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Recent studies have revealed that neural functions are involved in possibly every
aspect of a cancer development, serving as bridges connecting
microenvironmental stressors, activities of intracellular subsystems, and cell
survival. Elucidation of the functional roles played by the neural system could
provide the missing links in developing a systems-level understanding of cancer
biology. However, the existing information is highly fragmented and scattered
across the literature and internet databases, making it difficult for cancer
researchers to use. We have conducted computational analyses of
transcriptomic data of cancer tissues in TCGA and tissues of healthy organs in
GTEx, aiming to demonstrate how the functional roles by the neural genes could
be derived and what non-neural functions they are associated with, across
different stages of 26 cancer types. Several novel discoveries are made,
including i) the expressions of certain neural genes can predict the prognosis
of a cancer patient; ii) cancer metastasis tends to involve specific neural functions;
iii) cancers of low survival rates involve more neural interactions than those with
high survival rates; iv) more malignant cancers involve more complex neural
functions; and v) neural functions are probably induced to alleviate stresses
and help the associated cancer cells to survive. A database, called NGC, is
developed for organizing such derived neural functions and associations, along
with gene expressions and functional annotations collected from public
databases, aiming to provide an integrated and publicly available information
resource to enable cancer researchers to take full advantage of the relevant
information in their research, facilitated by tools provided by NGC.

KEYWORDS

neural functions, pan-cancer, metastasis, transcriptomic data, database

1 Introduction

Cancer tissue-based studies have revealed that the nervous system plays essential roles in
cancer formation, progression, and metastasis (Wang et al., 2021). Such roles range from
neuroinflammatory activities at the onset of a cancer, the guiding roles of neural projection
throughout cancer development to the recently discovered driving roles of Schwann cells in
cancer migration and metastasis (Deborde and Wong, 2017). Cross-talks have been widely
observed between cancer and neural cells, such as neurites growing towards cancer, referred
to as neo-neurogenesis, and cancer cells invading nerves, called perineural invasion, which
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can regulate the inflammatory states in the cancer-forming
microenvironment (Yoneda et al., 2018). Neurotransmitters have
been found to affect the activities of immune cells in the cancerous
microenvironment by modulating cancer vascularization, invasion,
and metastasis (Tilan and Kitlinska, 2010; Li and Cho, 2011; Jiang
et al., 2020). Both the sympathetic and parasympathetic nerves are
known to play key roles in cancer development and metastasis as in
prostate cancer (March et al., 2020). Similar has been observed about
the vagal nerve (De Couck et al., 2018).

Considerable information has also been generated about the
interactions between neural and non-neural functions in cancer. For
example, it has been reported that adrenergic innervation could act
on T cells, leading to T cell-induced ACh and also regulating the
local macrophages (Reardon et al., 2013). Damage of perineurium by
invading cancer cells can trigger a cascade of inflammatory
cytokines, which further induces axon regeneration to guide
cancer tumor growth (Wang et al., 2021).

The increasing pool of information about the strong interactions
between cancer and the nerve system, both local and distal, has not
only expanded our knowledge of cancer as a whole-body level
disease but also suggested novel ways for cancer treatment. For
example, breast cancer treatment via denervation via blocking
neurotransmission has generated promising results (Kappos et al.,
2018). Similar studies have been reported on other cancers including
brain, pancreas, prostate, skin, and stomach cancers (Denmeade and
Isaacs, 2002).

Knowing the strong relevance of neo-neurogenesis to cancer
development and treatment, we expect that increasingly more
studies on detailed relationships between cancer and neural cells
will emerge. Hence, we see an increasing need for elucidating the
basic functional roles of neural genes throughout cancer
development in a systematic manner and for making such
information publicly available.

To demonstrate the feasibility in deriving such information in a
systematic manner through analyses of cancer tissue-based
transcriptomic data and the effectiveness in applying it to
elucidation of cancer biology, we have conducted a preliminary
study of functional roles of all human neural genes in cancer tissues
in the TCGA database. Our findings suggest that i) the expressions
of certain neural genes have strong impacts on the survival of cancer
patients; ii) a set of neural genes can be identified in each cancer type,
whose expressions are associated with cancer metastasis; iii) cancer
patients with low survival rates generally involve more interactions
with neural functions, compared to those with higher survival rates;
iv) more generally, more complex neural functions are required in
more malignant cancers; and v) neural genes play key roles in
helping cancer cells survive the local environmental stressors.

Based on this study, we have developed a database, named
Neural Genes in Cancer or NGC, containing the functional
information of neural genes in multiple cancer types and stages,
which we consider as highly relevant to gaining improved
understanding of cancer biology. Currently, NGC covers
26 cancer types, namely, adrenocortical carcinoma (ACC),
bladder urothelial carcinoma (BLCA), breast invasive carcinoma
(BRCA), cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), colon adenocarcinoma (COAD),
lymphoid neoplasm diffuse large B-cell lymphoma (DLBC),
esophageal carcinoma (ESCA), glioblastoma multiforme (GBM),

kidney chromophobe (KICH), kidney renal clear cell carcinoma
(KIRC), kidney renal papillary cell carcinoma (KIRP), brain lower
grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),
ovarian serous cystadenocarcinoma (OV), pancreatic
adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD),
rectum adenocarcinoma (READ), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), testicular germ cell
tumors (TGCT), thyroid carcinoma (THCA), thymoma (THYM),
uterine corpus endometrial carcinoma (UCEC), and uterine
carcinosarcoma (UCS), along with transcriptomic data of normal
tissues of 20 relevant organs from the GTEx database as controls
(Ardlie et al., 2015). These cancer types represent all the types in
TCGA with sufficiently large numbers of tissue samples needed by
our analyses. In addition, NGC also provides a suite of interactive
tools for a) differential gene expression analyses between cancer and
control tissues, b) survival analyses of given genes and cancer, c)
pathway enrichment analyses of specified genes and cancer, d) co-
expression analyses between neural and non-neural genes related to
specified functions in cancer, such as metastasis, and e) weighted
correlation network analyses (WGCNA) between neural genes.
Furthermore, it provides free downloads of the analysis results
via a simple interface.

Based on the new insights gained through our preliminary
analyses, we anticipate that NGC will serve as a powerful tool to
cancer researchers, regardless of their computer programming skills,
to perform functional analyses of neural genes in cancer. The
database is freely available at http://csbl.bmb.uga.edu/NGC.

2 Materials and methods

2.1 Differential gene expression analyses

A basic premise in conducting our study, as in many similar studies,
is that only differentially expressed genes in disease vs. control tissues are
considered as relevant to the occurrence and development of the disease.
Hence only such genes are included when analyzing transcriptomic data
of each cancer type. Normalized raw counts from TCGA and GTEx are
downloaded and used in our study; and DESeq2 is used to assess
differentially expressed neural genes in tissue samples of each cancer
type/stage vs. controls (Love et al., 2014). Genes with |log2FC| > 1 and
q-value <0.05 are considered as differentially expressed, where FC is for
fold change between the average expression of a specified gene across all
the cancer samples under consideration vs. controls.

2.2 Cox regression analyses

Both the univariate and multivariate Cox regression analyses are
employed for survival analyses, using the “survival” and “survminer”
packages in R (Kassambara et al., 2021; Therneau et al., 2022),
respectively, representing two most widely used techniques for
survival analyses. Specifically, all expressed neural genes are
individually examined to check if its expression level has statistically
significant implications to the survival rate, determined using the
univariate Cox regression analysis. A multivariate Cox regression is
then conducted to predict the prognosis based on all the selected genes
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for each cancer type, hence the two analyses serving different purposes.
We have screened neural genes having p-value <0.05 from the
univariate Cox regression analyses as the candidate genes, and then
used a Lasso penalty to further screen neural genes for multivariate Cox
regression analyses that keeps the number of selected genes minimal
without losing the predictive power. Kaplan-Meier, Cox, and ROC
analysis are used to validate the regression model on a validation
dataset, and the neural gene set achieving AUC > 0.7 and
p-value <0.05 is selected as the final prognostic markers, where the
Kaplan-Meier survival estimate is a univariable analysis method for
estimating the survival probability from the observed survival times
(Rich et al., 2010); and AUC (Area Under Curve) is defined as the area
enclosed by the coordinate axis under the receiver operating
characteristic (ROC) curve. In the univariate or multivariate Cox
analyses, hazard ratio (HR) is the ratio between the death and live
rates reflected by the expression of a survival-related gene, as shown in
Supplementary Tables S1–S3, where HR < 1 means that the increased
expression of the gene improves survival while HR > 1 means the
expression reduces survival.

2.3 Sample classification by random forest

The random forest method is employed to identify genes whose
expressions collectively distinguish among samples with distinct
labels, which represents a widely used technique for classification
problems (Fawagreh et al., 2014; More and Rana, 2017; Sarica et al.,
2017). Here, we consider samples with two distinct labels, metastatic
and non-metastatic cancers. We identify neural gene biomarkers of
metastasis in ten cancers: ACC, BLCA, BRCA, COAD, KIRC, KIRP,
LUAD, READ, STAD, and THCA, representing all the TCGA
cancer types each having at least ten stage-IV samples required
by our analyses, with the detailed information given in
Supplementary Table S4. We consider tissues of cancer stages I
and II as the non-metastatic group, stage IV as the metastatic group
(NOTE: stage III is not used since some stage-III samples have
lymph node spread while others do not). The random forest with
feature selection is used to conduct the classification analysis (Menze
et al., 2009). Specifically, the randomForest() function in the
randomForest package of R was used to conduct the random
forest-based analyses, and the Gini index (Menze et al., 2009)
was employed to construct a decision tree. A 10-fold cross-
validation method is used to evaluate the classification performance.

2.4 Correlation analysis

The Pearson correlation coefficient (PCC), a classic method for
measuring linear correlation between two data sets, is calculated
between the expressions of two specified lists of genes. In this study,
a gene pair with PCC >0.8 and p-value <0.05 is considered as a co-
expressed gene pair.

2.5 Pathway enrichment analysis

ClusterProfiler in the R package is used for pathway enrichment
analyses against the Gene Ontology (GO) database in this study,

which employs both over-representation analysis (ORA) and gene
set enrichment analysis (GSEA) techniques and represents a highly
used package for pathway enrichment analyses (Wu et al., 2021).

2.6 Clustering analyses based on Co-
expressed genes

For a given set of genes and their expressions in a specified set of
tissues, their pairwise co-expressions are calculated using the
“WGCNA” package in R (Langfelder and Horvath, 2008), a most
widely used package for gene co-expression analyses, from which
clusters of strongly co-expressed genes are identified. Specifically, an
adjacency matrix was constructed based on the weighted correlation
matrix among the genes, and the adjacency matrix was transformed
into a Topology Overlap Matrix (Tian et al., 2020), from which a
hierarchical clustering is conducted using the dynamicTreeCut
algorithm (Langfelder et al., 2008).

3 Results

3.1 Neural genes expressions can predict
cancer patients’ survival

To study the possible impact of neural genes on cancer patients’
survival, we have identified all neural genes expressed in cancer
tissues and examined their expression profiles across each of the
26 cancer types. By comparing the numbers of upregulated and
downregulated neural genes across different cancer types, we note:
thirteen cancer types each have more upregulated neural genes than
the number of downregulated ones (Supplementary Figure S1A).
Five cancer types each have comparable numbers of up- and
downregulated neural genes (Supplementary Figure S1B). And
the remaining eight each have more downregulated neural genes
than the upregulated ones (Supplementary Figure S1C). These data
reveal that different cancer types have distinct levels of involvement
of neural functions. Supplementary Table S5 lists differentially
expressed neural genes along with fold changes and p-values
across the 26 cancer types.

To understand how neural functions contribute to cancer
development, we have first examined the contribution of the
neural genes to the prognosis of cancer patients. Specifically, we
have conducted a univariate Cox regression analysis against the
expressions of the differentially expressed neural genes (see
METHODS) and calculated the hazard ratio (HR, the ratio
between the rates for death and for live) of each neural gene. For
each cancer type, we have calculated the proportion of its neural
genes with good prognosis (HR < 1 with p-value <0.05) and that
with poor prognosis (HR > 1 with p-value <0.05) among all the
differentially expressed neural genes, respectively. The calculation
results for each of the 26 cancer types are given in Supplementary
Tables S1—S2 and summarized in Figures 1A, B, from which we can
see that more upregulated neural genes have poor than good
prognosis in 23 out of the 26 cancers (except for READ, KIRC
and THYM), and more downregulated neural genes have poor than
good prognosis in 22 out of the 26 cancers (except for PAAD, TGCT,
THYM and UCS), revealing that more differentially expressed
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neural genes, up- or downregulated, imply poorer survival in
general.

A natural question is: can we predict the prognosis of a patient
based on the expressions of neural genes? To answer the question,
we have conducted a Cox regression analysis (with LASSO penalty)
of the five-year survival rates of the patients (as provided in TCGA)
of a cancer type against the expressions of selected neural genes,
namely, to select neural genes whose expressions can collectively
well explain the survival data for all cancer samples of each cancer

type (see METHODS). Considering that five cancer types, namely,
DLBC, KICH, PRAD, READ, and TGCT, each have very limited
survival data in TCGA, our analyses are conducted on the other
21 cancer types.

The detailed analysis results are given in Supplementary Table
S3 with a summary shown in Figure 1C. We note that of the
21 cancer types, 20 each have its survival rates well explained by
a set of cancer type-specific neural genes. Specifically, UCS has the
highest explainability of the survival rates by the selected neural

FIGURE 1
The expressions of neural genes can predict prognosis. (A, B) Bar graphs for the proportions of upregulated neural genes with good prognosis (HR <
1 and p-value <0.05) or poor prognosis (HR > 1 and p-value <0.05) across 26 cancer types (A), and downregulated neural genes with good or poor
prognosis (B). Genes in blue are for good prognosis, while genes in black are for poor prognosis. (C) Prediction result of the Cox regression model across
20 cancer types, with AUC, p-value, and the number of selected prognostic neural marker genes. (D, E) Kaplan-Meier curves and the p-values for
UCS and BLCA over the test sets of the Cox regression model, respectively. The x-axis is age in years and the y-axis is the survival rate. Gene expressions
greater than the median is considered as high expressions, otherwise low expressions.
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genes, achieving 99.4% while BLCA has the lowest one at 70.5%,
measured using the Kaplan-Meier score (see METHODS). Survival
curves along with p-values for UCS and BLCA are shown in Figures
1D, E as examples. It is noteworthy that the survival rates of LUSC
could not be well explained by its neural genes. One possible
explanation is that LUSC is known to be predominantly
associated with cigarette smoking, which may give rise to a
distinct determinant for the cancer’s malignancy level compared
to the other cancer types. Interestingly, for each of the 20 cancer
types, at least 120 of the selected survival neural genes have been

reported to be critical to the survival of the cancer type as listed in
Supplementary Table S6, hence strongly supporting our predictions.

3.2 Neural genes and cancer metastasis

We have examined how the number of upregulated neural
genes changes with the progression of a cancer from stage I
through stage IV and noted that this number generally increases
with the disease progression, particularly at stage IV

FIGURE 2
Neural genes are involved in cancer metastasis. (A) The number of neural genes strongly co-expressed with metastatic genes across different
cancers. (B) The number of neural genes selected by the random forest-based classification. (C) Line charts for the classification performance by the
random forest model for ACC, BRCA, KIRP, and LUAD. The x-axis is the threshold for feature selection, where if the value of a feature is lower than the
threshold, the featurewill be deleted, and the y-axis is for the classification accuracy. (D)Correlation coefficients between selected neural genes and
metastatic pathways, “-” is for coefficients not statistically significant, i.e., p-value >0.05. (E) A heatmap for co-expressions between neurotransmitter
genes and metastatic genes.
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(Supplementary Figures S2—S3), suggesting that more malignant
cancers require more neural genes and furthermore, metastasis
involves neural genes.

To investigate their detailed functional roles in metastasis,
correlation analyses are performed between the upregulated neural
genes and 2,091 metastasis-related genes across all stage IV cancer
tissues for each of the 26 cancer types, collected from the human cancer
metastasis database (Zheng et al., 2018), metastasis related genes in
uniport (ConsortiumUniProt, 2021) and our previous study (Sun et al.,
2020) (see METHODS and Supplementary Table S7). The number of
upregulated neural genes whose expressions strongly correlate with
metastasis genes (coefficients ≥ 0.8 with p-value <0.05) is summarized
in Figure 2A for each cancer type. ACC has an average 5-year survival
rate at ~50%. A cancer type with the survival rate higher than ACC is
considered as having a high survival rate; and similarly, a cancer with
the survival rate lower than ACC as having a low survival rate. We note
that the lower the (average) survival rate a cancer type has, the more
upregulated neural genes co-expressed with metastatic genes. It is
noteworthy that downregulated neural genes do not have a similar
pattern.

Now we check if some neural genes can be used as metastasis
biomarkers. To address this issue, we consider cancer tissues in
stages I and II as non-metastatic and stage IV samples as metastatic
cancers. We have conducted a classification analysis using the
expressions of the to-be-selected upregulated neural genes to
distinguish metastatic from non-metastatic cancer tissues over
samples of each of the following ten cancer types: ACC, BLCA,
BRCA, COAD, KIRC, KIRP, LUAD, READ, STAD, and THCA,
representing all the cancer types each having at least ten stage IV
samples in TCGA. A random forest approach is used to conduct the
classification analyses (see METHODS). For each cancer type, the
selected neural genes are subject to a 10-fold cross-validation.

We note that for each cancer type, a varying number of
upregulated neural genes is needed to distinguish the metastatic
from the non-metastatic cancer tissues, summarized in Figure 2B,
ranging from three (BRCA) to 64 (BLCA), which gives somewhat
different classification accuracies across different cancer types, from
0.975 (BRCA) to 0.736 (BLCA) (see METHODS), as shown in
Figure 2C; Supplementary Figure S4. Each set of the selected neural
genes is considered as metastatic markers (MR) for the cancer type.
Literature review provided strong supporting evidence to our
selected MRs for each cancer type (see Supplementary Table S8).

For each cancer type, a pathway enrichment analysis is
conducted over all the expressed metastasis-related genes (see
METHODS). For each enriched pathway, a Principal Component
Analysis (PCA) is conducted on the gene set enriching the pathway.
Its first principal component is used as the representative of the gene
set. Similarly, a PCA is also conducted on the MR genes for each
cancer type and a representative is selected. Subsequentially, a
correlation analysis is conducted between these two
representatives. The calculation results, shown in Figure 2D,
reveal that the MR genes highly correlate with the metastasis-
related functions, hence indicating that such MRs could be
reliably used as metastatic markers.

Previous studies suggest that neurotransmitters secreted by
nerves are key to cancer metastasis (Jobling et al., 2015). Here,
we have studied the expressions of all major neurotransmitters:
glutamate, dopamine, GABA, glycine, neuropeptide, substance p,

acetylcholine, serotonin, epinephrine, histamine, vasopressin, and
cholecystokinin by calculating the Pearson correlation coefficients
(PCCs) between the metastatic genes and each neurotransmitter-
synthesizing gene. Figure 2E shows the correlation coefficients as a
heatmap with cancers ordered, from the highest to the lowest, by
their numbers of neurotransmitters that highly correlate with
metastatic genes. We note that glutamate, an excitatory
neurotransmitter, is the mostly used among all the
12 neurotransmitters, which is consistent with a previous study
(Stepulak et al., 2014). Interestingly, the average survival rate for
eight cancer types having the highest number of metastasis-
correlated neurotransmitters is 33%, while that for the seven
cancer types having the lowest such neurotransmitters is 86%,
consistent with the previous study (Ries et al., 2008). Further
details are given in Supplementary Table S9.

3.3 Contributions of neural genes to cancer
development

3.3.1 Functional analyses of differentially expressed
neural genes across 26 cancer types

Pathway enrichment analyses are conducted over all up- and
downregulated neural genes, respectively, to study the neural
functions that contribute to the development of each of the
26 cancer types. Supplementary Tables S10, S11 list the pathways
enriched by the up- and downregulated neural genes, respectively,
across the 26 cancer types.

The following observations are made: (Wang et al., 2021):
upregulated neural genes tend to be involved in the early
development of the nervous system such as neuroblast proliferation
and neural tube development, while neural functions involved in the
late development of the nervous system are generally downregulated,
such as sensory and perception related pathways; (Deborde andWong,
2017); genes involved in neuronal apoptosis are widely observed,
revealing that the relevant cancer types have considerable neuron
proliferation, knowing that ~50% of the neurons will undergo
apoptosis after proliferation during the normal development of a
nervous system (Creeley and Olney, 2010); (Yoneda et al., 2018)
numerous neural genes involved in the transport and secretion of
neurotransmitters are downregulated, which is consistent with the
general observation that cell polarity genes tend to be repressed in
cancer (Halaoui and McCaffrey, 2015); and (Jiang et al., 2020) axon
guidance genes tend to be upregulated, which is consistent with
previous studies as they a) act as tumor suppressors, b) regulate cell
migration and apoptosis, and c) control the vascularization of tumors
(Klagsbrun and Eichmann, 2005). Their detailed functional roles
depend on their receptors (Chédotal et al., 2005). Figure 3A
summarizes the levels of these functionalities across the 26 cancer types.

Figure 3B lists all the 11 neural pathways (upper panel, in black)
commonly upregulated across the 26 cancer types and all the four
downregulated neural pathways (lower panel, in red). The following
relationship is observed between the levels of the enriched neural
pathways and the survival rates across the 26 cancer types (survival
rates collected from the SEER report (Ries et al., 2008)): for the
11 upregulated pathways, the lower the survival rate a cancer has, the
more significant the p-values that these enriched pathways have,
where these pathways are generally found in neuronal communities
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with strong neuron-neuron interactions. These suggest that more
malignant cancers tend to use more complex neural networks,
measured using the number of neural genes involved. This is
consistent with the previous studies (Magnon et al., 2013; Huang
et al., 2014).

3.3.2 Functional analyses of co-expressed neural
genes

To elucidate which neural genes tend to work together during a
cancer development, we have carried out clustering analyses of co-
expressed upregulated neural genes at each stage of each of the

FIGURE 3
Neural functions across 26 cancer types. (A) Functions of upregulated and downregulated neural genes. The size of a bubble represents the number
of pathways covered, ranging from 1 to 26. Yellow is for axon guidance related pathways. Red is for neuron differentiation related pathways. Green is for
synapse organization related pathways. Blue is for neuron apoptosis related pathways. Sky blue is for glia cell activation related pathways. Purple is for
neuronal perception related pathway; and grey denotes neurotransmitter transport related pathways. (B) The mean five-year survival rates for
different cancer types according to the SEER reports, where the rates are color coded with purple for 10%–35% covering ESCA, GBM, LGG, LIHC, LUAD,
LUSC, PAAD, and STAD, blue for 45%–75% covering ACC, BLCA, CESC, COAD, DLBC, KIRC, OV, READ, and THYM, and green for 80%–98% covering
BRCA, KICH, KIRP, PRAD, SKCM, TGCT, THCA, UCEC, and UCS, respectively. * is for a p-value between 1.0E-10 and 0.05; ** for a p-value between 1.0E-
010 and 1.0E-20; *** for a p-value between 1.0E-20 and 1.0E-30; and **** for a p-value <1.0E-40.
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26 cancer types using WGCNA (see METHODS). Supplementary
Tables S12, S13 list all the pathways enriched by genes in each cluster
in each cancer stage. We note that i) UCS has the highest number of
neural gene clusters, at 9, and LGG has the lowest one, at 2; ii)
neurogenesis, axonogenesis, gliogenesis, synapse formation, and
neural structure formation are the neural functions commonly
observed across all 26 cancer types; iii) neuron migration and
neuron death tend to be more significantly enriched (with lower
p-values) in young patients (under 60 years old) of cancers having
high survival rates, while early developmental processes such as
neural tube development are more significantly enriched in elderly
patients (over 60 years old) of cancers with low survival rates; iv)
axongenesis is more significantly enriched in female patients of
cancer types having low survival rates, but no such a pattern is

observed in male patients; v) for early stage patients, cancer types
with high survival rates tend to have more significantly enriched
neuronal differentiation processes, while for advanced patients,
cancers with low survival rates have more significantly enriched
early developmental processes, primary neural tube formation and
axonogenesis; and vi) the level of endoplasmic reticulum (ER) stress
strongly correlates with neural functions in nine cancer types: ACC,
GBM, KICH, KIRC, KIRP, LGG, PRAD, and READ. The detailed
clusters and their associations are given in Supplementary Table S14
through Supplementary Table S20.

As an example, we show a comparison between two cancer
types, THCA and PAAD, in terms of the pathways enriched by their
co-expressed neural genes, where the former is a cancer type with the
highest survival rate while the latter has the lowest one. We note that

FIGURE 4
Function analyses of neural genes and co-expressed non-neural genes across 26 cancer types. (A) The number of co-expressed neural and non-
neural gene pairs across different cancer types. (B) Functions of expressed neural genes shared by 26 cancer types. (C) Proportions of pathways enriched
by co-expressed non-neural genes in TME across different cancer types. Blue is for cell-cycle transition related pathways, orange for DNA replication
related pathways, yellow for angiogenesis related pathways, red for extracellular matrix organization related pathways, dark blue for immune
response and inflammatory reaction related pathways, green for cell polarity maintenance related pathways, black for signaling pathway related
pathways, brown for metabolisms of lipid, nucleotide and amino acid related pathways, and gray is for development and differentiation related pathways.
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while the two cancer types share a few neural functions such as axon
guidance, glia activation and synapse formation, PAAD has
considerably more neural functions such as myelination, neural
potential regulation and neurotransmitter transport related
pathways compared to THCA, which has only one unique
pathway as given in Supplementary Table S13, suggesting again
that cancers with lower survival rates utilize more neurological
functions.

3.3.3 Interactions between neural and non-neural
genes across different cancer types

Overall, we aim to develop a knowledgebase to enable cancer
researchers to study the interactive relationships between neural
and non-neural functions in cancer tissues. We have analyzed
such interactions via co-expression analyses in each cancer type.
Figure 4A shows the number of such correlated neural and non-
neural gene pairs across different cancer types, detailed in
Supplementary Tables S21—S22. We note that, among the co-
expressed gene pairs, 1,229 neural genes and 24 non-neural genes
are shared by the 26 cancer types, indicating that while
substantial neural functions are shared by different cancer
types, their interacting non-neural partners tend to be
different across distinct cancer types.

We have studied the cellular functions by examining the
pathways enriched by the 1,229 neural genes, their co-expressed
neural genes, and co-expressed non-neural genes in each cancer
type, given in Supplementary Table S23 through Supplementary
Table S25. We note that the 1,229 genes enrich the following
functions, such as neuroblast proliferation, neural tube closure,
neurogenesis, neuron migration, axon/dendrite guidance, glial
differentiation, myelination, synapse formation,
neurotransmitter secretion, neuron apoptosis and neural crest
development, which span the entire neural developmental
program. In addition, they also partially cover sensory
perception, memory and signaling pathways, shown in
Figure 4B; Supplementary Table S24.

The co-expressed neural genes enrich, for example, the
following pathways listed in the descending order of the
number of cancer types sharing them: early development of
nervous system differentiation of neurons, axon guidance,
synapse formation, neurotransmitter secretion, glial
development, and neuron myelination, shared by all
26 cancer types; neural crest development, neuronal action
potential, axon regeneration, learning and memory, sensory
perception shared by 25 cancer types, neuron apoptosis by
24 cancer types, sympathetic and parasympathetic nerve
development by 22 cancer types, and neuroinflammation by
14 cancer types.

Further analyses have revealed that cancers or their bearing
organs sharing structural or functional similarities may share
common neural functions. We give a few examples here: i)
neuronal action potential is most active in ACC, GBM and
UCS, while their harboring organs all have secretory
functions: the adrenal gland as an endocrine gland can secrete
cortical and sex hormones; astrocytes in brain can secrete various
molecules to protect the central nervous system when it is
damaged (Verkhratsky et al., 2016); and the endometrium can
produce secretions in support of egg implantation in uterus. ii)

Axon regeneration is most active in LGG, TGCT, and THYM,
which all tend to be of low pathological grade (Forst et al., 2014;
Baroni et al., 2019). iii) Neuroinflammatory responses are most
active in DLBC, ESCA, PRAD, TGCT, and UCS, while their
bearing organs share structural similarities, namely, lymph
nodes, esophagi, prostates, testicles, and uteri all experience
shape-change during their lifetime. The detailed information
is given in Supplementary Table S23.

Enriched non-neural pathways shared by all 26 cancer types
include immune response, RNA processing and splicing, and
transcription and translation-related pathways, such as post-
translational modification. In addition, the following
functional categories are shared by most of the 26 cancer
types: cell-cycle transition, DNA replication, angiogenesis,
extra cellular matrix (ECM) assembly, immune and
inflammation response, polarity establishment and
maintenance, and metabolisms of lipids, nucleotide, and
amino acids, summarized in Figure 4C. Furthermore, some
non-neural pathways are shared by a varying number of
cancer types, listed in the descending order of the number of
cancer types sharing them: polarity establishment and
maintenance, and metabolisms of lipids, nucleotide, and
amino acids are shared by 14 cancer types, respectively;
immune and inflammation response are shared by 13 cancer
types; and development and growth are shared by 10 cancer
types. The details are given in Supplementary Table S25.

We have also examined non-neural functions specific to
cancer types having a particular level of five-year survival
rates. To do this, we have binned all 26 cancer types into
three groups, containing approximately nine cancer types with
the highest, intermediate, or the lowest survival rates,
respectively, shown in Figure 4C. We have observed: i)
cancers with lower survival rates tend to involve more cell
cycle-related pathways, immune responses, and ECM assembly
pathways; and ii) cancers with higher survival rates tend to have
more metabolic pathways and cell polarity-related pathways,
such as microtubule-based cilium organization and movement.

Furthermore, our analyses have revealed that the levels of
immune and inflammatory responses tend to negatively correlate
with axon guidance and neuronal action potential. Table 1 lists
the correspondence between nine neurological functions and
immune and inflammatory responses in 26 cancer types.
Neural functions are ranked in the 26 cancer types according
to their activity level (measured using the number of enriched
neural pathways) from high to low; and the result shows that the
levels of the immune and inflammation responses that strongly
correlate with axon guidance and neuronal action potential
increase with the reducing levels of neural functions. No such
trend is seen in the other seven neurological functions. Hence we
speculate that one function played by the neural genes is to
suppress the immune and inflammatory responses, which is
supported by the literature, namely, i) multiple members of
the semaphoring family are known to be anti-inflammatory,
such as SEMA6D is a general anti-inflammatory protein (Kang
et al., 2018), while SEMA3G-difficient mouse is known to have
enhanced production of inflammatory cytokines and SEMA3A
suppresses inflammation in atherosclerosis (Nakanishi et al.,
2022); ii) acid-sensing ion channels (ASICs), an ion channel
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TABLE 1 Effects of nine neural functions on immune responses.

Neural
function

Cancer types
and the
number
of the nine
neural
pathways

Cancer types
along with
the percentage
of immune and
inflammatory
response
functions
in all co-
expressed
non-neural
function

ACC BLCA BRCA CESC COAD DLBC ESCA GBM KICH KIRC KIRP LGG LIHC LUAD LUSC OV PAAD PRAD READ SKCM STAD TGCT THCA THYM UCEC UCS
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in peripheral neurons, are known to suppress the functions of
microglia, the predominant immune cell in the central nervous
system (Foster et al., 2021); and iii) stimulation of the vagal nerve
can alleviate autoimmune diseases, e.g., activated nerves by
electrical shock can suppress the immune system (Sundman
and Olofsson, 2014).

3.4 Data summary and NGC organization

We have developed a database NGC for neural functions at
different stages of a cancer development and their interactions with
non-neural functions across 26 cancer types for both male and
female patients across different ages. The following depicts the key
data and information stored in the database as well as the relevant
analysis tools in support of utilizing the data and information in the
database.

3.4.1 Data in NGC
NGC contains a) the detailed functional information of 4,039 neural

genes, collected fromNCBI (Sherry et al., 2001), Ensembl (Zerbino et al.,
2018), GenBank (Benson et al., 2018), and Gene Ontology (Harris et al.,
2004), which is summarized in Supplementary Table S26; b) the
expression data of each neural gene in each cancer tissue across
26 cancer types retrieved from TCGA (Weinstein et al., 2013),
reprocessed by the UCSC Xena project (Goldman et al., 2020), as
well as its expressions in the central and peripheral nervous systems
and the vagal nerve throughout the development from embryos to
adults, collected from UniProt (Consortium UniProt, 2015) and the
mammalian organ development project (Cardoso-Moreira et al., 2019);
c) clinical information for each cancer sample, including cancer stage,
survival time, patient age, gender and race, all retrieved from TCGA; d)
differentially expressed genes in each stage of each of the 26 cancer types
as well as across all cancer samples of each cancer type vs. controls; e)
pathways enriched by the up- and downregulated genes in (c),
respectively; f) strongly co-expressed neural and non-neural gene
pairs across samples defined in (c) and pathways enriched by the
neural and non-neural genes in the identified gene pairs, respectively;
and g) the expression data of individual genes in brain, cerebellum, heart,

kidney, liver, ovary, and testis before and after birth are collected from a
published study (Cardoso-Moreira et al., 2019). All the sample numbers
mentioned above are given in Supplementary Table S27.

3.4.2 Tools supported by NGC
SearchingNGC:NGC supports numerous queries to enable a user to

retrieve or derive the desired data or information from the database.
Table 2 lists the queries currently supported by NGC, which will
continue to grow as the project evolves. These queries range from
information retrieval about individual genes such as gene functions, the
expression profile of a gene at a particular stage of a specified cancer type,
the survival rate profiles of a specified cancer type among patients with
high vs. low expressions of a given gene, identification of all genes co-
expressed with a specified neural gene over a particular set of cancer
samples, pathways enriched by given genes, and calculation of co-
expressions among specified genes.

Expression-based analyses: NGC supports a number of
analysis tools related to gene expression data, as detailed in
Table 3. They currently cover: i) displaying expression profiles
of specified genes over a given sample set; ii) displaying
differentially expressed genes across a specified set of cancer
samples vs. controls; iii) co-expression analyses between a given
gene and a specified set of genes over a particular set of samples;
and iv) WGCNA-based clustering analyses of a given set of genes
over a set of specified samples.

Enrichment analyses: NGC provides the pathway enrichment
analysis over a specified list of genes using the clusterprofiler
package (Yu et al., 2012).

Survival analyses: The database supports both the univariate
and multivariate Cox regression analyses of the expressions of
specified genes over a given set of cancer samples.

3.4.3 User interface
NGC provides an intuitive graphics-based user interface to

support interactions between a user and the database. All the
above functionalities are made available through a panel of
clickable buttons in the frontpage of the database, as shown
in Figure 5A. Using these buttons, a user can design a gene-
centric, cancer type-centric, neural function-centric, or survival

TABLE 2 Queries currently supported by NGC.

Query Function

NeuralFunction (X) Determine if X is a neural gene or neural genes

Function (X) Retrieve the functional of gene (set) X

Expression (X, C) Retrieve the expression profile of gene (set) X from
cancer type C

Survival (X, C) Determine if the expressions of gene X has
implication to survival of cancer type C

MetastasisRelevant (X, C) Determine if gene X is statistically associated with
metastasis in cancer C

CoexpressedGenes (X, C) Retrieve genes co-expressed with gene X in cancer C

CoexpressedNerualGene
(X, C)

Retrieve all neural genes co-expressed with gene X
in cancer C

Interactions (X, C) Retrieve all TME genes co-expressed with gene X in
cancer C

TABLE 3 Analysis tools supported by NGC.

Tool Function

ExpressionProfile (X, C) Display of the expression profiles of neural gene set X
in cancer type C

DifferentialExpression
(X, C)

Display of differentially expression profiles of neural
gene (set) X in cancer C and control samples

CorrelationAnalysis (X, C) Pairwise correlation analysis among genes X in cancer
type C

WGCNA (X, C) Clustering analysis of genes X in cancer type C using
WGCNA

PathwayEnrichment
(X, C)

Pathway enrichment analysis over gene set X in
cancer type C

RegressionAnalysis (X, C) Univariable and multivariable Cox regression analysis
of genes X in cancer type C
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centric analysis or conduct comparative analyses of neural functional
roles throughout the development of a specific cancer type or a group
of related cancer types. Figure 5B shows the overall workflow in
utilizing the information and data in NGC.

3.4.4 Database implementation
Django, a python-based web framework, is used to build the web

applications in support of user-database interaction. MySQL relational
database (version 8.0.16) is employed to store all the information and
data presented earlier. HTML, CSS, and JavaScript are used to provide
support for web-based display and interactions. A user-friendly web

interface is supported by using the Bootstrap (http://getbootstrap.com/)
and JQuery (http://jquery.com) extension. R (version 3.6.1) and Python
(version 3.7.2) are used for data analyses. NGC Database supports
personalized online analyses and visual displays. All search and
computational results can be downloaded freely.

4 Discussion

We have presented a new database focused on neural functions and
their interactions with non-neural functions throughout a cancer

FIGURE 5
Frontpage and workflow of NGC. (A) The frontpage of NGC. (B) A workflow of NGC.
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development across 26 cancer types. To demonstrate the usefulness of
the database, we have provided a number of examples to illustrate how
cancer biology questions could be studied from the neural functions’
perspective. To the best of our knowledge, this is the first such database.
Compared to the published studies of neural functions in cancer, our
study is more systematic in terms of functional roles of neural activities
in cancer. Our central theme is that neural functions are induced to help
the stressed cells to adapt and survive. Our study is also more
comprehensive, covering significantly more neural functions,
compared to the published studies (Wang et al., 2021). It is
noteworthy that the main functions of the nervous system are to
respond to external stimuli, particularly stress-related signals, and to
regulate the activities of cell and tissue functions. To execute such roles,
the nervous system undergoes complex differentiation to generate
neurons and glial cells, and to establish synaptic connections
between neurons through neurites to ensure that neuronal action
potential will be generated and transmitted properly. Among the
major classes of neural functions, we have covered neuron
differentiation and neurogenesis, neuron apoptosis, myelination,
synapse formation, neurotransmitters, and neurite outgrowth
guidance, much broader than what has been covered in the current
cancer literature. Furthermore, we have demonstrated how functional
associations could be derived among neural functions as well as between
neural and non-neural functions, rather than individual neural
functions in isolation.

In this study, we have made a number of novel discoveries
about the functional roles of neural functions in cancer. For
example, we have discovered that different cancers have distinct
levels of needs for neurotransmitters, such as cancers with lower
survival rates generally need more neurotransmitters. We have
also discovered the functional roles by each of the 12 distinct
neurotransmitters in cancer metastasis across different cancers.

In the functional roles of neurites, ourmain discoveries are: i) cancers
with poor survival generally involvemore neuron-neuron interactions; ii)
in female patients, cancers with low survival rates employ more
axonogenesis than those having high survival rates; iii) as a patient
ages beyond 60, axon guidancewill no longer be positively associatedwith
poor survival; and iv) axon-related functions are involved in regulation of
the tumor microenvironment (TME). For example, axon regeneration is
highly active and strongly correlates with angiogenesis in BRCA.

Another key scientific contribution by our study is that we have
established via statistical analyses and supported by published studies
that the induction of neural functions is predominantly to help the host
cells to suppress inflammation and immune responses. In addition,
some non-neural pathways are found to strongly co-express with neural
pathways in cancer. Examples include that the innate immunity vs.
neuroinflammatory response in ESCA; cell cycle-related functions vs.
learning, memory, and neuronal action potential in GBM; and
angiogenesis vs. axon regeneration in BRCA. These add to the
established knowledge that nerves in TME may respond to hypoxia
and drive the production of neurotransmitters or neurotrophins for
angiogenesis in the tumor environment (Gysler and Drapkin, 2021).
These suggest that the emergence of nerves in cancer will not only
reduce the inflammation-induced damages, but also provide nutrient
supply, helping tumor cells survive.

Overall, we believe that this work will provide a useful information
resource for cancer biologists to study the functional roles of the nervous
systems through analyzing functional states of neural genes, their

interactions with non-neural genes, and pathways they enrich across
different cancer types and stages. Such information is organized in a
highly modular manner to facilitate relatively easy integration of the
stored information as well as novel information syntheses by the user,
enabled by the tools provided by the database. We aim to maintain and
continue to grow the database on a regular basis, anticipating its utility to
the cancer research community. For this reason, we encourage the reader
to send us your suggestion for further addition and improvement.
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