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Introduction: Prostate cancer (PCa) is the second most common malignancy in
men. Despite multidisciplinary treatments, patients with PCa continue to
experience poor prognoses and high rates of tumor recurrence. Recent studies
have shown that tumor-infiltrating immune cells (TIICs) are associated with PCa
tumorigenesis.

Methods: TheCancer Genome Atlas (TCGA) andGene ExpressionOmnibus (GEO)
datasets were used to derive multi-omics data for prostate adenocarcinoma
(PRAD) samples. The CIBERSORT algorithm was used to calculate the
landscape of TIICs. Weighted gene co-expression network analysis (WGCNA)
was performed to determine the candidate module most significantly associated
with TIICs. LASSOCox regressionwas applied to screen aminimal set of genes and
construct a TIIC-related prognostic gene signature for PCa. Then, 78 PCa samples
with CIBERSORT output p-values of less than 0.05 were selected for analysis.
WGCNA identified 13 modules, and the MEblue module with the most significant
enrichment result was selected. A total of 1143 candidate genes were cross-
examined between the MEblue module and active dendritic cell-related genes.
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Results: According to LASSO Cox regression analysis, a risk model was constructed
with six genes (STX4, UBE2S, EMC6, EMD, NUCB1 and GCAT), which exhibited
strong correlations with clinicopathological variables, tumor microenvironment
context, antitumor therapies, and tumor mutation burden (TMB) in TCGA-PRAD.
Further validation showed that the UBE2S had the highest expression level among
the six genes in five different PCa cell lines.

Discussion: In conclusion, our risk-score model contributes to better predicting
PCa patient prognosis and understanding the underlying mechanisms of immune
responses and antitumor therapies in PCa.

KEYWORDS

prostate cancer, tumor microenvironment, tumor immune infiltrating cells, prognosis
prediction, tumor mutation burden, clinical therapy, dendritic cells

1 Introduction

Prostate cancer (PCa) is the second most prevalent malignancy
(after lung cancer) in men (Sung et al., 2021). According to
GLOBOCAN in 2020, 1.4 million new cases of prostate cancer
have been globally reported, with 375,000 PCa-related deaths
(Sung et al., 2021). However, the clinical characteristics, incidence,
and mortality rates of PCa vary considerably worldwide, suggesting
that there are differing genetic, environmental, and other underlying
risk factors in different countries (Sung et al., 2021; Siegel et al., 2022).
Both genetic mutations (Jin et al., 2019) and epigenetic alterations
(Yang et al., 2021b) are molecular mechanisms underlying the
occurrence and development of malignant tumors, including PCa.
Currently, PCa treatment includes active surveillance (Jeong et al.,
2020), surgery (Tilki et al., 2019), radiotherapy (Fillon, 2020),
androgen deprivation therapy (ADT) (Guan et al., 2022),
chemotherapy (Petrylak et al., 2004), targeted α-therapy (radium-
223) (Parker et al., 2013), immunotherapy (Redman et al., 2018), and
a combination of these therapies (Kishan et al., 2022). However, the
appropriate selection of an therapeutic strategy can be involute and
depends on several key factors, such as patient age, disease stage,
functional status, metastasis, and response to previous therapies.
Therefore, an accurate method for early risk stratification is
necessary for accurately evaluating the prognosis, customizing
patient-specific therapeutic interventions, and long-term
management of PCa. Immune checkpoint inhibitors (ICIs) (anti-
CTLA-4, anti-PD-1, anti-PD-L1, or their combinations) have
produced remarkable responses and improved overall survival in
certain types of advanced cancers, such as hematological, lung,
bladder, and skin cancers (Kwon et al., 2014; Beer et al., 2017;
Antonarakis et al., 2020; Powles et al., 2022). However, the
majority of PCa patients do not respond to and thus benefit from
current ICI treatments, and some even experience immune-related
adverse effects. Therefore, it is urgent to elucidate the molecular
mechanism of the tumor and look for a predictive signature, which
will be beneficial to the diagnosis, prognosis prediction and ICI
treatment for PCa atients.

The tumor microenvironment (TME) has been widely implicated
in tumorigenesis. The TME is a highly complex and heterogenous
ecosystem, where tumor cells are produced, replicated and co-exist with
other surrounding cells including endothelial cells, immune cells,
lymphocytes, adipocytes, fibroblasts, and cancer-associated
fibroblasts (CAFs) (Wang et al., 2022). Recent studies indicate that

immunological components in the TME promote tumor growth
and invasion, regulate tumor cell immune escape, cause
immunosuppression, and increase therapeutic resistance (Altorki
et al., 2019; Zhao et al., 2021). For example, tumor-infiltrating
immune cells (TIICs) in the TME secrete various growth factors
and cytokines that promote drug resistance and suppress immune
responses in different cancer types (Ammirante et al., 2010; Straussman
et al., 2012; Su et al., 2018; Zhang et al., 2020). Therefore, the TME is a
major cause of immunotherapy failure and its various side effects.

In PCa, the infiltration of activated dendritic cells,
M2 macrophages, CD8+ T-cells, resting NK cells, and memory
B cells is substantially correlated with the degree of malignancy
(Wu et al., 2020). The proportion of tumor-infiltrating myeloid-
derived immune suppressor cells (MDSCs) and B lymphocytes
increases in the TME over time, and these cells, through the
secretion of interleukin 23 (IL-23), drive PCa progression to
castration-resistant prostate cancer (CRPC) (Ammirante et al.,
2010; Calcinotto et al., 2018). The downregulation of pro-
inflammatory M1 markers and upregulation of M2-associated
pro-tumorigenic effectors are also associated with the progression
of prostate carcinoma (Bolis et al., 2021). In particular, M2 tumor-
associated macrophages contribute to the development of bone
metastasis, chemotherapy resistance, and castration resistance in
PCa (Kim et al., 2011). However, the specific interactive mechanism
between immune-related cells and PCa has not been fully clarified.
Therefore, it is important to explore the key genes in TME and
construct a TIIC-related risk signature that may help predict patient
outcomes in PCa and improve the understanding of the TME
immunogenomic profile (Xu et al., 2021a; Xu et al., 2021b; Yang
et al., 2021a). In recent years, several prognostic models based on
TME-related genes have been established and have shown
promising tumor prognosis abilities (Xu et al., 2021a; Xiang
et al., 2021; Yang et al., 2021a), but there is a lack of
comprehensive risk-scoring model based on TME/TIIC-related
gene signatures for prognostic prediction of PCa recurrence.

Dendritic cells function as antigen-presenting cells in the TME,
as they recognize, capture, and present tumor-associated antigens
(TAA) to T-cells in secondary lymphoid organs (e.g., lymph nodes).
In response to pathogen invasion, dendritic cells are activated, travel
to the nearest lymph node, and present antigens to naive T-cells,
consequently stimulating the proliferation of naive T-cells and
inducing innate and adaptive antitumor immune responses
(Chudnovskiy et al., 2019). The main types of DCs in the TME
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include plasmacytoid DCs (pDCs) and conventional DCs (cDCs),
which are subdivided into type 1 (cDC1) and type 2 (cDC2) cDCs
(Kvedaraite and Ginhoux, 2022). cDC1 can cross-present TAA
bound to the major histocompatibility complex (MHC) -I to the
T-cell receptor (TCR) of CD8+ T-cells, whereas DCs express
costimulatory factors such as B7, which can bind to
CD28 molecules on the surface of T-cells, providing a second
signal for T-cell activation. CD8+ T-cells can then be induced to
differentiate into cytotoxic T lymphocytes (CTL), which can
specifically recognize and kill target cells accurately.
cDC2 activates CD4+ T-cells via the TAA–MHC-II complex,
promotes the proliferation and differentiation of CD4+ T-cells
into helper T-cells (Th), and mediates humoral immunity
(Kvedaraite and Ginhoux, 2022). These indicate that
understanding dendritic cells and the interaction process in TME
may help to build a prognosis model and improve the efficacy of
cancer treatments in the future.

In this study, we developed a risk-score signature based on
weighted gene co-expression network analysis (WGCNA), using

two PCa sample groups from the PRAD datasets (GSE116918 and
TCGA-PRAD). We examined the correlation between the risk
signature and clinical parameters (including age, T-stage, N-stage,
and Gleason score), tumor mutation burden, tumor ESTIMATE
score, levels of immune checkpoint-related genes, sensitivity to
immune checkpoint inhibitors (ICIs), and response to antitumor
therapies. Additionally, we analyzed the enrichment of signaling
pathways in different risk cohorts and investigated the potential PCa
progression-related mechanisms of TIIC-related gene expression
according to the identified signature.

2 Materials and methods

2.1 Collection of multi-omics data

Normalized RNA sequencing data (fragments per kilobase
million, FPKM), based on mRNA samples (498 prostate cancer
tissues and 52 normal tissues) from the Illumina HiSeq RNA-Seq

TABLE 1 Clinical co-variates of the training and validation cohorts.

Characteristics Training Cohort (TCGA-PRAD, N = 494) Validation Cohort (GSE116918, N = 248)

high risk (N = 247) low risk (N = 247) p high risk (N = 124) low risk (N = 124) p

Age 0.037 0.894

≤65 165 (66.8%) 186 (75.3%) 44 (35.5%) 43 (34.7%)

>65 82 (33.2%) 61 (24.7%) 80 (64.5%) 81 (65.3%)

T-stage <0.01 0.436

T1 0 0 25 (20.2%) 26 (21%)

T2 66 (27.2%) 121 (49.6%) 33 (26.6%) 43 (34.7%)

T3 171 (70.4%) 119 (48.8%) 51 (41.1%) 41 (33.1%)

T4 6 (2.5%) 4 (1.6%) 1 (0.8%) 3 (2.4%)

unknow 4 (1.6%) 3 (1.2%) 14 (11.3%) 11 (8.9%)

N-stage <0.01

N0 161 (65.2%) 183 (74.1%) - -

N1 58 (23.5%) 19 (7.7%) - -

unknow 28 (11.3%) 45 (18.2%) - -

M-stage

M0 228 (92.3%) 225 (90.7%) - -

M1 3 (1.2%) 0 - -

unknow 16 (6.5%) 23 (9.3%) - -

Gleason score <0.01 0.811

6 11 (4.5%) 34(13.8%) 20 (16.1%) 22 (17.7%)

7 88 (35.6%) 158(64%) 48 (38.7%) 51 (41.1%)

≥8 148 (59.9%) 55 (22.3%) 56 (45.2%) 51 (41.1%)

Diease progress <0.01 0.026

No progress 175 (70.9%) 226 (91.5%) 　 108 (87.1%) 118 (95.2%) 　
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platform of the Cancer Genome Atlas Prostatic Adenocarcinoma
(TCGA-PRAD) database, were obtained from The Cancer Genome
Atlas (TCGA) (https://portal.gdc.cancer.gov/) (Weinstein et al.,
2013). FPKM data were transformed into transcript per million
(TPM) values following log2 (x + 1) normalization. The
corresponding clinical profiles (age, AJCC-TNM stage, and
Gleason score) were downloaded from the TCGA portal, and the
clinical data for progression-free survival (PFS) analysis was
downloaded from TCGA Pan-Cancer Clinical Data Resource
(TCGA-CDR) (Liu et al., 2018). After removing four patients
without survival data, 494 patients with PRAD were selected for
the present study. The clinical features of the patients are
summarized in Table 1.

The microarray data of 280 PRAD samples in the
GSE116918 dataset, based on GPL25318 ([ADXPCv1a520642]
Almac Diagnostics Prostate Disease Specific Array) (Affymetrix/
Thermo Fisher, Belfast, United Kingdom), were downloaded from
the Gene Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo/). Detailed clinicopathological data included age,
AJCC-T stage, Gleason score, metastasis-free survival (MFS) state,
and MFS time. The expression data in the two platforms underwent
a batch calibration process and were further normalized via the “sva”
R package, such that they were comparable. The clinical features of
the patients are summarized in Table 1. In addition, somatic
mutation data of 475 patients with PRAD (based on the VarScan
software) were obtained from the TCGA portal.

2.2 Landscape of infiltrating immune cells

The 22 TIICs constituting the TME of TCGA-PRAD samples
were calculated using the CIBERSORT algorithm (http://cibersort.
stanford.edu/) (Newman et al., 2015). Samples with a CIBERSORT
p-value <0.05 were used for further study.

2.3 Weighted gene co-expression network
analysis

The WGCNA R package was used to perform WGCNA of
19,560 gene sequences from TCGA-PRAD patients (Langfelder and
Horvath, 2008). SampleTree was used to identify the outliers that were
subsequently deleted. According to the mean connectivity and scale-
free topology model fit, the soft threshold power (β) value was selected
to generate a scaleless network (index of scale-free topologies = 0.90).
The correlations between sample traits and candidate modules were
computed to determine the models that were highly correlated with the
traits. Then, similar genes were introduced into the same candidate
module employing a “dynamic tree cutting” algorithmwith aminimum
size of 60. Correlations between the 22 TIICs andmodule characteristic
genes were evaluated using Pearson’s correlation coefficient (p < 0.05).
Finally, genes in the most statistically significant module were selected
for subsequent analysis.

2.4 Construction and validation of
prognostic TIIC-related gene signature

The expression levels of genes in the most statistically significant
module were extracted from TCGA-PRAD and
GSE116918 datasets. TCGA-PRAD was used as the training
cohort, and GSE116918 was used as the validation cohort.
Univariate Cox regression analysis was applied to obtain
prognostic risk candidate genes from the most significant module
in the “activated dendritic cells” population in the training cohort,
and the genes that were significantly related to progression-free
survival (PFS) (p < 0.01) were identified.

Then, least absolute shrinkage and selection operator (LASSO)
Cox regression analysis was used to determine the best weighting
coefficient of the prognostic risk candidate genes. After a 1,000-fold
cross-validation of the maximum likelihood estimate of the penalty,
the minimum criterion was determined using the optimal value of
the penalty parameter λ. Finally, a TIIC-related gene risk signature
was established, and the risk score was calculated using the following
formula:

Risk score �β gene 1 × expression level of gene 1 + · · ··
+ β gene n × expression level of gene n

Here, ß is the regression coefficient in the multivariate Cox
regression analysis. The patients in each cohort were divided into
high- and low-risk groups, based on the median risk score of the
training cohort. Univariate and multivariate Cox regression analyses
were performed to evaluate the independent prognostic value of the
risk signature. The R package “caret” was used to randomly split
TCGA-PRAD into training and test cohorts at a 7:3 ratio. Statistical
significance was set at p < 0.05.

2.5 Somatic mutation analysis

The tumor mutation burden (TMB) of the TCGA-PRAD
samples was visualized by the “maftools” R package (Mayakonda
et al., 2018). TMB was defined as the number of base substitutions,
deletions, insertions, and insertions across bases per megabase of the
genome examined using non-synonymous and code-shifting indels
under a 5% detection limit. Somatic alterations in PRAD driver
genes were analyzed in samples with low- and high-risk scores.

2.6 Visualization of the expression of
identified TIIC-related genes in pan-cancer
from TIMER2.0

The Gene_DE module of Tumor Immune Estimation Resource
version 2 (TIMER2.0; http://timer.cistrome.org) (Li et al., 2020) was
used to analyze the differentially expressed TIIC-related genes
between the tumor and normal tissues in pan-cancer.
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FIGURE 1
The landscape of tumor-infiltrating immune cells in prostate cancer. (A) Proportional heatmap of the 21 TIICs in TCGA-PRAD samples (CIBERSORT
algorithm: p < 0.05). (B) Heatmap of the 21 TIICs in normal and tumor tissues from TCGA-PRAD samples. (C) Correlation matrix between 21 TIICs in
TCGA-PRAD. Red and blue colors indicate positive and negative correlations, respectively. Color intensity corresponds to the degree of correlation.
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2.7 Correlation of risk score to TME
characterization

Seven methods, comprising XCELL, TIMER, QUANTISEQ,
MCPcounter, EPIC, CIBERSORT, and CIBERSORT-ABS, were
implemented to evaluate the extent of immune infiltration and
its correlation to the risk score. The Estimation of Stromal and
Immune cells in Malignant Tumors using the Expression Data
(ESTIMATE) algorithm (Yoshihara et al., 2013) was used to
predict tumor purity for each TCGA-PRAD sample.

2.8 Prediction of patient response to
antitumor drug therapy

The sensitivity of PRAD samples in the high- and low-risk-score
groups to antitumor drug therapy was predicted by using the R
package “pRRophetic” (Geeleher et al., 2014) to estimate the half-
maximal inhibitory concentration (IC50) of each sample, based
on the largest publicly attainable pharmacogenomics database:
the Genomics of Drug Sensitivity in Cancer (GDSC) (www.
cancerrxgene.org) (Yang et al., 2013) cell line expression spectrum.

FIGURE 2
Identification of significant gene modules by WGCNA from TCGA database. (A) Analysis of the scale-free fit index and the mean connectivity for
various soft-thresholding powers. (B) Hierarchical cluster dendrogram and corresponding modules using a dynamic tree-cutting algorithm. Different
colors indicate different assigned modules. The gray module contains genes that cannot be assigned to any module. (C) Heatmap of the correlations
between the assignedmodules and immune-infiltrating cells (traits). Within every square, the number on the top refers to the correlation coefficient,
and the number on the bottom refers to the p-value.
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To further explore the potential role of risk score in
immunotherapeutic prediction, the Cancer Immunome Database
(TCIA, https://tcia.at/home) provided comprehensive
immunogenomic analyses of next-generation sequencing (NGS)
data for 20 solid-tumor cancers from TCGA and other data
sources. The immunophenoscore (IPS) was used as a novel and
robust predictor of response to anti-cytotoxic T lymphocyte
antigen-4 (anti-CTLA-4) and anti-programmed cell death protein
1 (anti-PD-1) antibodies (Charoentong et al., 2017) from the
downloaded TCGA-PRAD datasets. The R package “ggpubr” was
used to visualize IPS in the high- and low-risk groups. Furthermore,
the expression levels of 47 immune checkpoint blockade-related
genes in the high-and low-risk-groups were compared, and their
correlations were visualized.

2.9 Functional enrichment analysis

Molecular and functional relevance analyses of potential
prognostic differentially expressed TIIC-related genes (PDEMRGs)
were performed using Metascape (http://metascape.org) (Zhou et al.,
2019). The activation of the hallmark pathway and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway, described
in the MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb)
(Subramanian et al., 2005), was carried out to evaluate the enriched
pathways in the high- and low-risk groups. To elucidate the functional
annotation of each gene, including the risk signature, the gene set
variation analysis (GSVA) R package was used to analyze the
enrichment of the KEGG and gene ontology (GO) pathways.

2.10 Statistical analysis

R software (version 4.0.3) was used for all statistical analyses.
The Wilcoxon test was used to compare the two groups. The R
package “survivalROC” was used to calculate the area under the
curve (AUC) using receiver operating characteristic (ROC) curves to
identify the accuracy of the risk score. Kaplan–Meier curves with
log-rank tests were used to compare survival rates. The chi-squared
test was performed to correlate the risk-score subgroups with
somatic mutation frequency, and Spearman analysis was used to
compute the correlation coefficient. The “clusterProfiler”,
“enrichplot”, “pheatmap”, and “ggplot2” R packages were used to
visualize the results. Statistical significance was set at p < 0.05.

2.11 Experimental validation

Five human prostate cancer cell lines (PC-3, DU-145, C4-2,
22RV-1, and LNCAP) were used to detect mRNA levels of
activated dendritic cell-related genes. Among them, the PC-3 cells
and DU-145 cells were purchased from American Type Culture
Collection (ATCC), 22RV-1 cells and LNCAP cells were purchased
from the Shanghai Fuheng Biotechnology Co., Ltd., and C4-2 cells
were a gift from the Department of Endocrinology, the first hospital of
Jilin University, Changchun, Jilin, China. All cell lines were cultured in
Roswell Park Memorial Institute (RPMI-1640) medium
supplemented with 10% fetal bovine serum (VivaCell, Shanghai XP

Biomed Ltd.,). All media were supplemented with 5000 U/mL
penicillin–streptomycin (Gibco). All cell lines were grown in a
humidified atmosphere containing 5% CO2 at 37°C. RNA was
isolated using RNAiso Plus [Takara Biomedical Technology
(Beijing) Co., China]. Total RNA (2.0 μg) was subjected to reverse
transcription PCR (RT-PCR) using Hifair III Reverse Transcriptase
(Yeasen, China) to obtain cDNA. cDNAwas diluted 20-fold; then 6 μl
was used for quantitative real-time polymerase chain reaction (qRT-
PCR) using Hieff® qPCR SYBR Green Master Mix (No Rox) (Yeasen,
China). Gene expression levels were evaluated relative to GAPDH
level and calculated using the 2−ΔΔCt method. All samples were
analyzed at least in triplicates. The primer sequences used for PCR
were as follows: STX4, 5′- CGGACAATTCGGCAGACTATT -3′
(forward) and 5′- TTCTGGGGCTCTATGGCCTT -3′ (reverse);
UBE2S, 5′- CCGACACGTACTGCTGACC -3′ (forward) and 5′-
GCCGCATACTCCTCGTAGTTC -3′ (reverse); TMEM93, 5′-
GCCGCCGTCCTGGATTATT -3′ (forward) and 5′- GAGGCG
AGCAGGTAGAAGAT -3′ (reverse); EMD, 5′- CCGCCTCCTCTT
ATAGCTTCT -3′ (forward) and 5′- CTCTGGTAGAGTAAAGCG
TCCT -3′ (reverse); GCAT, 5′- CCTCAGCTCTGTCCGCTTTAT -3′
(forward) and 5′- GGATGCCGTCGATGATGGAG -3′ (reverse);
NUCB1, 5′- CAGAACCAGCATACATTCGAGGC -3′ (forward)
and 5′- AGTGACTCCAGATAACGCCGTC -3′ (reverse); and
GAPDH, 5′- TCAACAGCGACACCCACTC-3′ (forward) and 5′-
GCTGTAGCCAAATTCGTTGTC-3′ (reverse).

3 Results

3.1 Landscape of TIICs in TCGA-PRAD

We used the CIBERSORT algorithm to investigate 22 TIICs
subsets in 550 samples (498 tumor and 52 normal) from the TCGA-
PRAD dataset (Supplementary Table S1; Figure 1A). Ultimately, the
abundance of 21 TIIC types from each sample was selected in each
dataset (Supplementary Table S1; Figure 1A), excluding the naive
T-cell type owing to its low abundance in all samples. A total of 78
samples under the threshold of the adjusted CIBERSORT p-value
<0.05 were selected for subsequent analysis. The heatmap shows the
TME patterns of 21 TIIC types in normal and tumor tissues
(Figure 1B). Furthermore, the correlation matrix displays
correlation coefficients between the 21 TIICs types, demonstrating
a potential connection between these infiltrating immune cells in the
TME (Figure 1C). Notably, CD8+ T-cells and regulatory T-cells
(Tregs) had the strongest positive correlation (r = 0.51; p < 0.01),
whereas follicular helper T-cells and resting memory CD4+ T-cells
had the strongest negative correlation (r = −0.51; p < 0.01). In
addition, the activated dendritic cells were positively correlated
with several infiltrating immune cells, including memory B cells
(r = 0.31; p < 0.01), naive B cells (r = 0.29; p < 0.01), and resting
NK cells (r = 0.29; p < 0.01), suggesting their important roles in the
TME (Supplementary Table S2).

3.2 Establishment of the WGCNA network

We next established a WGCNA co-expression network through
the “WGCNA” R package, selecting 19,560 genes from TCGA-
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PRAD patient samples after gene sequencing and preprocessing. A
power of ß = 11 was used as the best soft-thresholding parameter,
with an index of scale-free topologies of R2 = 0.90 (Figure 2A).
Highly similar genes were assigned to the same module by the
dynamic tree-cutting algorithm, and modules that met the
hierarchical clustering analysis threshold of below 0.25 were
clustered together. Consequently, 13 modules were identified in

the resulting network and illustrated in a hierarchical clustering tree:
MEmidnightblue, MElightyellow, MEred, MEblack, MEbrown,
MEblue, MEgreenyellow, MEcyan, MEpurple, MEgrey60,
MEmagenta, MEturquoise, and MEgrey (Supplementary Table
S3; Figure 2B). Furthermore, the correlations between the
21 TIICs and each module were analyzed and presented as a
heatmap (Figure 2C). Among these 13 modules, MEblue

FIGURE 3
Establishment of the prognostic risk signature. (A) Ten-fold cross-validation for tuning parameter selection in the LASSO regression. The vertical
lines are plotted based on the optimal data according to the minimum criteria and one-standard error criterion. The left vertical line represents the
12 genes identified. (B, C) Kaplan–Meier curve analysis comparing the PFS/MFS between patients in high-risk and low-risk groups in (B) training and (C)
validation cohorts. (D, E) Scatter plots of the relationship between the risk-score model, patient PFS time (upper panel) and the risk curve of the risk-
score growth trend (lower panel). (D) The training cohort, and (E) the validation cohort. (F) Survival prediction ROC curves of the risk model and other
clinical indices from the training cohort. (G, H) Heat maps of six signature genes in the risk-score model. (G) The training cohort, (H) validation cohort.
(I–J) Forest plots of univariate and multivariate Cox regression analyses between risk signature, other clinical data constituting the risk-score model and
PFS. (I) Univariate Cox regression analysis, (J) multivariate Cox regression analysis. Squares represent hazard ratios. Bars represent 95% confidence
intervals.
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(r = −0.55, p = 1e−40), MEgrey (r = −0.47, p = 1e−28), and
MEgreenyellow (r = −0.48, p = 2e−30) modules were significantly
negatively correlated with activated dendritic cells (Figure 2C).
Eventually, we identified the MEblue module (a total of
1,143 genes) as having the strongest correlation coefficient
among the analyzed results.

3.3 Construction of the six-gene-based
prognostic signature

We selected the TCGA-PRAD dataset as the training cohort and
the GSE116918 dataset as the validation cohort, the clinical features
of which are listed in Table 1, and then extracted the expression

levels of genes in the MEblue module from both TCGA-PRAD and
GSE116918 datasets. Univariable Cox regression analysis of these
genes revealed that 211 genes showed a significant prognostic value
associated with PFS (p < 0.01) (Supplementary Table S4). LASSO
Cox regression analysis of this group identified 12 genes with the
highest coefficients (Figure 3A; Supplementary Table S5).
Multivariate Cox regression analysis narrowed this group to six
genes (STX4, UBE2S, EMC6, EMD, NUCB1, and GCAT) as the
minimum set for constructing a TIIC-related genes risk signature
(Table 2).

The risk formula was as follows: Risk score = (0.891 × expression
level of STX4) + (0.618 × expression level of UBE2S) + (0.427 ×
expression level of EMC6) + (0.694 × expression level of
EMD)—(0.628 × expression level of NUCB1)—(0.632 ×

TABLE 2 Identification of prognostic-associated activated dendritic cell-related genes in TCGA-PRAD.

gene coef HR HR.95L HR.95H p value

STX4 0.89140952 3.309 1.945 5.629 < 0.01

UBE2S 0.61820449 2.506 1.782 3.524 < 0.01

EMC6 0.42698353 1.993 1.411 2.815 < 0.01

EMD 0.69441052 6.405 3.095 13.254 < 0.01

NUCB1 −0.62842011 0.526 0.338 0.818 < 0.01

GCAT −0.63160295 0.593 0.42 0.837 < 0.01

FIGURE 4
The relative mRNA expression levels of the six TIIC-related genes in five PCa cell lines. ThemRNA expression level of TMEM93, STX4, GCAT, NUCB1,
EMD and UBE2S in LNCAP(A), C4-2(B), 22RV-1(C), PC-3(D), DU145(E) cells. Data represent mean ± SEM (n = 3 independent experiments).
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expression level of GCAT). Among these genes, STX4 (syntaxin 4),
UBE2S (ubiquitin conjugating enzyme E2 S), EMC6 (ER membrane
protein complex subunit 6 or transmembrane protein 93,
TMEM93), and EMD (emerin) were identified as high-risk genes,
whereas NUCB1 (nucleobindin 1) and GCAT (glycine
C-acetyltransferase) as low-risk genes. Survival analysis showed
that TCGA-PRAD patients with higher expression levels of high-
risk genes had poorer prognoses than those with lower expression
levels (Supplementary Figures S1A–D). The PFS of patients
with higher expression levels of low-risk genes was greater
than those with lower expression levels (Supplementary Figures
S1E–F).

Furthermore, we analyzed the mRNA expression levels of the six
TIIC-related genes from TCGA pan-cancers in the TIMER database,
and found that they were significantly increased in tumor tissues
compared to the adjacent normal tissues found in various cancers
(p < 0.05) (Supplementary Figures S2, S3). For example, the high-
risk genes EMC6 and UBE2S were expressed to a greater extent in
TCGA-PRAD tumor tissues than in normal tissues. Although STX4
was not overexpressed in TCGA-PRAD, its mRNA level was higher
in stage IV than in stages I–III (Supplementary Figure S1G).
Intriguingly, we found that the mRNA levels of low-risk genes
NUCB1 and GCAT were elevated in tumor tissues more than
those in normal tissues, but they were lower in stage IV than in
stages I–III (Supplementary Figures S1H–I). Together, these results
suggest that the three genes may play essential roles in the advanced

disease stage and thus validate the combined influence of the six
activated dendritic cell-related genes on prostate cancer risk.
Presumably, EMC6 and UBE2S are overexpressed in tumor
tissues compared with normal tissues. They are thus likely to be
oncogenic from the start, whereas STX4 probably do not play a role
during the initial stages of cancer, and NUCB1 and GCAT are the
significant players during this phase.

3.4 Validation of the prognostic
performance of the six-gene risk signature
in PCa

To further assess outcome prediction, we calculated the risk
scores for each patient in the training cohort using the six-gene
formula model and divided them into high- and low-risk groups
based on the median risk score cutoff value of 0.9773 (p < 0.001).
Kaplan–Meier analysis showed that PFS was shorter in the high-
risk group than in the low-risk group in both the training (p <
0.001) and validation (p = 0.031) cohorts (Figures 3B, C). Scatter
plots and risk curves indicated that the signature gene risk score
was negatively proportional to the PFS of PCa patients (Figures
3D, E). These results suggest that the risk signature of the six
TIIC-related genes has an excellent prediction performance and
thus demonstrates the potential as a prognostic factor in PCa
patients.

FIGURE 5
Correlation between signature gene risk score and PRAD clinicopathology variables. (A) Heatmap of the distribution of clinical features and
corresponding risk score in each sample. (B–E) Rate of clinical variables subtypes in high- and low-risk-score groups: (B) T-stage, (C)N-stage, (D) Age, (E)
Gleason score.
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Next, a 5-year ROC curve analysis was performed, revealing that
the ROC of the risk score (5-year PFS AUC, 0.753) was significantly
higher than that of the prognostic-related clinical parameters, such
as stage (0.569) (Figure 3F), validating the accuracy of the risk
model. Furthermore, heatmap analysis showed that, in the high-risk
group, the mRNA expression levels of STX4, UBE2S, EMC6, and
EMD were higher, whereas those of NUCB1 and GCAT were lower
than those in the low-risk group (Figures 3G, H), suggesting their
prognostic-specific roles in PCa patients. In addition, univariate and
multivariate regression analyses indicated that the risk signature was
an independent prognostic predictor for PFS, with hazard ratios of
1.076 (95% CI:1.053–1.100) in the univariate analysis and 1.068
(95% CI:1.044–1.093) in the multivariate analysis (Figures 3I, J). To
further validate the stability of the model, we randomly split TCGA-
PRAD into training and test cohorts at a 7:3 ratio and constructed
another prognostic model with different variables. We found that
the new model had four genes similar to our previous risk signature
and accurately predicted the prognosis in the TCGA test and
GSE116918 cohorts (Supplementary Table S6; Supplementary
Figures S4A–F).

In addition, we examined the mRNA expression levels of the
six signature genes in five different PCa cell lines and found that

UBE2S had the highest expression level among the six genes
(Figure 4).

3.5 Correlation between risk signature and
PRAD clinicopathological variables

Next, we used a heatmap to visualize the distribution difference
of clinical variables between the high- and low-risk groups and
found that most patients in the high-risk group were older
(>65 years), T-Stage scores (≥3), and N1-stage and Gleason
scores (≥7) than those in the low-risk group (Figure 5A). Bar
plots also confirmed the proportion difference in clinical
subtypes based on age and T-stage, N-stage, and Gleason scores
in the high- and low-risk groups (Figures 5B–E). Furthermore, we
performed subgroup analysis to determine whether our risk
signature could identify different prognoses. When patients were
classified based on age, our risk signature accurately predicted
patient outcomes, with higher scores indicating poorer
outcomes (Supplementary Figures S5A, B). The risk signature
was consistently capable of prognostically predicting patients in
the T3 category (Supplementary Figure S5D), those with N0 status

FIGURE 6
Correlation between risk score and TMB. (A) The difference in TMB between patients from the high- and low-risk score subgroups. (B) Scatterplots
depicting the positive correlation between risk scores and TMB. The oncoPrint was constructed using the (C) high-risk score and (D) low-risk score
subgroups. (E) Kaplan–Meier curves for high- and low-TMB subgroups. (F) Kaplan–Meier curves for patients stratified by both TMB and risk score.
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(Supplementary Figure S5F), and those with a Gleason score of 7
(Supplementary Figure S5I). Notably, the insignificant prognostic
prediction of the risk signature in some of the clinicopathological
parameter subgroups (i.e., Gleason score of 6, T-stage of T4, and
N-stage of N1) was likely due to the relatively low number of cases in
the study. However, it is worth noting that our risk signature
demonstrated better predictions for PRAD patients in the late
stages of PCa than for those in the early stages (i.e., Gleason
score >6 and > T2 stage). These findings, combined with the
results of the univariate and multivariate regression analyses
(Figures 3I, J), indicate the statistical and clinical significance of
the risk signature as a prognostic, predictive indicator.

3.6 Correlation between risk score and TMB
in TCGA-PRAD

PCa frequently exhibits genomic alterations (to the AR axis, ETS
family, TP53, PTEN, or RB) (Cancer Genome Atlas Research, 2015;

Abida et al., 2019). These include alterations in genes involved in
biochemical pathways (the PI3K/AKT/MAPK pathway and cell cycle-
related pathways) (Cancer Genome Atlas Research, 2015; Abida et al.,
2019; Powles et al., 2022), epigenetic changes (Cancer Genome Atlas
Research, 2015; Abida et al., 2019), alterations in DNA repair
pathways, including homologous recombination repair (HRR) and
mismatch repair (MMR) (Cancer Genome Atlas Research, 2015;
Abida et al., 2019; Devlies et al., 2020), and single-nucleotide
variants (SNVs) (AR, TP53, PI3KCA, BRCA2, PTEN, APC,
CDK12, and ATM) (Robinson et al., 2015; Abida et al., 2019;
Powles et al., 2022). TMB is calculated based on the somatic
mutation frequency and has been proposed as a predictor of
immunotherapy efficacy in various cancers, including bladder
cancer, NSCLC, small cell lung cancer, and melanoma (Rizvi et al.,
2015; Yarchoan et al., 2017).We compared the TMB of patients in the
low- and high-risk groups and found that the TMB of the high-risk
group was significantly higher than that of the low-risk group (p =
1.4e−6) (Figure 6A). The risk score positively correlated with TMB (R=
0.25, p = 6.5e−8; Figure 6B).

FIGURE 7
Correlation between the abundance of tumor-infiltrating cells and risk score. (A) Spearman correlation analysis shows that patients in the high-risk
group were more positively associated with tumor-infiltrating immune cells. (B) Distribution of stromal score, immune score, and ESTIMATE score in
high- and low-risk groups (*: p-value ≤ 0.05; **: p-value ≤ 0.01). (C) Kaplan–Meier curves for high- and low-ESTIMATE score subgroups. (D)
Kaplan–Meier curves for patients stratified by both ESTIMATE score and risk score.
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Furthermore, we examined somatic variations in driver genes in
PCa between the low-risk and high-risk groups, and the top 20 genes
with the highest mutation frequencies were analyzed (Figures 6C,
D). We found that the SPOP (speckle-type POZ protein) gene was
the most significantly mutated gene (SMG) in both risk-score
subgroups (11% and 9%) (Figures 6C, D), confirming previous
reports that SPOP is the most frequently mutated gene in PCa
(Jin et al., 2021). TP53 (12% vs. 7%) had higher somatic mutation
rates in the high-risk group, whereas RYR2 (4% vs. 1%) had higher
somatic mutation rates in the low-risk group. These findings
demonstrate the genetic profiles underlying the intrinsic
connection between activated dendritic cell infiltration and
somatic variants in PCa immunotherapy.

Then, the patients were separated into a high-TMB group (n =
231) and a low-TMB group (n = 241) based on the optimal cutoff
value of TMB (cutoff value = 0.474). Kaplan–Meier curves showed
that patients in the low-TMB group had better PFS than those in the
high-TMB group (log-rank test, p ≤ 0.001; Figure 6E). To evaluate
the synergistic effect of the TMB grouping and risk-score grouping
in the prognostic stratification, patients were divided into subgroups
of high-TMB and high-risk, high-TMB and low-risk, low-TMB and
high-risk, and low-TMB and low-risk groups based on the optimal
cutoff value of TMB and median risk score cutoff value. The TMB
status did not affect the survival prognosis prediction based on the
risk-score group. However, the risk-score subgroup showed
significant survival differences in both the low- and high-TMB
groups (log-rank test, high-TMB and high-risk vs. high-TMB and
low-risk, p < 0.001; low-TMB and high-risk vs. low-TMB and low-
risk, p < 0.001; Figure 6F). Notably, the low-TMB and low-risk

subgroups had the best PFS rates, whereas the low-TMB and high-
risk subgroups had the worst PFS rates (Figure 6F).

3.7 Correlation between risk signature and
TME context of PRAD

To investigate the intrinsic and intimate connection between the
risk signature and TIICs in the TME, we performed a correlation
analysis of the risk score in the TME context of PRAD and found that
the risk score had a strong, negative correlation with subpopulations
of naive B cells (CIBERSORT, R = −0.2, p < 0.01), plasma B cells
(CIBERSORT, R = −0.4, p < 0.01), and neutrophil cells
(QUANTISEQ, R = −0.35, p < 0.01) but was positively correlated
with an abundance of B cells (XCELL, R = 0.12, p < 0.01), memory
B cells (CIBERSORT-ABS, R = 0.22, p < 0.01), M1 Macrophages
(XCELL, R = 0.2, p < 0.01), activated NK cells (CIBERSORT-ABS, R =
0.17, p < 0.01), activated myeloid dendritic cells (CIBERSORT-ABS,
R = 0.19, p < 0.01), activated myeloid dendritic cells (XCELL, R = 0.2,
p < 0.01), and follicular helper T-cells (CIBERSORT, R = 0.19, p <
0.01) (Supplementary Table S7; Supplementary Figures S5A, B). We
also analyzed the correlation between the risk signature and immune
infiltration (Figure 7A). ESTIMATE analysis showed that the immune
(p < 0.01), stromal score (p < 0.05), and ESTIMATE scores (p < 0.01)
were significantly higher in the high-risk group than in the low-risk
group (p < 0.01) (Figure 7B).

In addition, we determined the optimal cut-off value of the
ESTIMATE score (−390.9762) using the minimum p-value method
and classified the patients into a high-ESTIMATE group (n = 175) and

FIGURE 8
Correlation between risk score and immune checkpoint blockade genes and efficacy of antitumor drug therapy in PCa. (A)Correlation of expression
levels of immune checkpoint blockade genes with the risk score. (B) Violin plot of IPS scores distribution in two groups. (C) Sensitivity analysis of
bicalutamide in patients in high- and low-risk-score groups. (D) Sensitivity analysis of docetaxel in patients in high- and low-risk-score groups. (E)
Sensitivity analysis of rucaparib in patients in high- and low-risk-score groups.
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low-ESTIMATE group (n = 318). Kaplan–Meier curves showed that
patients in the low-ESTIMATE group had better PFS rates than those
in the high-ESTIMATE score group (p = 0.011; Figure 7C).
Furthermore, we analyzed the synergistic effect of the ESTIMATE
score and risk-score grouping in the prognostic stratification.

Kaplan–Meier curves indicated that the ESTIMATE score did not
affect the survival prognosis prediction based on the risk-score
subgroup. The risk-score subgroup demonstrated significant survival
differences in low and high ESTIMATE subgroups (log-rank test, high-
ESTIMATE and high-risk vs. high-ESTIMATE and low-risk, p < 0.001;

FIGURE 9
Enrichment pathways of GSVA. (A) Correlation of risk score with the representative pathway terms of Hallmark. (B) Correlation of risk score with the
representative pathway terms of KEGG.

Frontiers in Genetics frontiersin.org14

Xie et al. 10.3389/fgene.2023.1067172

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1067172


low-ESTIMATE and high-risk vs. low-ESTIMATE and low-risk, p <
0.001; Figure 7D). Notably, the low-ESTIMATE and low-risk
subgroups had the best PFS rates, and the high-ESTIMATE and
high-risk subgroups had the worst PFS rates (Figure 7D).

3.8 Correlation between risk score and
efficacy of antitumor therapeutic drugs

We further analyzed the association between the risk score and
efficacy of antitumor therapeutic drugs for PCa. Although many
immune checkpoint blockade-related genes (e.g., PDCD1 and
CTLA4) showed a significantly positive correlation with the risk
score (Figure 8A), the scores of the IPS-PD1 blocker, IPS-CTLA4
blocker did not reveal significant differences between the high-risk
and low-risk groups (Supplementary Figures S7A–C). Intriguingly,
the IPS score (PD-1 negative and CTLA-4 negative; Figure 8B) of the
high-risk group was higher than that of the low-risk group, suggesting
that patients in the high-risk group could have benefited from
immune checkpoint blockade (ICB) treatment instead of PD1/
CTLA4 immunotherapy. Furthermore, we used the pRRophetic
package to evaluate the sensitivity of the risk score to antitumor
therapeutic drugs. We found that three common PCa drugs
(bicalutamide, docetaxel, and rucaparib/AG.014699) showed
different sensitivities in the high-risk and low-risk groups.
Furthermore, patients in the high-risk group had higher half-
inhibitory concentration (IC50) values than those in the low-risk
group, indicating that they were less sensitive to these three antitumor
therapeutic drugs (Figures 8C–E).

3.9 Enrichment of signaling pathways in
high- and low-risk groups

We performed gene set variation analysis (GSVA) in the training
cohort to analyze the signal pathways activated in high-risk or low-
risk groups (Figures 9A, B). In the high-risk group, E2F-regulated,
DNA repair, MYC-regulated, UV-activated, glycolysis, and p53-
mediated signaling pathways were activated. These signaling
pathways are involved in advanced disease progression (Mandigo
et al., 2022), sensitivity to drug therapies (Wei et al., 2021), drug
resistance (Jividen et al., 2018), tumor immune infiltration (Elliott
et al., 2019), tumor proliferation (Elliott et al., 2019), and immune
resistance (Cascone et al., 2018). In the low-risk subgroup, theWNT,
PPAR, protein secretion, cholesterol homeostasis, and androgen
response signaling pathways were elevated. These signaling
pathways are involved in the regulation of the disease metastasis
(Leibold et al., 2020), the neuroendocrine differentiation (Liu et al.,
2019), and the cell cycle, proliferation, and migration (Aurilio et al.,
2020). These results show differences in the biological processes
between the high-risk and low-risk groups.

The endomembrane system organization process was the most
significantly enriched gene ontology biological process (GO-BP)
among the six TIIC-related genes (Supplementary Figure S5A). We
also used gene set enrichment analysis (GSEA) to analyze the
functional enrichment activated by the six TIIC-related genes
and identified significant enrichments in both the GO pathways
(Supplementary Table S8; Supplementary Figures S5B–G) and

KEGG pathways (Supplementary Table S9; Supplementary
Figures S6A–F).

4 Discussion

In this study, to address the research gap regarding effective
prognostic indicators in PCa, we constructed a TIIC-related gene
risk signature to predict the PFS of PCa patients based on PCa
datasets from TCGA-PRAD and GSE116918. Our risk model was
sensitive, specific, and reliable for predicting PFS in PCa, indicating
its potential for clinical use and hence warrants further investigation.

In recent years, dendritic cells have been explored as promising
candidates for vaccination protocols for cancer treatment (Ahmed and
Bae, 2014). The FDA approved the cancer vaccine Sipuleucel-T
(Provenge) for treating asymptomatic metastatic castrate-resistant
prostate cancer (mCRPC) in 2010. Sipuleucel-T is a vaccine made
from patient-isolated dendritic cells with known prostate tumor-
associated antigens and targets explicitly prostatic acid phosphatase
(PAP) (Li et al., 2021). PROSTVAC, an active immunotherapy vaccine,
can induce the immune response of tumor-infiltrating T-cells by
targeting prostate-specific antigen (PSA) and demonstrates high
potency and low adverse effects against PCa patients with low
disease burden and indolent disease (Gulley et al., 2019). However,
treatment has a limited impact on the median overall survival or
survival without events in patients with mCRPC (Gulley et al.,
2019). Therefore, properly selecting targeted antigens and adjuvant
components can be critical for overcoming immune resistance within
the TME. MDSCs, and M2-tumor-associated macrophages have been
found to drive tumor progression in PCa (Ammirante et al., 2010; Bolis
et al., 2021). Still, the exact role of dendritic cells in the development and
progression of PCa remains largely unknown. In this study, we
established a prognostic risk signature based on a module most
significantly correlated with activated dendritic cells. We found that
the risk signature was an independent indicator of PCa recurrence,
indicating that activated dendritic cells are critical to helping generate
antitumor immunity in the TME.

We identified six genes in the risk signature—STX4,UBE2S, EMC6,
EMD,NUCB1, andGCAT—as the most critical TIIC-related prognostic
genes in PCa patient samples. The protein encoded by STX4 is a
membrane protein essential for activating dendritic cells (Verboogen
et al., 2017), activating human plasma cells to secrete antibodies
(Gómez-Jaramillo et al., 2014), and promoting breast tumor cells
invasion and metastasis (Brasher et al., 2022). The elevated
expression level of STX4 is also correlated with poor prognosis in
the clear cell renal carcinoma (He et al., 2021). UBE2S encodes a
ubiquitin-conjugating enzyme involved in protein degradation and
signal transduction. The UBE2S protein plays an oncogenic role in
various tumors, including urinary bladder cancer (Tang et al., 2021),
breast cancer (Ayesha et al., 2016), endometrial cancer (Lin et al., 2019),
ovarian cancer (Hu et al., 2021), lung cancer (Liu and Xu, 2018; Qin
et al., 2020), colorectal cancer (Li et al., 2018), hepatocellular carcinoma
(Gui et al., 2021), and melanoma (Wang et al., 2021), via the activation
of the mTOR pathway (Tang et al., 2021), SOX6/β-Catenin signaling
pathway (Lin et al., 2019), and Wnt/β-catenin signaling pathway (Qin
et al., 2020; Hu et al., 2021). Previous studies have found that
EMC6 protein levels are reduced in gastric cancers (Wang et al.,
2017; Li et al., 2019) but are significantly elevated in cervical cancers
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(Shen and Ding, 2017), suggesting that the protein may act as either a
tumor suppressor or promoter, depending on the cancer type (Shen and
Ding, 2017). The expression level of EMD is elevated (compared with
that in normal tissues) in invasive breast carcinoma, head and neck
squamous cell carcinoma, esophageal carcinoma, cholangiocarcinoma,
hepatocellular liver carcinoma, lung adenocarcinoma/squamous
carcinoma, and rectal adenocarcinoma, according to analysis in the
TIMER database. However, lower expression level of EMD is associated
with tumor aggressiveness in the osteosarcoma (Urciuoli et al., 2020).
Previous reports have shown that the downregulation of NUCB1 in
pancreatic ductal adenocarcinoma indicates poor prognosis (Hua et al.,
2021), and theN-terminalDNA-binding domain ofNUCB1 can bind to
canonical E-box sequences and induce cell epithelial–mesenchymal
transition (Sinha et al., 2019). Some genes are highly expressed in
tumors and positively correlate with prolonged prognosis (Hu et al.,
2018; Cao et al., 2021). In our risk signature, we found that the low-risk
genes NUCB1 and GCAT were higher in tumor tissues than in adjacent
normal tissues in PRAD; however, their expression levels in the high
stage were lower than those in the low stage and that the risk signature
performedwell in prognosis prediction.GCAT is ubiquitously expressed
in the pancreas and prostate and is overexpressed in uterine corpus
endometrial carcinoma, PRAD, lung adenocarcinoma/squamous
carcinoma, invasive breast carcinoma, and colon adenocarcinoma.
GCAT is primarily involved in amino acid metabolism as a low-risk
gene and is overexpressed in PRAD; however, the specificmechanism of
GCAT requires further study. We examined the mRNA expression
levels of the six signature genes in PCa cell lines and found that UBE2S
had the highest expression level among the six genes.

We found that a combination model of six TIIC-related genes
could be used as a risk signature for predicting prognosis and PCa risk.
This risk signature revealed that the high- and low-risk groups had
differentially enriched pathways with distinct molecular mechanisms
for tumorigenicity and progression, indicating the oncogenic
functions of the six TIIC-related genes in PCa.

The six TIIC-related gene signatures we identified were used to
separate the PCa patients into high- and low-risk groups, with
significant differences in clinicopathology and prognosis. PCa
patients in the high-risk group had higher IPS scores (PD-
1 negative and CTLA-4 negative), significantly correlated with
immune checkpoint blockade-related genes (i.e., TNFRSF4,
TNFRSF14, TNFRSF18, and TNFRSF25). In contrast, the low-risk
group was strongly associated with CD44 and CD200R1 genes. This
finding indicates that patients in different risk groups may benefit
from targeted immune checkpoint therapies. In addition, we analyzed
the correlation between our risk signature and the efficacy of several
drug treatments. We found that patients in the high-risk group may
benefit from immune checkpoint blockade (ICB) treatment more
than PD1/CTLA4 immunotherapy, but they may respond less
sensitively to docetaxel, bicalutamide, and rucaparib therapy than
those in the low-risk group. Furthermore, TMB has been associated
with cancer immunotherapeutic response and cancer prognosis (Burr
et al., 2017; Osipov et al., 2020) because high TMBmay lead to greater
production of neoantigens and subsequent activation of the immune
response to ICIs (Coulie et al., 2014; Rizvi et al., 2015). We found a
positive correlation between the TIIC-related gene risk signature and
the TMB subgroups of PCa patients, suggesting that specific
immunotherapies may be more effective for PCa patients in
different TMB groups.

Our study may have several limitations. First, this risk model is
based on PCa patient data from TCGA and GEO datasets, mainly
collected from developed countries. Thus, the risk-score model
requires further validation in multicenter clinical trials and
prospective studies from different regions. Second, additional
experiments are needed to study the biological functions and
mechanistic roles of the six TIIC-related genes in PCa.
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