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Background: Immunotherapy has been demonstrated favorable in head and neck
squamous cell carcinoma (HNSCC). Studies indicated that immune-related gene
prognostic index (IRGPI) was a robust signature, and N6-methyladenosine (m6A)
methylation had a significant impact on the tumor immunemicroenvironment (TIME)
and immunotherapy of head and neck squamous cell carcinoma. Thus, combining
indicated that immune-related gene prognostic index with m6A status should offer a
better predictive power for immune responses.

Methods: Head and neck squamous cell carcinoma samples from the cancer
genome atlas (TCGA, n = 498) and gene expression omnibus database
(GSE65858, n = 270) were used in this study. Cox regression analysis was used to
construct the indicated that immune-related gene prognostic index through
immune-related hub genes which were identified by weighted gene co-
expression network analysis (WGCNA). The m6A risk score was constructed by
least absolute shrinkage and selection operator (LASSO) regression analysis.
Principal component analysis was used to construct a composite score, and
systematically correlate subgroups according to tumor immune
microenvironment cell-infiltrating characteristics.

Results: A composite scorewas determined based on indicated that immune-related
gene prognostic index and m6A risk score. Head and neck squamous cell carcinoma
patients in the cancer genome atlas were divided into four subgroups: A (IRGPI-
High&m6A-risk-High, n = 127), B (IRGPI-High&m6A-risk-Low, n = 99), C (IRGPI-
Low&m6A-risk-High, n = 99), and D (IRGPI-Low&m6A-risk-Low, n = 128), and overall
survival (OS) was significantly different between subgroups (p < 0.001). The
characteristics of tumor immune microenvironment cell infiltration in the four
subgroups were significantly different in subgroups (p < 0.05). The receiver
operating characteristic (ROC) curves show the predictive value of composite
score for overall survival was superior to other scores.

Conclusion: The composite score is a promising prognostic signature which might
distinguish immune and molecular characteristics, predict prognosis, and guide
more effective immunotherapeutic strategies for head and neck squamous cell
carcinoma.
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Introduction

Treatment of head and neck squamous cell carcinoma (HNSCC)
remains challenging (Mody et al., 2021). Immunotherapy, including
immune checkpoint inhibitor therapy (anti-PD-1/L1, anti-CTLA-4,
etc.), chimeric antigen receptor macrophages (CAR-M), and anti-
tumor-associated macrophages (anti-TAMs), has shown promise in
treatment of HNSCC, but only a small percentage of HNSCC patients
have sustained immune responses (Evrard et al., 2019; Malfitano et al.,
2020; Cheng et al., 2021; Sloas et al., 2021; Fasano et al., 2022; Poulose and
Kainickal, 2022). Many studies have shown that immune-related gene
prognostic index (IRGPI)may be a potential signature of immunotherapy
for a variety of tumors. However, the existing IRGPI is not detailed
enough for tumor immune microenvironment (TIME) stratification, and
the accuracy of prognosis prediction needs to be further studied (Chen
et al., 2021; Yao et al., 2022). Methylation to form N6-methyladenosine
(m6A), as the most common modification in eukaryotic RNA, plays an
either positive or negative important role on RNA synthesis, transport,
and translation, indirectly affects IRGPI, TIME and immunotherapy of
HNSCC (Yi et al., 2020; Jing et al., 2021). However, incomplete evaluation
of m6A regulators and inadequate detailed risk stratification remain issues
to be solved (Yi et al., 2020; Chen et al., 2021; Elmusrati et al., 2021; Mody
et al., 2021). Consequently, we need to identifymore accurately prognostic
signatures associated with therapeutic benefits to guide individualized
immunotherapy for HNSCC patients.

In this study, we develop a composite HNSCC prognostic signature
based on IRGPI and m6A risk score, and explore the molecular and
immunological characteristics of diverse subgroups of IRGPI, m6A risk
score and composite score. They then were compared with microsatellite
instability (MSI), tumor immune dysfunction and exclusion (TIDE),
tumor inflammation signature (TIS), and other signatures.

Materials and methods

Data acquisition

Samples (n = 498, 455 tumor samples and 43 para-cancer samples)
of HNSCC patients (n = 454) with RNA-seq data (FPKM value),
miRNA-seq data, copy number variation (CNV) and well-defined
clinical stages were screened from The Cancer Genome Atlas (TCGA)
(https://portal.gdc.cancer.gov). We downloaded simple nucleotide
mutations in tumor samples from 451 patients. RNA-seq data and
survival information of 270 HNSCC samples (GSE65858) were
downloaded from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo). Lists of immune-related genes
were downloaded from the InnateDB (https://www.innatedb.ca/)
and ImmPort (https://www.immport.org/shared/home) databases.

Identification of differentially-expressed
genes (DEGs)

The RNA-seq of 498 samples (454 tumors vs. 43 para-cancer
samples) obtained from TCGA was analyzed for genetic differences by

the Wilcoxon test, and miRNA-seq data was analyzed using the edgeR
package of R. Those genes with |log2FC| > 1 and false discovery rate
(FDR) < 0.05 were considered as DEGs. After extracting the DEGs of
immune-related genes obtained from ImmPort and InnateDB
databases, Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses were performed on
immune-related DEGs by using the clusterProfiler package of R.

Identification of immune-related hub genes

WGCNA package of R was used to perform weighted gene co-
expression network analysis (WGCNA) for immune-related DEGs.
In order to identify hub genes, 498 HNSCC samples were clustered to
detect outliers based on the immune-related DEG expression matrix,
and the similarity matrix was constructed after excluding outlier data
(cut-off value 36,000). Then, the similarity matrix was converted into
the adjacency matrix with soft threshold β = 7 and signed network
type, and topological overlap measure (TOM) was used to calculate
the degree of association between genes and the adjacency matrix was
converted into TOM similarity matrix. After that, the TOM
similarity matrix was transformed into a dissimilarity matrix
based on 1-TOM, and a dynamic pruning tree was constructed to
identify the modules. Finally, we set the minimum cluster size to
25 and the merge threshold function to 0.25 to separate the six
modules. The igraph package of R was used to construct a gene co-
expression network for genes with edge weights greater than 0.2 in
the module of interest (turquoise module). After batch adjustment
for biotechnological biases, using the ComBat algorithm of the sva
package in TCGA and GEO cohorts, univariate Cox regression
analysis was used to identify immune-related hub genes that were
associated with overall survival (OS).

Construction and validation of the IRGPI

Genes with significant impact on OS were selected from
immune-related hub genes by multivariate Cox regression
analysis. The IRGPI of each sample was calculated by multiplying
the expression values of specific genes by their weighting in the Cox
model, and then summed. Survival analysis was used to evaluate the
predicting prognostic ability of IRGPI in TCGA and GEO cohorts.
Patients were divided into IRGPI-high and IRGPI-low groups based
on the median.

m6A RNA methylation regulators

According to published studies, we collected 29 regulators of m6A
RNA methylation, including 16 readers “YTHDC1, YTHDC2,
IGF2BP1, IGF2BP2, IGF2BP3, YTHDF1, YTHDF2, YTHDF3,
HNRNPA2B1, HNRNPC, RBMX, FMR1, LRPPRC, ELAVL1,
EIF3A, and PRRC2A”, 10 writers “METTL3, METTL5, METTL14,
METTL16,WTAP, VIRMA, RBM15, RBM15B, ZC3H13, and CBLL1”
and three erasers “FTO, ALKBH3, and ALKBH5”.
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Calculation of m6A risk score

Based on the gene expression of 29 regulators of m6A RNA
methylation, the survival package of R was used for univariate Cox
regression analysis to construct a prognostic networkmap. The glmnet
package of R was used for the least absolute shrinkage and selection
operator (LASSO) regression analysis. After simulation 1,000 times
and cross-validation, the m6A regulators that strongly correlated with
prognosis and their coefficients were obtained. Then, the m6A risk
score was calculated by multiplying each obtained coefficient by the
corresponding m6A regulator expression and summing the total
values. HNSCC patients were divided into m6A-risk-high and
m6A-risk-low groups according to the median value, and the
differences in OS between the two groups were assessed.

Classification and composite score

Four subgroups were classified by pairwise combination of IRGPI
and m6A risk score. IRGPI and m6A risk score were standardized by
using the descriptives function of SPSS, and their weights were
calculated by the principal component method in factor analysis.
The composite score equaled the sum of the normalized IRGPI and
m6A risk score multiplied by their corresponding weights. Univariate
and multivariate Cox regression analyses were performed to verify the
independent prognostic value of IRGPI, m6A risk score and composite
score, and their relevant gene signatures were constructed by principal
component analysis (PCA), with principal components 1, 2, and
3 selected as signature scores. The chi-square test (Monte-Carlo
algorithm) was applied to test the correlation between
clinicopathological features and composite score subgroups. Based
on the interaction between mRNA and miRNA in the ENCORI
database (http://starbase.sysu.edu.cn/) (Li et al., 2014), we used
Cytoscape (v3.8.2) to construct the target interaction network of
differentially-expressed miRNAs and mRNAs that were expressed
by the genes used to construct the three scores. To further explore the
interrelationships between proteins expressed by the genes reflected in
the scores, we used the STRING database (https://www.string-db.org/)
to construct the protein-protein interaction (PPI) network.

Comprehensive analysis of the molecular
immunological characteristics and
immunotherapy in subgroups

Based on the DEGs, gene set enrichment analysis (GSEA) was
applied to the composite score subgroups with the GO, KEGG and
HALLMARK gene sets, which were downloaded from the GSEA
database (http://www.gsea-msigdb.org/gsea/index.jsp) using the
clusterProfiler package of R. The number and quality of genetic
mutations in subgroup tumor samples was analyzed by using the
maftools package of R. Correlation analysis of the composite score
with PD-1/L1, CTLA-4 and tumor mutation burden (TMB) were
performed. To identify the immune characteristics of 454 HNSCC
samples, we analyzed their RNA-seq data by using the CIBERSORT
tool (https://cibersort.stanford.edu/) and performed 1,000 iterations to
estimate the relative proportions of 22 kinds of immune cells among
subgroups. We analyzed the expression differences of 22 kinds of

immune cells among subgroups, and selected differentially-expressed
immune cells (p < 0.05) to analyze their influence on OS, after using
the survminer package of R to calculate the optimal cutoff value of the
corresponding immune cells for dividing tumor samples into two
groups depending on the degree of infiltration. To further clarify
immunological and molecular functions among subgroups, we
performed single sample GSEA (ssGSEA) by using the GSVA
package of R, and compared normalized ssGSEA scores among
subgroups. Survival analysis was conducted for items with
statistical differences (p < 0.05) according to the optimal cutoff
value, which also calculated by the survminer package of R, of the
items for dividing tumor samples into two groups. We evaluated the
percentages of the three scores in immunized subtypes and final
survival states. By using the time ROC package of R, we performed
time-dependent receiver operating characteristic (ROC) curve
analyses to obtain the area under the curve (AUC) and compared
the prognostic value among composite score, m6A risk score, IRGPI,
TIS, TIDE, interferon gamma (IFNG), MSI, Merck18, CD274, CD8,
Dysfunction, Exclusion, myeloid-derived suppressor cells (MDSC),
tumor-associated fibroblast (CAF), and TAM (M2) scores. The TIS
score was calculated as the mean of normalized expression on a log2-
scale of 18 characteristic genes (Ayers et al., 2017). Other scores were
obtained online from the TIDE database (http://tide.dfci.harvard.
edu/).

Statistical analysis

The correlation among variables involved in the study was
elucidated by Pearson correlation analysis. An independent t-test
was performed to compare continuous variables among subgroups.
Categorical data was tested by using the chi-square test. TheWilcoxon
test was used to compare differences of TIS and scores obtained from
TIDE database between subgroups. Multivariate survival analysis was
performed using the Cox regression model, while other survival
analyses were performed by Kaplan-Meier survival analysis with
the log-rank test by using the survival package of R, and p <
0.05 was considered to indicate statistical significance. All the
above analysis processes were shown in Supplementary Figure S1.
All data was processed in SPSS (v.25.0) and R (v.4.1.2) software.

Results

Outcomes of differential expression analysis

In differential expression analysis of 454 HNSCC patient samples
(43 normal vs. 454 tumor samples), 4,855 DEGs were identified,
which included 3,550 upregulated genes and 1,305 downregulated
genes (Supplementary Figures S2A, B), among which
495 upregulated and 143 downregulated were immune-related
DEGs (Supplementary Figures S2C, D). Furthermore, a total of
312 differentially-expressed miRNAs were observed, of which
186 were upregulated and 126 were downregulated
(Supplementary Figures S2E, F). Enrichment analysis showed that
the 638 immune-related DEGs were associated with 1,995 GO items
and 115 KEGG pathways (q < 0.05; p < 0.05, Supplementary Tables
S1, 2; Supplementary Figures S2G, H).
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Immune-related hub genes and the IRGPI

To obtain immune-related hub genes, 498 samples were clustered
to detect outliers (cutoff value 36,000) based on the 638 immune-
related DEGs matrix, and the data was analyzed using WGCNA after
deleting two outlier samples (Supplementary Figures S3A, B). The

logarithm of nodes with connectivity of K (log(K)) was negatively
correlated with the logarithm log[P(K)] of node probability, and the
correlation coefficient was greater than 0.85. Based on a scale-free
network, the optimal soft threshold power was 7 (Supplementary
Figures S3C, D). The 638 immune-related DEGs were allocated to six
modules, which were determined based on average linkage

FIGURE 1
Identification of immune-related hub genes and comprehensive assessment of IRGPI. (A) Weighted gene coexpression network analysis (WGCNA) of
immune-related differentially expressed genes with a soft threshold β = 7. (B) Gene modules related to HNSCC obtained by WGCNA. (C) Univariate Cox
analysis of 11 immune-related hub genes. (D) K–M survival analysis of the IRGPI subgroups in TCGA cohort. (E) K–M survival analysis of the IRGPI subgroups in
the GEO cohort. (F–M) The difference of PD-1, PD-L1, CTLA-4 and TMB in IRGPI subgroups (Wilcoxon test) and their correlation analysis with IRGPI.
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hierarchical clustering and optimal soft threshold power
(Supplementary Figures S3E, F). According to the gene
dendrogram and the Pearson correlation coefficient between

module and sample feature for each module, the turquoise module,
which was closely related to HNSCC and relatively concentrated genes
distribution, was selected for further study (Figures 1A, B). There were

FIGURE 2
Landscape ofm6A regulators andm6A risk score in HNSCC. (A)Heatmap of 29m6A regulators in TCGA cohort. (B) The upper and lower ends of the boxes
represented interquartile range of values. The lines in the boxes represented median value, and dots showed outliers. The asterisks represented the statistical
p-value (*p < 0.05; **p < 0.01; ***p < 0.001). (C) The CNV variation frequency of m6A regulators. The height of the column represented the alteration
frequency. (D) The location of CNV alteration of m6A regulators on 23 chromosomes. (E)Univariate Cox analysis of 29m6A regulators. (F) The interaction
between m6A regulators in HNSCC. (G, H) Determination of the m6A regulators strongly correlated with prognosis by the LASSO analysis. (I) K–M survival
analysis of the m6A risk score subgroups in TCGA cohort. (J–Q) The difference of PD-1, PD-L1, CTLA-4, and TMB in m6A risk score subgroups (Wilcoxon test)
and their correlation analysis with m6A risk score.
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34 nodes and 115 edges of the turquoise module of the networks with a
threshold weight >0.2 (Supplementary Figure S3G). Survival analysis
showed that the expression of the 11 hub genes was closely related to
the OS of HNSCC patients (p < 0.05, Supplementary Figures S4A–K).
Turquoise module DEGs were analyzed by univariate Cox regression
analysis, and 11 genes with statistical significance were selected as
immune-related hub genes (p < 0.05, Figure 1C). We explored somatic
mutations in the 11 hub genes and their clinicopathological
information (Supplementary Table S3). Most of the 11 hub genes
had missense mutations and non-sense mutations, but only the
mutation rates of MAPT, EGF, PTX3, and SEMA3G were greater
than 1% (Supplementary Figure S4L).

Multivariate Cox regression analysis on the 11 hub genes identified
and provided coefficients for seven independent prognostic hub genes
(HTN3, CTSG, MAPT, CCL28, PTX3, SEMA3G, and USP2). A
prognostic index for tumor samples could be calculated by the
formula: IRGPI = (HTN3 expression * 0.096) + (CTSG expression
* −0.152) + (MAPT expression * 0.122) + (CCL28 expression * −0.094)
+ (PTX3 expression * 0.138) + (SEMA3G expression * −0.140) +
(USP2 expression * 0.107). With the median IRGPI as the threshold,
patients with high IRGPI had worse OS than those with low IRGPI
(p < 0.001, Figure 1D). This result was verified in the HNSCC dataset
of GSE65858 (n = 270) (p < 0.05, Figure 1E).

Expression of PD-1 and CTLA-4 were high in the IRGPI-low
subgroup and correlation analysis indicated slightly negatively
correlated with the IRGPI (Figures 1F–I). However, TMB and
expression of PD-L1 did not show significant differences and
relationship with IRGPI (Figures 1J–M).

Landscape and risk score of m6A regulators in
HNSCC

There were 29 m6A regulators in this study, including 10 writers,
three erasers, and 16 readers. As shown in Figures 2A, B, 23 of them,
including 12 readers, 8 writers, and all erasers, were differentially
expressed between HNSCC tumor and para-cancer samples, and were
upregulated in tumor samples except for the reader YTHDC2. Based
on gene expression of regulators, we analyzed the correlation between
29 m6A regulators in pairs with a p < 0.001 signifying a correlating
pair. The results showed that m6A regulators were generally positively
correlated, but only the reader YTHDF3 and PRRC2A were highly
correlated (r = 0.77, Supplementary Figure S5A).

We also explored mutations and clinicopathological information
of the m6A regulators (Supplementary Figure S5B). In 451 HNSCC
samples, m6A regulator mutations occurred in 68 cases, with a
mutation frequency of 15.08%. The results showed that readers
PRRC2A and YTHDC2 had the highest mutation frequency (about
2%) among the 29 regulators. The CNV frequency showed it was very
common among regulators, with 15 undergoing copy number
amplification, and 14 undergoing copy number deletion
(Figure 2C). The chromosomal locations of m6A regulators CNV
were shown in Figure 2D.

Univariate Cox regression demonstrated that IGF2BP2, YTHDF1,
HNRNPA2B1, HNRNPC, RBMX, LRPPRC, METTL5, ALKBH3, and
ALKBH5 were correlated with OS (Supplementary Figure S6), with
hazard ratios all greater than 1 (p < 0.05, Figure 2E). Based on the
results of univariate Cox regression analysis, we constructed an m6A

regulator network (Figure 2F), which showed the comprehensive
landscape of the correlation of regulators in pairs and their
prognostic significance for HNSCC. We found that all regulators
except YTHDC2 were prognostic risk factors, and there was a
widespread positive correlation between the expression of
regulators. The LASSO algorithm was used to obtain the coefficient
of regulators with prognostic value (Figures 2G, H), IGF2BP2,
HNRNPC, and METTL5 were selected to construct a prognostic
signature using the cohort in TCGA. The formula was as follows:
m6A risk score = (0.067 * IGF2BP2 expression) + (0.119 * HNRNPC
expression) + (0.487 * METTL5 expression). According to the median
risk score, HNSCC patients with a low m6A risk score had better OS
than those with a high one (p < 0.001, Figure 2I).

The expression of PD-1 and CTLA-4 were high and TMB was low
in the m6A-risk-low subgroup and correlation analysis indicated
slightly positively correlated with m6A risk score (Figures 2J–O).
Expression of PD-L1 did not show significant differences, but
negative correlated with the score (Figures 2P, Q).

Classification and composite score

Based on the IRGPI and m6A risk score, HNSCC patients in TCGA
were pairwise combined as subgroup A (IRGPI-High&m6A-risk-High,
n = 127), subgroup B (IRGPI-High&m6A-risk-Low, n = 99), subgroup C
(IRGPI-Low&m6A-risk-High, n = 99) and subgroup D (IRGPI-
Low&m6A-risk-Low, n = 128). IRGPI and m6A risk score were
standardized and multiplied by the weight coefficient obtained from
PCA to obtain the composite score, using the formula: Composite score =
0.5*Z-score (IRGPI) + 0.5*Z-score (m6A risk score). Survival analysis
showed from subgroupA toD, theOSwas better than that of the previous
subgroup (p < 0.001, Figure 3A). The PCA based on subgroup gene
expressions is shown in Figures 3B–D. The correlation of the composite
score and clinicopathological information in Figure 3E showed the
correlation between the composite score and the primary site was
statistically significant (p < 0.001). Univariate Cox regression analysis
showed that age, stage, radiotherapy, IRGPI, m6A risk score and
composite score were significantly correlated with the prognosis of
HNSCC (Figure 3F). Multivariate Cox regression analysis confirmed
that the IRGPI and m6A risk score were independent prognostic
factors after adjusting for other clinicopathological factors (Figure 3G),
and the composite score was also an independent prognostic factor after
excluding the effects of IRGPI and m6A risk score (Figure 3H).
Combining the 10 genes, used to construct composite score, with
differentially-expressed miRNA to construct a gene targeted network
with 24 nodes and 18 edges showed that miRNA was mainly upregulated
to inhibit gene expression in the network (Figure 3I). The PPI network
revealed gene fusion between HNRNPC and MAPT, adjacent of MAPT
and SEMA3G, and other interrelationships obtained from text mining
(Figure 3J; Supplementary Table S4).

Molecular characteristics of different
subgroups

GSEA was performed to determine the GO, KEGG and Hallmark
gene sets enriched in the different subgroups (p < 0.05, Supplementary
Table S5). The gene sets of subgroup A were markedly enriched in
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tumormetastasis and drug resistance (Supplementary Figure S7A), the
gene sets of subgroup B were markedly enriched in tumor growth
promotion and immune rejection (Supplementary Figure S7B), the
gene sets of subgroup C were markedly enriched in immune rejection
and DNA repair (Supplementary Figure S7C), and the gene sets of

subgroup D were markedly enriched in immune response
(Supplementary Figure S7D).

The top 20 highest mutation rate genes in TCGA cohort
demonstrated that the most common mutation type was missense
mutation, followed by non-sense mutation and frameshift deletion, as

FIGURE 3
Assessment of the composite score. (A) K–M survival analysis of the composite score subgroups in TCGA cohort. (B–D) Principal component analysis of
the transcriptome profiles of the three score-defined subgroups. (E) Heatmap of clinical relevance for composite score subgroups (***p < 0.001). (F)
Univariate Cox analysis of clinicopathologic factors, IRGPI, m6A risk score and the composite score. (G)Multivariate Cox analysis of the factors significant in the
univariate Cox analysis (p < 0.05). (H)Multivariate Cox analysis of composite score and clinicopathologic factors significant in the univariate Cox analysis
(p < 0.05). (I) The target interaction network of differentially expressedmiRNA and the 10mRNAswhich are expressed by the genes used to construct the three
scores. (J) The Protein-Protein Interaction (PPI) Network of 10 genes used to construct the three scores.
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plotted in Figures 4A–D. The mutation frequencies of TP53, TTN, and
FAT1 were all greater than 15% among the four subgroups, CDKN2A,
MUC16, CSMD3, and PIK3CAwere greater than 15% in subgroups A,
C, and D, KMT2D was greater than 15% in subgroups A and C,
SYNE1 was greater than 15% in subgroups C and D, PCLOwas greater
than 15% in subgroup A, NOTCH1 was greater than 15% in subgroup

B, and LRP1B, NSD1, and DNAH5 were greater than 15% in
subgroup C.

We discovered that the composite score was moderately negative
correlated with PD-1, slightly negative correlated with CTLA-4 and
PD-L1, and slightly positive correlated with TMB (Figures 4E–H), and
their differences across subgroups were shown in Figures 4I–L.

FIGURE 4
Characteristics of tumor somatic mutations, PD-1, PD-L1, CTLA-4, and TMB in composite subgroups. (A–D) Mutation profiles of the 20 genes with the
highest mutation rates in HNSCC samples of the TCGA cohort in the four composite score subgroups. (E–H) The correlation analysis of PD-1, PD-L1, CTLA-4,
and TMB with the composite score. (I–L) The difference of PD-1, PD-L1, CTLA-4, and TMB in composite score subgroups (Wilcoxon test).
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FIGURE 5
The TIME landscape and the immune subtype of different composite subgroups. (A) The proportions of TIME cells in composite score subgroups for
patients in TCGA cohort. (B) The abundance of each TIME infiltrating cell in composite score subgroups. The upper and lower ends of the boxes represented
interquartile range of values. The lines in the boxes representedmedian value, and dots showed outliers. The asterisks represented the statistical p-value (*p <
0.05; **p < 0.01; ***p < 0.001). (C) Themolecular and immune-related function of composite score subgroups. The gene sets ofmolecular and immune-
related functionwere analyzed by the single simple gene set enrichment analysis (ssGSEA) and then compared between different composite score subgroups.
The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value, and dots showed outliers.
The asterisks represented the statistical p-value (*p < 0.05; **p < 0.01; ***p < 0.001). (D) The Alluvial diagram shows changes in IRGPI, m6A risk score,
composite score, immune subtype, and survival status of patients in the TCGA cohort.
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Immune characteristics of different
subgroups

The abundance of 22 types of immune cells in different subgroups
was analyzed with the Wilcoxon test to compare their distribution
(Supplementary Table S6). The abundance of native B cells, plasma
cells, CD8+ T cells, activated memory CD4+ T cells, follicular helper
T cells, regulatory T cells (Tregs), resting natural killer (NK) cells,
M0macrophages, resting dendritic cells, resting mast cells, eosinophils
and neutrophils were significantly different in subgroups (p < 0.05,
Figures 5A,B). The abundance of M0 macrophages was the highest in
all subgroups, and the patients with higher abundance of
M0 macrophages had lower OS. In contrast, patients with the high
abundance of native B-cell, plasma cells, CD8+ T cells, follicular helper
T cells and Tregs had better OS. Based on the optimal cutoff value of
the abundance of each immune cell, HNSCC patients were divided
into two groups for survival analysis, which indicated that the more
abundance of follicular helper T cells, Tregs, activated memory CD4+

T cells, CD8+ T cells, activated B cells, plasma cells, resting dendritic
cells and resting mast cells, the better the OS. In contrast, a high
abundance of neutrophils, activated mast cells, and M0 and
M2macrophages tended to imply poor OS (Supplementary Figure S8).

Next, we applied specific gene signatures by ssGSEA to define
immunity and molecular function among the subgroups
(Supplementary Table S7). As the results illustrate, the better the
OS of the subgroup, the more cytolytic activity, mast cells and NK cells
(Figure 5C). Also, a variety of T cells and plasma cells, immune
suppression and signals related to tumor metastasis had statistical
significance, which were more obvious in subgroups A and D, and
these immune signatures occurred most commonly in subgroup D
with the best OS. Based on the optimal cutoff value of each immune
and molecular function signature for the tumor samples in TCGA, it
revealed the signatures had a large impact on survival. Patients with
more macrophages and parainflammatory cells had poor prognoses,
while patients with more T cells, mast cells, NK cells, B cells and other
signatures has better prognosis (Supplementary Figure S9).

The benefit of immunotherapy in different
subgroups

Thorsson et al. (2018) divided all TCGA tumor samples into six
immune subtypes, which included wound healing (Immune C1), IFN-
gamma dominant (Immune C2), inflammatory (Immune C3),
lymphocyte-depleted (Immune C4), immunologically quiet
(Immune C5) and TGF-beta-dominant (Immune C6), and showed
patients who belonged to types C1, C2 and C3 could benefit from
neoadjuvant immunotherapy following surgery. We explored the
proportion of HNSCC samples in TCGA cohort and found that
almost all samples belonged to the C1 and C2 immune subtypes.
In each subgroup, C2 was predominant with similar proportion of
C1 and C2 (Figure 5D; Supplementary Table S8).

We used TIDE, IFNG, MSI, Merck18, CD274, CD8, Dysfunction,
Exclusion, MDSC, CAF, and TAM (M2) scores to evaluate the
potential clinical efficacy of immunotherapy in subgroups
categorized by IRGPI, m6A risk score and composite score. In the
IRGPI-high subgroup, TAM (M2), Exclusion, CAF and MDSC scores
were higher, while CD8 and IFNG scores were higher in the IRGPI-
low subgroup (Supplementary Figure S10A). TAM (M2), Exclusion

and MDSC scores were higher in the m6A risk-high subgroup, while
TIDE, CD8, Dysfunction, IFNG, and Merck18 scores were higher in
the m6A risk-low subgroup (Supplementary Figure S10B). There were
no statistically significant differences in the IRGPI and m6A risk score
subgroups for the remaining scores. In the subgroups of composite
score, the scores of CD274 and MSI did not differ among subgroups,
while TIDE, Dysfunction, Exclusion, TAM (M2), IFNG, CD8, CAF,
MDSC, and Merck18 scores demonstrated significant differences
between subgroup A and subgroup D, but their differences among
other subgroups were not uniform (Figure 6A). In general, patients in
subgroup A may have the best benefit from immunotherapy, while
patients in subgroups B and C had better immunotherapy benefit than
patients in subgroup D. However, the magnitude of immunotherapy
benefit between subgroups B and C remains to be further delineated.

Subsequently, we evaluated the OS of the composite score and
other prognostic indicators at 1, 2, 3, and 5 years by ROC curves, and
found that prediction of OS within 3 years by the composite score was
better than the long-term survival rate (Figure 6B, AUC = 0.663 (1-
year), AUC = 0.679 (2-year), AUC = 0.687 (3-year), AUC = 0.640 (5-
year)). Moreover, the predictive value of composite score for OS was
superior to any other scores (Figure 6C).

Discussion

Increasing evidence indicates that multiple m6A regulators
perform a vital role in regulating the occurrence, development,
metastasis, drug resistance, radiotherapy resistance and other
aspects of HNSCC (Liu et al., 2020; Jing et al., 2021; Wu et al.,
2021; Jin et al., 2022; Yu et al., 2022). At the same time, in-depth
research has uncovered more and more m6A regulators. Currently,
characteristics of the HNSCC TIME mediated by the combined action
of multiple m6A regulators have not been sufficiently explained (Jing
et al., 2021). On the other hand, immunotherapy is widely applied as
an effective method to treat HNSCC, but the overall response rate
remains low. After years of exploring HNSCC prognostic signatures,
while some simple signatures can forecast immunotherapy and OS
(Fasano et al., 2022; Poulose and Kainickal, 2022), single prognostic
signatures cannot very well predict which patients can benefit from
immunotherapy. Compound signatures constructed by combining
multiple signatures can further differentiate the prognosis and
immune response of patients with diverse OS, which will
contribute to our understanding of anti-tumor immune response of
TIME and guide more effective immunotherapy strategies. It is
inevitable that future research will focus on identifying compound
immunotherapy prognosis signatures.

Here, we used different methods to establish three different
prognostic scores, all of which are valid independent prognostic
signatures for HNSCC. Compared with IRGPI and m6A risk score,
the composite score is more detailed for OS stratification of HNSCC
patients, and the AUC value is greater than other scores, which means
that the prediction of prognosis is also better.

In this research, based on 29 m6A regulators, we reveal the m6A
methylation landscape of HNSCC in more detail. We revealed that
mutation rate of the 29 m6A regulators was not significant.
Interestingly, about half of them showed increasing of CNV which
might indicated that m6A regulators did not affect HNSCC primarily
through mutation and CNV. Except for YTHDC2, all regulators were
highly expressed in HNSCC samples and were prognostic risk factors.
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However, publications on m6A regulators in HNSCC are limited, and
further studies are warranted to clarify the effect of m6A on HNSCC.

On the basis of the composite score, we further studied gene
mutations of subgroups. The greatest differences in gene mutations
among subgroups were TP53 mutations, which were more frequent in

subgroup A than in subgroup D (72% vs. 46%). TP53 mutation is not
only the most common genetic event in cancer, but is also associated
with more aggressive disease and poorer patient outcomes in many
cancers, especially in HNSCC (Poeta et al., 2007; Leroy et al., 2014).
The Notch signaling pathway is known to be an evolutionarily

FIGURE 6
Prognostic value of the composite score in the TCGA cohort. (A) TIDE, Dysfunction, Exclusion, TAM (M2), IFNG, CD8, CAF, MDSC, and Merck18 scores in
different composite score subgroups. The scores between the two subgroups were compared through the Wilcoxon test (ns, not significant, *p < 0.05; **p <
0.0s1; ***p < 0.001). (B) The predictive value of composite score in TCGA HNSCC cohort at 1, 2, 3, and 5 years. (C) ROC analysis of composite score, IRGPI,
m6A risk score and the scores of TIS, TIDE, IFNG, MSI, Merck18, CD274, and CD8, Dysfunction, Exclusion, MDSC, CAF, and TAM (M2) on OS at 1-, 2-,
three- and 5-year follow-up in TCGA HNSCC cohort.
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conserved intercellular signaling pathway, and NOTCH1 mutation is
associated with HNSCC (Schmidl et al., 2022; Zhou et al., 2022). The
mutation rate of NOTCH1 gene in subgroup B (23%) is higher than
that in other groups, which may be the reason why HNSCC patients in
subgroup B have worse OS than those in subgroup C. It also means
that some HNSCC patients may benefit from anti-NOTCH1 therapy.
The TTN mutation rate of subgroup C (48%) is higher than that of
other groups, and is mainly comprised of multiple mutations, but its
prognosis and biological significance of HNSCC is unknown.
Subsequently, we explored the relationship between three scores
and known immunotherapy predictive signatures PD-1, PD-L1,
CTLA-4, and TMB, which was evaluated in prospective clinical
trials as a potential signature for predicting immune checkpoint
inhibitor therapy response in HNSCC (Cristescu et al., 2018; Chan
et al., 2019). In addition, a number of clinical trials have made
breakthroughs in immunotherapy using immune checkpoint
inhibitors against HNSCC, and a number of combined anti-CTLA-
4 and anti-PD-1/L1 clinical trials are also underway (Ferris et al., 2020;
Maio et al., 2021; Masarwy et al., 2021). The expression of PD-1 and
CTLA-4 was synochronous in each composite score subgroups, which
might indicate that combination of anti-CTLA-4 and anti-PD-
1 therapy would increase the anti-cancer effects, especially in
subgroup D.

Understanding the TIME landscape of HNSCC can help discover
new treatments or alter the TIME to improve the effectiveness of
immunotherapy (Feng and Hess, 2021; Watermann et al., 2021). The
immunotyping by Thorsson et al. (2018) revealed that almost all
HNSCC patients should receive neoadjuvant immunotherapy. As we
know, immune-excluded and immune-desert phenotypes can be
considered non-inflammatory tumors (Bagaev et al., 2021).
Subgroup A corresponding to the immune-desert phenotype is
characterized by immunosuppression, subgroups B and C
corresponding to the immune-excluded phenotype are
characterized by the activation of innate immunity and stroma,
and subgroup D corresponding to the immune-inflamed phenotype
is characterized by activation of adaptive immunity, known as a hot
tumor (31), which is characterized by a large infiltration of immune
cells. After exploring the characteristics of immune cell infiltration in
the TIME of different subgroups, although the degree of immune
infiltration in subgroup B was similar to that in subgroup C, low NK
and mast cell infiltration and low cytolytic activity might be the reason
for the worse prognosis of subgroup B compared to subgroup C
(Schantz et al., 1986; Attramadal et al., 2016; Gu et al., 2019; Charap
et al., 2020; Watermann et al., 2021). However, the tumor immune cell
infiltration in subgroup A was the least, indicating a possible worse
result of immunotherapy comparing to any other subgroup. In the
TIME of HNSCC, infiltration of undifferentiated macrophages (M0)
was the highest among the 22 types of immune cells, and there was a
significant difference of the composite score between the subgroups.
TAM (M2) is associated with elevated tumor growth, aggressive
phenotype and poor prognosis in solid tumors (Komohara et al.,
2016; Ngambenjawong et al., 2017; Chen et al., 2019). Although there
was no statistical difference in the expression of TAM (M2) between
the composite score subgroups, the infiltration by TAM (M2) was high
and statistically significant in the high-risk IRGPI or m6A risk score
subgroups, which is consistent with the results of our survival analysis.
In addition, tumor drug resistance is the main cause of chemotherapy
failure, and studies have shown that TAMs are closely related to the
drug resistance of tumors (Lopez-Yrigoyen et al., 2021; Pu and Ji,

2022). CAR-M have been demonstrated to enter solid tumors and
survive in the tumor environment, triggering long-lasting adaptive
immune responses (Komohara et al., 2016; Sloas et al., 2021).
Accordingly, the excessive TAM infiltration indicates that HNSCC
patients are expected to benefit from anti-TAM and CAR-M therapy,
while the patients of subgroup A corresponding to the immune desert
type may benefit the most, which also means that HNSCC patients
who fail other immunotherapies or chemotherapy may benefit. In
addition, MDSCs are the precursors of dendritic cells, macrophages
and granulocytes, and have the ability to inhibit the immune response
(Draghiciu et al., 2015; Greene et al., 2020; Grover et al., 2021). The
results of our study indicate that subgroup A patients, who have worse
prognosis, also have a higher MDSC score. By evaluating the MDSC
score of subgroups, defined by IRGPI, m6A risk score and composite
score, we found that the composite score was more favorable in
identifying the MDSC-related risks of HNSCC. This helps identify
HNSCC patients who may benefit from anti-MDSC-targeted therapy.
Evidently, compared with IRGPI and m6A risk scores, the composite
score can provide a more precise grouping of HNSCC patients, which
is conducive to a more detailed understanding of the TIME of HNSCC
and guide more effective immunotherapy strategies.

Finally, we compared the predictive prognostic ability of
composite score with IRGPI, m6A risk score, TIS, TIDE, IFNG,
MSI, Merck18, CD274, CD8, Dysfunction, Exclusion, MDSC, CAF,
and TAM (M2) scores on the HNSCC cohort in TCGA. The results
showed that the composite score was better than other scores in
predicting both short-term and long-term survival. Although the AUC
value of composite score declined slightly at 5 years, this might due to
the limited number of patients with a 5-year OS.

In conclusion, the composite score, constructed based on IRGPI and
m6A risk score, is an independent prognostic signature, which is more
useful in identifying immune and molecular characteristics, predicting
patient prognosis and guiding therapy as compared with single prognostic
signatures. Further studies are still needed to clarify that the composite
score is potential prognostic indicator for immunotherapy.
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