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Introduction: Human populations are often highly structured due to differences in
genetic ancestry among groups, posing difficulties in associating genes with
diseases. Ancestry-informative markers (AIMs) aid in the detection of population
stratification and provide an alternative approach to map population-specific alleles
to disease. Here, we identify and characterize a novel set of African AIMs that
separate populations of African ancestry from other global populations including
those of European ancestry.

Methods: Using data from the 1000 Genomes Project, highly informative SNP
markers from five African subpopulations were selected based on estimates of
informativeness (In) and compared against the European population to generate a
final set of 46,737 African ancestry-informative markers (AIMs). The AIMs identified
were validated using an independent set and functionally annotated using tools like
SIFT, PolyPhen. They were also investigated for representation of commonly used
SNP arrays.

Results: This set of African AIMs effectively separates populations of African ancestry
from other global populations and further identifies substructure between
populations of African ancestry. When a subset of these AIMs was studied in an
independent dataset, they differentiated people who self-identify as African
American or Black from those who identify their ancestry as primarily European.
Most of the AIMs were found to be in their intergenic and intronic regions with only
0.6% in the coding regions of the genome. Most of the commonly used SNP array
investigated contained less than 10% of the AIMs.

Discussion: While several functional annotations of both coding and non-coding
African AIMs are supported by the literature and linked these high-frequency African
alleles to diseases in African populations, more effort is needed to map genes to
diseases in these genetically diverse subpopulations. The relative dearth of these
African AIMs on current genotyping platforms (the array with the highest fraction,
llumina’s Omni 5, harbors less than a quarter of AIMs), further demonstrates a greater
need to better represent historically understudied populations.
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Introduction

Racial health disparities in populations of African descent have been
extensively documented and in the United States these disparities have
been observed in many diseases (Tsai et al., 2011). For example, African
Americans have significantly greater mortality and morbidity for asthma
and are nearly five times more likely to be diagnosed with primary open-
angle glaucoma compared to Americans with European ancestry (Barnes,
2010; Cole et al., 2021). Based on data from US cancer registries for all
malignancies combined, African Americans have worse cancer incidence
and survival rates compared with European Americans (Özdemir &
Dotto, 2017). Not surprisingly, there are certain cancers for which the
racial health disparity is more pronounced. In head and neck cancer,
African Americans possess poorer survival rates than their European
American counterparts even though they have a similar incidence rate
(Daraei & Moore, 2015; Zavala et al., 2021). Breast cancer also has
pronounced racial disparities with African American women having a
40% higher mortality rate, younger age at diagnosis, and higher incidence
of aggressive forms of the disease. Interestingly, African American males
also have a higher incidence of breast cancer compared to European
American males (Stringer-Reasor et al., 2021). Compared to men of
European ancestry, men of African or Afro-Caribbean ancestry have been
found to have a higher risk of developing more aggressive forms of
prostate cancer at a younger age (McHugh et al., 2021). Socioeconomic
factors including healthcare access, geographical factors, lifestyle, and
other behavioral factors are routinely used to explain racial health
disparities in cancer (Khan et al., 2019). Yet, in head and neck cancer
studies, much of this disparity remains after accounting for

socioeconomic factors (Molina et al., 2008) and access to healthcare
(Ragin et al., 2011), suggesting a genetic basis to these differences.

Much of the literature investigating racial health disparities has
relied on self-identified race as a proxy for genetic ancestry. However,
current characteristics for determining race, including skin color,
geography, and language, are often too vague to capture true
genetic ancestry in disease studies (Hunt and Megyesi, 2008).
Ancestry-informative markers (AIMs) are SNPs with highly
differing allele frequencies between different populations, and the
differences in frequency tends to be an order of magnitude greater
than the difference among continental subpopulations (Tian et al.,
2006). More recently, AIMs are being integrated in biomedical studies
to study associations between genetic ancestry and health as a more
accurate measure of genetic ancestry. AIMs panels are heavily used in
admixture mapping in studies seeking to identify disease-associated
loci in admixed populations such as African Americans (Chen et al.,
2010). AIMs allow for the study of both global and local ancestry
association with disease which can lead to the identification of
population-specific disease loci. Loci that are associated with
increased disease risk in a population are likely to be found in
regions of the genome with a high percentage of ancestry for that
population (Zhang et al., 2014). While studies have shown that only
1,500–2,500 SNPs are necessary to detect ancestral chromosomal
regions in admixed populations (Winkler et al., 2010), a
comprehensive AIMs set is required for a finer mapping of disease loci.

In this work, we generate a novel panel of 46,437 African ancestry-
informative markers that were identified using European and African
subpopulations genotype data from Phase 3 of the 1000 Genomes

FIGURE 1
Development of the African AIMs panel for this study. Genotype data from African (AFR) populations (Gambian, Gambia [GWD]; Esan, Nigeria [ESN];
Luhya, Kenya [LWK]; Mende, Sierra Leone [MSL]; Yoruba, Nigeria [YRI]) and European (EUR) populations (Utah residents with European ancestry [CEU]; Finnish,
Finland [FIN], British; England & Scotland [GBR]; Iberian, Spain [IBS]; Tuscany, Italy [TSI]) from the 1000 Genomes Project database. AFR dataset combinations
(AFR-S1 to AFR-S6) and the combined EUR dataset were generated based on the ancestry informativeness (ln) of each variant. Genetic variants with In≥
0.25 were considered as AIMs. Each AFR subset was compared against the combined EUR set resulting in six different AIMs subsets. The SNPs common to all
six AIMs subset were extracted to generate the set of 46,737 African AIMs used in this study.
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Project (1KGP) (Sudmant et al., 2015). This work compares populations
of African and European ancestries to identify SNPs that will be highly
informative for African ancestry as well as differentiating Africans from
other continental groups. Additionally, this AIM set will provide an

important reference panel to investigate genetic ancestry in understudied
admixed populations such as African Americans and Afro-Caribbeans.
While most African AIMs found in the literature are comprised of SNPs
from just two subpopulations, namely CEU (US-European) and YRI

FIGURE 2
(Continued)
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(Yoruba) (Zhang et al., 2014), this panel provides a more extensive
accounting of each of the 1KGP subpopulations in Europe (EUR) and
Africa (AFR). The most highly differentiated SNPs from each AFR

subpopulation relative to the EUR population based on
informativeness estimates common to all AFR subpopulations were
pooled to generate this panel. The African AIMs were validated using

FIGURE 2
Characterization of the African AIMs identified in this study. (A) Selection of the ancestry informative markers (AIMs) common to the different sets of
continental African AIMs to generate the final set of 46,737 African AIMs. (B) Distribution of the number of African AIMs in 1 Mb chromosomal windows across
chromosomes. Although somewindows contain amuch higher count, the y-Axis is capped at 300 SNPs to visualizemost of the peaks which contain less than
300 SNPs per window. The location of AIMs from this set that appear in the GWAS database as associated with cancer phenotypes are shown on the
karyotype plot (nine ontologies are indicated as separate colors). (C) Distribution of African AIMs across different genomic regions.

FIGURE 3
Distribution of FST among autosomal AIMs. FST was estimated for each African subpopulation (ESN, YRI, GWD, MSL, and LWK) against the European
population using data from the 1000Genomes Project. Additionally, estimates of FSTwere also calculated for the two other subpopulations in the dataset with
high African ancestry, the Afro-Caribbean population from Barbados (ACB), and African Americans from the United States (ASW). FST was estimated for
biallelic autosomal AIMs only and shows differences in the distribution in the FST estimates between the populations.
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an independent dataset of 1,448 individuals where approximately one half
is of European ancestry and the other half is of varying degree of African
ancestry. They were characterized for function and disease association
with several gene-trait associations specific to African populations
corroborated in the literature. We also find that these SNPs are
under-represented in major genotyping platforms that are in current
use. This work identifies a robust new panel of SNPs found in high
frequency across continental African populations that have the potential
to link population-specific mutations and disease, thus, providing much
needed foundational data to examine understudied African populations.

Materials and methods

Data source and AIMs identification

Ancestry-informative markers (AIMs) were identified using
SNP data from the 1000 Genomes Project (1KGP)
(1000 Genomes Project 2012; 1000 20151000 Genomes Project
Consortium et al., 2015). The genotype data of African (AFR)
populations (Gambian, Gambia [GWD]; Esan, Nigeria [ESN];
Luhya, Kenya [LWK]; Mende, Sierra Leone [MSL]; Yoruba,
Nigeria [YRI]), and European (EUR) populations (Utah
residents with European ancestry [CEU]; Finnish, Finland
[FIN], British, England & Scotland [GBR]; Iberian, Spain [IBS];
Tuscany, Italy [TSI]) were downloaded from the 1KGP database
(2013 release). The ancestry informativeness (In) of each genetic
variant was estimated separately for six different combinations of
AFR datasets (AFR-S1 to AFR-S6) and the combined EUR dataset
(Figure 1) using the tool, infocalc (Rosenberg et al., 2003). Genetic
variants with In≥ 0.25 were considered as AIMs. The analyses

resulted in six separate AIMs subpanels which were subsequently
intersected to identify 46,737 common African AIMs.

Population genomic differentiation analysis

To validate population-specific properties of the identified AIMs, we
estimated the pairwise fixation index (FST) for the seven 1KGP
subpopulations with significant African ancestry (YRI, ESN, MSL,
GWD, LWK, ACB, ASW) against the European population. Using the
1KGP data for these populations, we extracted SNPs identified as AIMs on
the 22 autosomes using BCFTools (Danecek et al., 2021). Weir-FST
estimates were calculated using VCFTools (Danecek et al., 2011) and
then visualized via violin plots.

We performed a principal component analysis on the AIMs set to
visualize their ability to differentiate between the subpopulations of
African ancestry and the other subpopulations from the 1KGP. Using
BCFTools, the 1KGP VCF files were converted to their binary version
(.bcf). PLINK was used to prune and merge the chromosome files into
one. Eigenvectors were generated and used for PCA analysis
comparing the different populations.

AIMs validation

To test the ability of the identified AIMs to separate populations of
African ancestry from those of European ancestry, we evaluated them on
an independent dataset of 1,472 individuals. These individuals were
recruited as part of a cohort of head and neck cancer study as cases
and controls to be genotyped for an IRB-approved related study. A
custom Illumina sequencing array was designed by adding a subset of the

FIGURE 4
(Continued).
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AIMs from this panel to the Illumina GSA backbone (Infinium Global
Screening Array-24 Kit). DNA was extracted from the biospecimen
collected from study participants as described in Blackman et al.
(2018) and genotyped using the custom array. The AIMs included in
the array are a subset of the 47 K that are not in linkage disequilibrium.
After excluding retired SNPs, updated and combined SNPs, as well as
SNPs whose probes were not able to be made, 11,377 probes were added
to the GSA array. The number of AIMs successfully genotyped by all
samples across two batches totaled 9,566 and the genotype data for

9,385 SNPs were used as the validation SNP subset via principal
component analysis.

Functional characterization

We annotated and evaluated the functional role of these genetic
variants by running our list of AIMs through ANNOVAR (Wang
et al., 2010) using the hg19 human reference genome. The

FIGURE 4
Clustering of African AIMs within and between populations. (A) Principal component analysis across all subpopulations in 1000 Genomes Project data
with populations of high African ancestry in individual colors while the other subpopulations are colored in a single-color gradient (EUR: aquamarine; EAS:
green; AMR: yellow; SAS: purple). (B) Principal component analysis of the AFR subpopulations (multicolor), plus the Afro-Caribbean (ACB), the African
American (ASW), and the EUR subpopulations. (C) PCA of 9,385 AIMs genotyped in an independent dataset with PC1 explaining 53.7% of the genetic
variance in the data.
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pathogenicity of the AIMs was evaluated using multiple functional
effect predictors: polymorphism phenotyping: PolyPhen2 (Adzhubei
et al., 2013); sorting intolerant from tolerant: SIFT (Kumar et al.,
2009); and two machine learning methods: metaSVM (support
vector machine) and metaLR (logistic regression) (Dong et al., 2015).

Overlap with current platforms

We also surveyed the representation of our AIMs set among
common genotyping array platforms which may indicate how
likely they are to be found in the literature as associated with
known disease mutations. We downloaded the manifests for
25 commonly used genotyping arrays from Illumina and
Affymetrix (ThermoFisher Scientific) and ascertained the number
of SNPs from the AIMs set that appear on the sequencing arrays.
Lastly, we estimated the fraction of our African AIMs represented on

each array platform. These AIMs were then compared to a large list of
imputed SNPs to estimate which of the AIMs could be imputed.

Results

Genomic characterization of African AIMs

In this study, genotype data derived from five continental African
and five European subpopulations were analyzed to obtain a
generalized AIMs panel for the African populations represented in
the 1KGP data (Figure 1). This African-European continental
comparison initially generated six AIMs subpanels ranging from
51,907 to 59,422 SNPs with each subpanel including all African
populations except for one. The number of AIMs obtained from
each dataset are shown in Figure 2A. All six AIMs subpanels were
intersected and a total of 46,737 AIMs commonly found in each of the

FIGURE 5
Distribution of minor allele frequencies in African AIMs. AIMs found in the coding regions of the genome and carrying non-synonymous mutations are
juxtaposed next to the SIFT and Polyphen2 scores for each SNPs. Of the 338 exonic SNPs, 164 are non-synonymous mutations, 149 of which were scored by
the tools. Excluding the X-linked SNPs andmultiallelic sites, only 112 SNPs were non-synonymous and are plotted here. The color gradient for the MAF ranges
fromwhite (0) to red (0.6); the gradient for SIFT range from purple (0, damaging) to pink (1, benign), while the gradient for Polyphen2 ranges from pink (0,
benign) to purple (1, damaging).
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six subpanels were retrieved for further analyses. The usefulness of
these AIMs for assessment of population structure was analyzed using
data from a separate and ongoing project pointing towards the utility
of this AIMs panel to study population admixture in African
populations (Ramakodi et al., 2017).

To characterize the distribution of these African AIMs in the
genome and to evaluate their functional roles, we partitioned 1 Mbp
windows across each chromosome. Figure 2B shows a genome-wide
distribution of African AIMs with a significantly high fraction found
on the X-chromosome. Most autosomal 1 Mbp windows have fewer
than 300 SNPs, although there are several windows with a much
higher SNP density. Chromosome 17 and the X-chromosome possess
regions with a much higher density of SNPs, with some chromosomal
regions having up to 970 SNPs per 1 MB window. Windows that are
AIMs-rich are generally distributed evenly across each chromosome
(e.g., chromosomes 1 and 12) with no obvious clusters. However, there
appears to be some clusters of AIMs-rich windows, as is the case of the
X-chromosome harboring a large cluster near its centromere.
Additionally, some of the shorter chromosomes (e.g., chr8, 12, 14,
15, 17, and 20) appear to have a higher fraction of African AIMs
relative to the longer chromosomes (e.g., chr2, 3, 5, 6, and 7).

To investigate whether the regions enriched for AIMs correlate
with diseases in the literature, we extracted studies from the GWAS
catalog that identified AIMs from this set as associated with cancer and
plotted the loci (colored dots) onto a karyotype plot (Figure 2B). AIMs,
rs12916300 and rs12913832, mapped to HERC2 (chr15) and
rs694339 in the CBLN2 (chr18) genes were associated with
colorectal cancer risk in a European sample (Hofer et al., 2017)
(Figure 2B). In an African American sample, AIM

rs7252505 found in the GPATCH1 gene (chr19) was associated
with colorectal cancer risk (H. Wang et al., 2017) (Figure 2B). Two
intronic AIMs (rs13267382: chr8, LINC00536; rs9952980: chr18,
SLC14A2) and two intergenic AIMs (rs10832963: chr11, SPTY2D1
- SRSF3P1; rs11814448: chr10) were also found to be associated with
breast cancer in samples of European and Asian ancestry (Michailidou
et al., 2017).

Figure 2C shows the distribution of SNPs across different genomic
regions and the potentially consequential roles they play in genome
function. Most of the AIMs are found in two genomic regions, with
just over half, 51.4%, found in the intergenic regions of the genome
and 39.1% in intronic regions. The remaining SNPs are distributed in
smaller fractions in intronic non-coding RNAs (5.8%), 3-prime UTRs
(1.1%), with 0.7% found within 1 Mb downstream of genes and 0.6%
found upstream of genes. Only 338 SNPs, 0.6% of the entire AIMs set,
were found to be in coding regions of the genome. Interestingly, when
compared to all autosomal SNPs in the 1000 Genomes Project dataset,
this AIMs set has significantly fewer exonic (p-value < 2.2e-16, Fisher’s
Exact test) and 5-prime UTR (p-value = 0.04685, Fisher’s Exact test)
SNPs than expected.

Substructure in populations of African
ancestry

The importance of population substructure in association studies
is becoming more apparent as they can confound observed genetic
associations when ignored and hinder us from elucidating the genetic
bases of disease. Consequently, understanding whether this set of

FIGURE 6
Percentage of African AIMs from this study that are represented in commercial genotyping arrays. Twenty-five commonly used genotyping platforms
were chosen from Illumina and Affymetrix (y-Axis) and the fraction of SNPs differentiating the African population fromothers (i.e., AIMs from this study) is listed
for each array. Platforms are ranked from most representative of the AIMs panel from this study to the least.
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African AIMs adequately identifies population substructure within
and between populations with shared African ancestry is an important
goal. Figure 3 shows the distribution of the fixation index of these
AIMs in the different sub-populations of African ancestry as estimated
against the EUR super-population. Based on Weir-FST statistics, there
is a uniform distribution of FST estimates for the continental AFR
subpopulations with the fourWest African subpopulations (ESN, YRI,
GWD, MSL). The violin plots in Figure 3 show the most similarity.
The ACB subpopulation shows a slightly different distribution
compared to the AFR subpopulations though its plot still reflects a
high degree of dissimilarity from the EUR population and close
relationship to the AFR subpopulation. The ASW violin plot
reveals the most divergent distribution and a much lower FST
minimum relative to the other subpopulations.

The generated African AIMs were evaluated for their ability to
properly differentiate populations of African ancestry from
populations of European ancestry and the other continental
ancestral groups such East Asia, South Asia, and the Americas.
Using SNPs from the 1000 Genomes Project, principal component
analysis reveals that this AIMs set separates African subpopulations
from all other populations (Figure 4A). Based on these AIMs, the AFR
subpopulations are effectively segregated from the EUR
subpopulations in addition to other global ancestry groups that
were not included in the generation of the set (Figure 4A). The
PCA plots also show that the AIMs were able to detect population
substructure within populations admixed with African ancestries such
as the admixed American populations, ASW and ACB. Figure 4B
shows that PC1 separates the AFR subpopulations from the EUR
subpopulations and to a lesser extent it shows some degree of
separation between the AFR subpopulations, explaining 16.94% of
the total variance of the sampled genetic variation. PC2 and
PC3 explained a combined additional 15.24% of the total genetic
variance. The five continental African (AFR) subpopulations appear to
cluster more tightly together while the populations of African ancestry
in Southwest United States (ASW) and the African Caribbean in
Barbados (ACB) subpopulations show some spread toward the
European (EUR) population cluster.

Using an independent dataset of racially self-identified individuals
from the United States, we were able to show that our validation subset
of 9,385 markers effectively separated individuals of European
ancestry from those of African ancestry (Figure 4C). Additionally,
these AIMs detected population differences within the group of
individuals with African ancestry without being able to fully
differentiate the sub-populations of African ancestry (continental
African, African American, Caribbean of African ancestry).

AIM allele frequencies and representation in
common genotyping arrays

Minor allele frequency (MAF) reflects how common an allele is in
a population with low frequency alleles often associated with disease
phenotypes making them markers of high interest. In Figure 5,
columns 1–5 display the MAF for the five continental AFR
populations (ESN, GWD, LWK, MSL, YRI), column 6: the Afro-
Caribbean population, column 7: African Americans in the Southwest,
and column 8: the European population. The five AFR subpopulations
appear to have similar MAFs for the different SNPs while the
frequencies are noticeably different in the ACB and ASW

populations. The EUR populations appear to have much lower
MAFs for these SNPs. The seven columns (1–7) with populations
of African ancestry show further evidence of population substructure.
We also tried to predict pathogenicity using prediction tools such as
SIFT (sorting intolerant from tolerant) and PolyPhen2
(polymorphism phenotyping). Column 9 shows the SIFT results
and column 10 shows the results from PolyPhen2 with damaging
mutations labeled in purple (Figure 5). There are a few instances where
some SNPs are identified as damaging by both predictors and these
SNPs appear to be more concentrated in SNPs with higher MAFs in
the AFR populations. Interestingly, many of the SNPs predicted to be
damaging by SIFT have very lowMAF in the EUR population. We also
compared other pathogenicity tools, such as metaSVM and metalR
(Dong et al., 2015), that provide an aggregate prediction score from
multiple individual tools and these tools only identified two AIMs as
damaging: rs12186491 maps to SPINK6, a serine protease inhibitor
kazal-type 6 gene which has been found to regulate nasopharyngeal
carcinoma metastasis through EGFR signaling, and
rs6601495 encodes for Retinitis Pigmentosa 1-Like 1 Protein which
is associated with diseases like occult macular dystrophy and retinitis
pigmentosa (Zheng et al., 2017; Noel and MacDonald, 2020).

Generally, functional or pathogenicity information on the SNPs
contained in this set of AIMs is scarce which may be a byproduct of
being underrepresented in currently available genotyping platforms.
An analysis of 25 popular genotyping array platforms from Illumina
and Affymetrix reveals that most of the commercial arrays surveyed
included less than 10% of the African AIMs (Figure 6). Combined,
only 19,239 of the 46,737 AIMs in this set were found among the
8,708,293 unique SNPs included in these 25 commercial arrays. When
compared to a current list of over 13 million variants (imputed SNPs
from Neale lab, https://github.com/Nealelab/UK_Biobank_GWAS)
that were imputed against a diverse panel, 43,647 of the
46,737 AIMs were found, indicating that most of the SNPs could
be imputed.

Discussion

Undetected population structure can lead to spurious findings in
genetic association studies. With the increased reliance on these
studies to identify genetic markers associated with disease,
identification and correction for population stratification are critical
as both environmental and genetic factors can affect disease risk
between populations or subpopulations (Enoch et al., 2006). In this
work, we developed a set of African ancestry-informative SNPs that
differentiates populations of African ancestry from others and
identifies substructure within populations of African ancestry based
on estimates of informativeness. We identified 46,737 African
ancestry-informative markers from five African subpopulations
using Phase 31,000 Genomes Project data and our results suggest
they convincingly aggregate populations based on their genetic
ancestry and effectively separate populations of African ancestry
from other major ancestral populations (Figure 4). Although the
AIMs were identified from a comparison between AFR
subpopulations and a combined EUR reference, Figure 4 shows
that they suitably isolate populations of African ancestry from
those of other continental groups including East Asian, South
Asian, and groups with American ancestry. While there are several
existing sets of ancestry-informative SNPs claiming to differentiate
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African populations from others, they often come with limitations
including that they are estimated from one subpopulation of African
ancestry, usually YRI, and one of European ancestry, usually CEU
(Keene et al., 2008; Cheng et al., 2009; Tandon et al., 2011; Zeng et al.,
2016), though sometimes they include ASW (Chen et al., 2010). This
AIM panel provides a more extensive and comprehensive set of pan-
African SNPs that can help improve the accuracy of African ancestry
estimates since it was established from multiple subpopulations from
both the European and African populations.

We developed our AIMs set to exclude SNPs that are specific to
just one African subpopulation and are unlikely to be informative
outside the context of that subpopulation. We also detected
substructure between subpopulations of African ancestry when
admixed populations with significant African ancestry, namely
ASW and ACB, were introduced (Figure 2). However, this AIMs
panel of markers does not fully differentiate between subpopulations
of African ancestry. This distinction highlights the consideration that
should be given to both between and within population variation to
effectively control for population stratification in genetic studies. As
advanced in Enoch et al. (2006) and originally by Lewontin (1972),
while there is significant diversity between populations, the bulk of
human diversity is found within populations.

We evaluated the subset of AIMs that are in protein-coding regions
for pathogenicity and association with disease as certain disease-causing
variants have been found at highly differing frequencies across
populations (Patterson et al., 2004). Using tools such as SIFT,
Polyphen, metaSVM, and metaLR via ANNOVAR, we investigated
which changes may lead to a loss of function in their associated
proteins. These tools predict how non-synonymous mutations affect
protein function (Flanagan et al., 2010). 0.64% of the AIMs are
located in exonic regions of the genome and of that SNP pool, only
the 48.52% fraction that are non-synonymous mutations were used for
pathogenicity prediction. There is also a lack of agreement between each
of the prediction tools which makes it challenging to interpret the
predictions made for the SNPs identified as damaging. Further
investigation is needed to contextualize these AIMs and elucidate their
potential implications in disease.

Although most of our identified AIMs are in non-coding regions,
they can still play a role in the genetic basis of health disparities and
how genetic ancestry can influence disease risk, although these
association data are sparser. One such case of that demonstrates
the functional impact of non-coding AIMs from association
literature is the African ancestry variant, rs72725854, a rare variant
found in an enhancer region at 8q24 which has been shown to regulate
multiple lnRNA genes and the MYC oncogene to influence prostate
cancer risk in men of African ancestry (Darst et al., 2020; Walavalkar
et al., 2020). Additionally, the GWAS literature is ripe with SNPs that
have been found to be associated with disease phenotypes such as
differential survival in head and neck cancer, differences in prostate
cancer risk, and differences in diagnosis stage in breast cancer (Al-
Alem et al., 2014; Irizarry-Ramírez et al., 2017; Ramakodi et al., 2017).

Certain chromosomes stood out as having a higher proportion of
AIMs relative to their size such as the X-chromosome and
chromosomes 4, 8, 12, 14, 15, and 17, all of which have a higher
proportion of AIMs than the much larger chromosome 1.
Interestingly, loci on some of these chromosomes have been
identified in the literature as associated with diseases in
populations of African ancestry including loci 8p23 and 8q24 and
asthma risk and the association of rs75853687 on chromosome 5 with

alloimmunization in sickle cells patients (Williams et al., 2018; Daya
et al., 2019). Over eight variants associated with prostate cancer risk
have been identified on loci 8q24 (Han et al., 2016).

This AIMs panel will significantly contribute to the ease with which
the field integrates African genetic ancestry in population genetics studies
but there remain some limitations. The 1000Genomes Project was used to
identify the AIMs for this set although it only includes six African sub-
populations and does not completely encapsulate the rich genetic history
of the African continent. Moreover, the included populations have small
sample sizes which might not be fully representative of the diversity in
those populations. Lastly, Phase 3 data from the 1KGP was sampled at
relatively low depth (7.4x) which can make it challenging to identify less
common, rarer variants in the population (Byrska-Bishop et al., 2022).

The underrepresentation of these African AIMs on commonly
used commercial genotyping arrays also contributes to the scarcity of
information about their involvement of disease. However, many of
these SNPs may be imputable using currently available African-
inclusive panels. We searched a list of over 13 million imputable
variants generated fromUKBioBank data imputed using a panel made
up of data from the Haplotype reference consortium, UK10K, as well
as the 1000 Genomes Project reference panels, for the presence of our
identified African AIMs. Out of these 46,737 AIMs, 43,647 were found
on the list of imputable variants, which is expected considering that
1KPG data was included in the panel used to impute the SNPs.
However, many populations in Africa remain poorly studied and
imputing variants for those could be challenging. As discussed by
Martin et al. (2018), imputation panels and resources have a European
bias, and sequencing initiatives are biased for West African
populations, thus, ignoring much of the total genetic diversity on
the continent. This is a particular concern for the imputation of
African genomes as the literature suggests a higher rate of genetic
diversity and a lower rate of linkage disequilibrium in African
populations (Bentley et al., 2020). Furthermore, most reference
panels are currently not publicly available or use too small of a
sample size to impute effectively (Gurdasani et al., 2015; Mathias
et al., 2016; Taliun et al., 2021).

The development of ancestry-informative markers within the
framework of population disease risk estimation presents an
exciting opportunity to investigate the genetic bases of health
disparities across heterogeneous populations with people from
different genetic histories. Population structure can have significant
implications for genomics studies and simply controlling for them is
not always enough to successfully account for population stratification
and to avoid such pitfalls as spurious associations (Enoch et al., 2006).
As demonstrated here, having a highly specific African AIMs set can
help detect ancestry differences between populations of African
ancestry and others but it can also identify substructure within
populations of African ancestry that should be further surveyed in
association studies. This approach increases statistical power and can
lead to the identification of true associations between the SNPmarkers
of interest and the disease/trait in association studies. Many studies
have identified associations between genetic ancestry and health and,
more recently, there is a trend toward the identification of AIMs
associated with disease though the studies of African ancestry are still
few. Studies like these allow for increased granularity in the analysis of
ancestry and health. Considering that self-reported race is an
inconsistent and unreliable substitute for genetic ancestry, the
AIMs set presented here provides a means for researchers to
uncover the impact of ancestry on disease and phenotype. These
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African AIMs, allowing researchers to apply a set of markers spanning
the whole genome, will hopefully provide new avenues to study disease
genetics in a large, diverse, and understudied population, and helps
elucidate the contribution of local ancestry to disease risk and health.
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