facets of
tumorigenesis (Schreiber et al., 2011). It was demonstrated that the
abundance of tumor infiltrated lymphocytes (TILs) was associated with
favorable patient prognosis (Jérôme et al., 2006). Consistent with the
existing evidence, C2 subgroup showed the least immune cells
abundance and therefore the prognosis was worst among the three
subgroups. The phenotype of TILs can be shaped towards
immunosuppressed by tumor cells during cancer progression. For
example, macrophages infiltrating the tumor can be induced to
differentiate into the M2 phenotype that tends to suppress immune
response (Luca and Pollard Jeffrey, 2018). In our study, macrophages in
C1 subgroup were characterized with anti-inflammatory phenotype
while macrophages in C3 subgroup were pro-inflammatory. In terms of
PFI and DSS, C3 subgroup showed better prognosis than C1 subgroup
though the difference was not statistically significant. Therefore, we
speculated that the status of immune cells may determine the prognosis
of cervical cancer. It was shown that the lactate derived from tumor cells
can influence the phenotype of macrophages in lung cancer and
melanoma (Colegio et al., 2014). Our research showed that the
glycolysis level is rather higher in C1 subgroup, which may explain
the difference of macrophage differentiation between C1 and
C3 subgroups. Besides, activated mast cells were found abundant in
C2 subgroup and they indicated poor prognosis in the whole cohort,
which was consistent with the existing evidence (Huang et al., 2008).
Different expression level of TLRs was detected among the three
subgroups, which indicated that distinct status of innate immunity
against HPV may exist in cervical cancer patients and correlate with
prognosis. Due to the data limitation, we cannot distinguish the
expression level or polymorphism of TLRs in cancer cells in TCGA
cohort and therefore the molecular mechanism by which TLRs promote
cervical cancer progression needs further experimental research.

Distinct metabolic patterns were uncovered among the three
immuno-metabolic subgroups. Compared with the other two
subgroups, C2, the subgroup with the worst prognosis, was
characterized with terpenoid backbone biosynthesis and aminoacyl-
tRNA biosynthesis. 3-Hydroxy-3-methylglutaryl-CoA synthase 1
(HMGCS1), a metabolic enzyme that participated in terpenoid
backbone biosynthesis, was demonstrated to involve in the
progression of cervical cancer (Zhang et al., 2020a). Besides, Li et al.
(2022) showed that isoprenylcysteine carboxyl methyltransferase
(ICMT) may mediate the malignant development of cervical
carcinoma. Other genes in terpenoid backbone biosynthesis pathway
have been demonstrated to play a role in tumorigenesis of breast cancer
(Yu et al., 2021), prostate cancer (Seshacharyulu et al., 2019) and renal
cell carcinoma (Huang et al., 2021). During protein synthesis,
aminoacyl-tRNA biosynthesis was an Indispensable pathway
catalyzed by 20 essential enzymes that ligate the amino acids to their
corresponding tRNAs and there was evidence that the synthetases may
cause diseases when they were mutated or expressed abnormally (Kwon
et al., 2019). For example, the expression of glycyl-tRNA synthetase
(GRS) was found to be an indicator of unfavorable outcomes in renal,
urothelial, liver, breast and endometrial cancers (Thul and Lindskog,
2018). In our research, we found a correlation between the metabolism
pathway mentioned above and the rarity of TILs. Therefore we
speculated that metabolism related genes may impact the abundance
and status of TILs in addition to their involvement in tumor metabolic
reprogramming, which deserves further exploration in cervical cancer.
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Ten genes were used for the construction of the prognostic model,
which included FLT3LG, IMPDH1, OPRD1, MOCS1, IL1B, GALNT10,
TNFRSF11B, LDHC, ISG20 and TRAV12-3. This model showed better
predictive power than FIGO stage system, suggesting its potential for
clinical application. FLT3LG, the formative cytokine for cDC1, was shown
to be capable of controlling the levels of type I conventional dendritic cells
in TME and increasing the responsiveness of patients to anti-PD-
1 immunotherapy (Barry et al., 2018). In contrast, we validated the
expression levels of FLT3LG at single cell resolution and found that it
was upregulated mainly in cancer cells, which indicated its distinct
function in cervical cancer. IMPDH1 is a rate-limiting enzyme of
guanosine triphosphate (GTP) de novo synthesis and it can also form a
filamentous structure called cytoophidia (Keppeke et al., 2020). According
to Ruan et al. (2020b)’s research, cytoophidia formed by IMPDH1 may
contribute to the metastasis of clear cell renal cell carcinoma. Consistently,
IMPDH1, but not IMPDH2, was found to be an indicator of poor
prognosis in our cohort, suggesting that cytoophidia may be a
therapeutic target in cervical cancer. Dysregulated Inflammation
cytokine can exacerbate tumor development. MOCS1 is a gene
involved in the molybdenum cofactor biosynthesis pathway (Reiss and
Hahnewald, 2011) but little was known about its function inmalignancies.
IL1B was one of the IL-1 family proteins and it was demonstrated to be a
therapeutic target in cancer (de Mooij et al., 2017). Altered glycosylation
was found to occur in malignancy (Oliveira-Ferrer et al., 2017) and
GALNT10 is one of the glycosyltransferases whose expression was
associated with poor prognosis in high grade ovarian serous cancer
(Zhang et al., 2020b). TNFRSF11B, also termed osteoprotegerin, was
demonstrated to involve in the progression of gastric cancer (Luan
et al., 2020), melanomas (Oliver et al., 2013) and colon cancer (Zhang
et al., 2021) but little was known about its function in cervical cancer.
LDHC is one of the isozymes in lactate dehydrogenase family which
catalyzes the interconversion of pyruvate and l-lactate (Markert et al.,
1975). Remy Thomas et al. demonstrated that LDHC could be a targetable
cancer antigen for cancer immunotherapy (Thomas et al., 2020). ISG20 is a
20 kDa protein that was capable of inhibiting multiple viruses and its
expression was shown to contribute to poor survival in glioma (Gao et al.,
2019). Surprisingly, some genes in the model were not detected at single
cell resolution such as OPRD1, a gene encoding the delta-opioid receptor
and TRAV12-3, a gene encoding the T cell receptor alpha variable, which
may be due to the sample heterogeneity of single cell sequencing. Besides,
TRAV12-3 served as a protective factor in themodel and it suggested a role
for robust immunity in preventing HPV-related tumors.

There were some limitations existing in our research. Firstly, the
identification of tumor subtypes was based on the analysis of the public
data without further exploration in experiment or clinical investigation.
Second, with limited data resources, the construction and verification
of our prognostic model were performed in different parts of one
cohort, which needs further validation in external cohort. Finally,
bioinformatics methods were used to evaluate the prognostic
prediction power of 10 key genes in cervical cancer but their
underlying molecular mechanisms in the tumorigenesis and
progression deserve further research. Though the clinical specimens
and experimental data showed that IMPDH1 can be a therapeutic target
in cervical cancer, more detailed mechanism needs further research.

Taken together, our research provided a novel perspective for
molecular stratification in cervical cancer. Distinct metabolic patterns
were found in three subgroups and the correlation between TILs and
metabolic pathways were explored. Then a risk model for prognostic
prediction was constructed and it showed better performance than

clinical stage. Immune-metabolism risk score exhibited unfavorable
prognostic significance. Finally, we verified the genes in model at
single cell resolution to figure out the cellular localization and found
that five genes were significantly upregulated in cervical cancer cells.
These findings will help adjust the management strategy for cervical
cancer according to their heterogeneity and uncover novel targets for
cancer immunotherapy.
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SUPPLEMENTARY FIGURE S1
Results of unsupervised consensus clustering (A) Consensus matrix legend plot
indicating the cluster probability ranging from 0 to 1 with different colors.

(B–D) Consensus matrix heatmap of different k value (k=2, k=3, and
k=4 respectively). (E) Cumulative distribution function (CDF) plot of consensus
clustering. (F) Delta area plot of consensus clustering.

SUPPLEMENTARY FIGURE S2
Expression of TLRs and cytotoxicity related molecules and signaling. (A-C)
Boxplot of the expression of TLR2, TLR3 and TLR4 among three subtypes. The
differences were compared using the Kruskal-Wallis test. (D–E) Boxplot of
the expression of grazyme B and IFN-γ among three subtypes. The differences
were compared using the Kruskal-Wallis test. (F) Boxplot of the enrichment
score of IFN-γ signaling among three subtypes. The differences were
compared using the Kruskal-Wallis test.

SUPPLEMENTARY FIGURE S3
Validation of the knockdown efficiency of siRNA (A-C) Results of qRT-PCR and
western blotting confirmed the knockdown efficiency of siRNA targeting
IMPDH1.
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