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Cancer remains a formidable challenge in medicine due to its propensity for
recurrence and metastasis, which can result in unfavorable treatment outcomes.
This challenge is particularly acute for early-stage patients, who may experience
recurrence and metastasis without timely detection. Here, we first analyzed the
differences in clinical characteristics among the primary tumor, recurrent tumor,
and metastatic tumor in different stages of cancer, which may be caused by the
molecular level. Moreover, the importance of predicting early cancer
recurrence and metastasis is emphasized by survival analyses. Next, we
used a multi-omics approach to identify key molecular changes associated
with early cancer recurrence and metastasis and discovered that early
metastasis in cancer demonstrated a high degree of genomic and cellular
heterogeneity. We performed statistical comparisons for each level of omics
data including gene expression, mutation, copy number variation, immune cell
infiltration, and cell status. Then, various analytical techniques, such as
proportional hazard model and Fisher’s exact test, were used to identify
specific genes or immune characteristics associated with early cancer
recurrence and metastasis. For example, we observed that the
overexpression of BPIFB1 and high initial B-cell infiltration levels are linked
to early cancer recurrence, while the overexpression or amplification of
ANKRD22 and LIPM, mutation of IGHA1 and MUC16, high fibroblast
infiltration level, M1 polarization of macrophages, cellular status of DNA
repair are all linked to early cancer metastasis. These findings have led us to
construct classifiers, and the average area under the curve (AUC) of these
classifiers was greater than 0.75 in The Cancer Genome Atlas (TCGA) cancer
patients, confirming that the features we identified could be biomarkers for
predicting recurrence and metastasis of early cancer. Finally, we identified
specific early sensitive targets for targeted therapy and immune checkpoint
inhibitor therapy. Once the biomarkers we identified changed, treatment-
sensitive targets can be treated accordingly. Our study has comprehensively
characterized the multi-omics characteristics and identified a panel of
biomarkers of early cancer recurrence and metastasis. Overall, it provides a
valuable resource for cancer recurrence andmetastasis research and improves
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our understanding of the underlying mechanisms driving early cancer
recurrence and metastasis.
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1 Introduction

In recent years, cancer has become the third most fatal disease
due to its high mortality rate of cancer recurrence and metastasis
(Pan et al., 2017; Rueda et al., 2019; Fabisiewicz et al., 2020). As
medical technology has improved, early detection and treatment of
cancer have become increasingly important (Ni et al., 2014;
Pasechnikov et al., 2014; Bronkhorst et al., 2019). Despite this,
many early-stage patients still experience recurrence and
metastasis that are not easily detected in time (Freeman, 2013;
Abbosh et al., 2017). To tackle this problem, adjuvant therapies,
such as targeted therapy and immune checkpoint therapy, may be an
appropriate strategy for early-stage patients at risk of recurrence and
metastasis (Bosman, 1995; Mayekar and Bivona, 2017; Nadal and
Bellmunt, 2019; Wang et al., 2019) and manipulating the tumor
microenvironment can also help control the tumor and improve
prognosis (Aran et al., 2015; Arneth, 2019). However, the usage and
timing of adjuvant therapy for early-stage cancer patients is a
dilemma since not treating may result in recurrence and
metastasis in some patients, while treating may result in
overtreatment and significant side effects in others, which can
also be harmful to patients. Therefore, it is very necessary and
important to identify prognostic factors, which can assess the risk of
early recurrence and metastasis, to help patients choose more
appropriate therapy (Cianfrocca and Goldstein, 2004; Gouri
et al., 2020; Khan and Gerber, 2020).

Recent studies have harnessed omics data to identify
molecular features associated with cancer recurrence and
metastasis in various types of cancer. For example, based on
transcriptomics, 76 genes associated with breast cancer
metastasis were identified, all of which had specific expression,
and 11 gene markers were used to predict the risk of recurrence in
colorectal cancer (Wang et al., 2005; Kim et al., 2019). A whole-
genome analysis of 299 breast cancer patients has also revealed
that a set of 365 gene mutations that were not present in the
primary tumor are commonly discovered in metastasis and that
the mutation rate of most genes in recurrence or metastasis
samples is higher than that in the primary tumor (Yates et al.,
2017). From the perspective of copy number variation (CNV),
Hayashi et al. (1995) analyzed mutant-allele-specific
amplification in colorectal cancer, and Armin et al. analyzed
the genes that were most likely to have copy number variants in
bladder urothelial cancer (Soave et al., 2020), verifying that copy
number variation was associated with recurrence. Moreover, the
tumor microenvironment has also been proven to be a critical
factor in cancer recurrence and metastasis, with specific
components serving as potential prognostic biomarkers. Zhang
et al. (2020) summarized the tumor microenvironment
components related to recurrence and metastasis, suggesting
that they could be used as prognostic biomarkers. Zhai et al.
(2019) identified 11 genes that may play a crucial role in early

papillary thyroid cancer recurrence using the weighted gene co-
expression network analysis. Additionally, multi-gene analysis
scores have been shown to be useful in predicting recurrence and
distant metastasis in early breast cancer (Gouri et al., 2020). The
findings of these studies offer valuable insights into the factors
that contribute to cancer recurrence and metastasis and provide a
basis for future research in this field.

However, few studies have explored the early detection of
recurrence and metastasis that are often difficult to identify
clinically, and the focus has primarily been on a single type of
cancer or a specific omics data type. Pan-cancer analysis can exhibit
common characteristics among cancers, while comparing early- and
late-stage cancer can provide insights into the fundamental
mechanisms of cancer development (Mishra et al., 2016;
Gerstung et al., 2020). Furthermore, multi-omics approaches can
integrate data from different omics to uncover the relationships and
impacts on the disease process (Sun and Hu, 2016; Jung et al., 2020;
Subramanian et al., 2020). Therefore, the identification of
biomarkers related to recurrence and metastasis in early pan-
cancer using multi-omics data is crucial. Such biomarkers can aid
in predicting which early-stage patients are at risk of developing
recurrence andmetastasis, enabling timely and effective treatment to
improve prognosis.

Here, we investigated the clinical characteristics of patients with
recurrent, metastatic, and primary tumors at different stages to
identify specific biomarkers for early recurrence and early metastasis
in pan-cancer using multi-omics data. Our results revealed that in
genome, immune cell infiltration, and cell status, there were
significant differences in the molecular characteristics of early
metastasis compared to primary tumors, but no significant
differences were observed between early recurrence and primary
tumors. Our research also identified possible biomarkers for early
recurrence and early metastasis, which could identify early-stage
cancer patients with high risk of recurrence and metastasis, and we
verified the predictive power of these biomarkers with the
constructed classifier results. It was expected to help with clinical
treatment and improve prognosis. Additionally, the flow of our
entire study is shown in Figure 1.

2 Materials and methods

2.1 Clinical data

We downloaded the clinical data from the GDC database
(https://portal.gdc.cancer.gov/projects), which included
information on 12,636 patients such as gender, age, tumor
weight, tumor stage, and survival time (days). We eliminated the
normal samples or the samples with no stage-related information
and the samples with unknown stage-related information. Finally,
we obtained the clinical data of 8,342 patients (n = 2,577 patients
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with stage I cancer, n = 2,370 patients with stage II cancer, n =
2,381 patients with stage III cancer, and n = 1,014 patients with stage
IV and stage V cancer).

2.2 Gene expression data and copy number
variation data

Gene-level RNA-seq expression datasets for 33 types of cancer,
which included 11,057 samples and 60,483 genes, were downloaded
fromUCSC Xena (https://xenabrowser.net/datapages/). We selected
the GDC Hub, and then, for each of these 33 cancers, we selected
“HTSeq—Counts” for RNA-seq expression data and downloaded
the processed data [log2 (x+1)].

Meanwhile, gene-level CNV data for 33 cancers of
11,164 samples were also downloaded from UCSC Xena.
Similarly, we selected the GDC Hub, and then, for each of
these 33 cancers, we selected “GISTIC—focal score by gene” for
copy number variations data and downloaded the data. In the
CNV data matrix, −1 indicated single-copy deletion and
2 indicated homozygous deletion, which were collectively
regarded as copy number deletion. Also, 1 indicated low-
level copy number amplification, 2 indicated high-level
copy number amplification, and both were collectively
regarded as copy number amplification; 0 indicated a
diploid normal copy.

2.3 External validation data

From the GEO (https://www.ncbi.nlm.nih.gov/geo/) database,
we downloaded gene expression and clinical data as external
validation data, including GSE31210, GSE37745, GSE44295, and
GSE20685. Among them, GSE31210 was the gene expression data of
226 patients, with lung adenocarcinoma at stage I–II, GSE37745 was
the gene expression data of 196 non-small lung cancer (NSCLC)
cases, with clinical information and long-term follow-up,
GSE44295 was the gene expression in primary uveal melanoma
cells and normal cell controls of 63 patients, and GSE20685 was the
gene expression profiles of 327 breast cancer samples.

2.4 Gene mutation data

Somatic mutation data of TCGA patients, with 33 types of
cancer, were downloaded from the GDC database. Using the R
package of TCGAbiolinks, the specific mutation information of
12,636 patients was obtained from the four somatic mutation
platforms, such as Muse, Mutect, SomaticSniper, and VarScan;
then, a new mutation information set of 12,636 patients was
formed, including mutation type, mutation position, and
corresponding amino acid change information, where the union
of gene mutation information from four pipelines was adopted and
redundant information was removed.

FIGURE 1
Flowchart. (A) Our study is based on clinical phenotypic data, transcriptome data, genomic data, and tumor microenvironment data in TCGA. (B)
First, we compared the differences in clinical characteristics between patients with stage I recurrence or metastasis and patients with other stages based
on clinical data. (C) Next, we used transcriptome, genomic, and tumor microenvironment data to explain and analyze the differences in patients with
stage I recurrence ormetastasis and to identify stage I-specific biomarkers thatmight predict recurrence ormetastasis of early cancer. (D) Finally, we
identified specific therapeutic sensitive targets for stage I cancer based on existing therapies. If a patient is found to be at high risk of recurrence or
metastasis by the biomarkers we identified, appropriate treatment for the patient’s therapeutic sensitive targets may be considered.
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2.5 Immune cell infiltration data

We obtained three sets of the immune cell infiltration data in
TCGA cancer patients. The first set was downloaded from
TIMER (https://cistrome.shinyapps.io/timer/). This dataset
involves the infiltrating scores of six immune cells in
11,509 patients with 33 types of cancer, including B cells,
CD4 T cells, CD8 T cells, neutrophils, macrophages, and
dendritic cells. The other two sets of data were calculated
using the R package EPIC (https://github.com/GfellerLab/
EPIC) and R package MCPcounter (https://github.com/ebecht/
MCPcounter), respectively. The input of MCPcounter was the
read count data of gene expression, so we directly used the
previously downloaded read count data as input. Also, the
input of EPIC was the FPKM data of gene expression, so we
downloaded the FPKM data of gene expression (HTSeq-FPKM_
UQ) from UCSC Xena. The MCPcounter exported the
infiltration scores of 10 immune cells, such as T cells,
natural killer cells, and fibroblasts, in 10,906 patients, while
EPIC exported the infiltration scores of eight immune cells,
such as macrophages, CD4 T cells, and CD8 T cells, in
10,906 patients.

To combine these three sets of data, we normalized [log2 (x +
1)] them separately. Next, we combined the three sets of
normalized data, and we first intersected the samples to obtain
three sets of data of the same samples and then combined the
immune cells, in which the same immune cells were averaged,
and finally obtained 13 kinds of immune cell infiltration scores of
10,906 patients, including B cells, fibroblasts, CD4 T cells,
CD8 T cells, endothelial cells, macrophages, natural killer
cells, T cells, monocytes, cytotoxic cells, dendritic cells,
neutrophils, and other cells.

2.6 T-cell dysregulation signatures obtained
in the literature

We obtained 26 genes related to T-cell exhaustion, 25 genes
related to T-cell senescence, 292 genes related to T-cell elimination,
and 90 genes related to T-cell dysfunction from the article (Jiang
et al., 2018; Zhao et al., 2020). All these 433 genes were considered
gene signatures related to T-cell dysregulation. Additionally,
160 genes related to T-cell inflammation were obtained from the
article (Bao et al., 2020). Thus, a total of 593 genes were used as gene
signatures related to T-cell dysregulation.

We downloaded the immune characteristic score of
11,080 patients from literature attachments (Thorsson et al.,
2019), including white blood cell data, stromal cell data, and more.

2.7 Cancer single-cell functional state

We downloaded cancer cell status data from the CancerSEA
(http://biocc.hrbmu.edu.cn/CancerSEA/home.jsp) database, which
involved 14 functional cell statuses of 41,900 single cancer cells of
25 cancer types. Additionally, we also downloaded a total of
1,574 genes related to various functional cell states from the
CancerSEA database.

2.8 Ligand–receptor-related genes

We downloaded the data of ligand–receptor interaction pairs
from the CellTalkDB (http://tcm.zju.edu.cn/celltalkdb/) database. In
total, there were 3,398 ligand–receptor pairs, including 815 ligand
genes and 780 receptor genes.

2.9 Therapy-related genes

From the OncoKB database (Chakravarty et al., JCO PO 2017),
we obtained 158 genes and their information related to targeted
therapy.

Immune checkpoint proteins were downloaded from the Sino
Biological database. The genes corresponding to these proteins and
their information related to immune checkpoint therapy were
obtained from the GeneCards database. Finally, we obtained
49 immune checkpoint-related genes, including 25 immune
checkpoint-related genes in T cells and 24 immune checkpoint-
related genes in tumor cells.

2.10 Survival analysis

We used the Kaplan–Meier curve and the log-rank test to
estimate the survival probabilities and test the differences in the
survival rate among patient subgroups. Differences were considered
significant if the two-sided p-value was less than 0.05. These survival
analyses were conducted using the “survival” package in the R
environment.

2.11 Identification of differentially expressed
genes

We used the limma package in R to analyze the differential
expression of genes in 33 cancer patients, and the input data were the
read count data. We first de-log-processed the read count data to
obtain the raw count data, which were then normalized using the
voom method in the limma package. The voom method normalized
the read counts and applied a variance stabilizing transformation to
the data, which allowed for the use of linear modeling methods that
assumed normally distributed data. Next, we used the limma
package to calculate the fold-change and p-value for each gene in
primary and recurrent tumors or primary and metastatic tumors of
different cancer stages. Genes with a fold-change value greater than
2 or less than −2 and a p-value less than 0.05 were considered to be
differentially expressed.

We further performed multiple testing corrections using the
Benjamini–Hochberg method to control the false discovery rate
(FDR). Genes with an adjusted p-value less than 0.05 were
considered to be significantly differentially expressed.

2.12 Enrichment analysis of identified genes

To investigate the biological pathways and functions associated
with the genes identified in our analysis, we utilized the R package
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clusterProfiler and org.Hs.eg.db. Specifically, we used the enrichGO
and enrichKEGG functions to perform Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses, respectively. This allowed us to identify the
enriched GO terms and KEGG pathways associated with the
identified genes.

Additionally, we used the emapplot function from the
clusterProfiler package to create an enrichment map that visually
represents the relationship between enriched pathways. This
provided a comprehensive view of different biological processes
that may be involved in the development and progression of cancer.
Finally, we analyzed and interpreted the results of the enrichment
analysis to gain insights into the underlying mechanisms and
potential therapeutic targets associated with the identified genes.

2.13 Assessment of predictors for survival
and tumor occurrences using Cox
proportional hazard regression analysis

We performed a Cox proportional hazard regression analysis to
assess the impact of several factors on survival and occurrences of
new tumors. We calculated HRs and 95% confidence intervals (CIs)
for each predictor variable and used forest plots to present the
results. The HR represents the risk or hazard of an event occurring in
the presence of the predictor variable as compared to its absence.
Variables with an HR greater than 1 and a p-value less than
0.05 were considered to be associated with poor prognosis. Each
predictor variable was represented by a separate row in the plot, and
HRs and 95% CIs were plotted as a horizontal line with a circular
marker. The location of the circular marker on the horizontal line
indicated the point estimate of the HR, while the length of the
horizontal line represents the 95% CI.

2.14 Statistics analysis of genemutations and
copy number variations in association with
recurrence and metastasis

To investigate the association between gene mutations or copy
number variations and recurrence or metastasis, we employed
Fisher’s exact test. For each gene, we calculated four values based
on samples from different cancer stages: the number of samples
with no recurrence (or no metastasis) and no gene mutations, the
number of samples with no recurrence (or no metastasis) and gene
mutations, the number of samples with recurrence (or metastasis)
and no gene mutations, and the number of samples with
recurrence (or metastasis) and gene mutations. We then used
these four values as input for Fisher’s exact test, which
calculated a p-value for each gene. Similarly, for copy number
variations, we used the same four values as input, but we use the
number of samples with or without a copy number variation,
instead of having or not having a gene mutation. A p-value less
than 0.05 was considered statistically significant and indicated that
mutations or copy number variations in that gene were associated
with recurrence (or metastasis).

2.15 Classifier construction for predicting
recurrence and metastasis

To evaluate the performance of the identified biomarkers in
predicting recurrence and metastasis, we conducted a machine
learning analysis. For addressing the imbalance between the
number of primary and recurrent/metastatic samples in stage
I, we randomly selected the same number as recurrence/
metastasis samples from primary tumor samples. We then
combined these samples with all the samples from the
recurrence/metastasis group and randomly split them into
training and test sets, with 80% of the samples in the training
set and 20% in the test set. We performed this procedure
separately for recurrence and metastasis samples.

Based on the identified biomarkers, we constructed classifiers
using support vector machine (SVM), k-nearest neighbor, and
random forest algorithms to predict the recurrence/metastasis
status of the samples in the test dataset. We then calculated the
specificity and sensitivity of each classifier using the actual
recurrence/metastasis status of patients. Finally, we plotted
receiver operating characteristic (ROC) curves to evaluate the
performance of each classifier. The area under the curve (AUC)
was calculated with a value closer to 1, indicating better classifier
performance.

2.16 Cell state analysis using GSVA in tumor
samples

To evaluate differences in the cell status between primary
and recurrent or metastatic tumors at different cancer stages, we
used the R package gene set variation analysis (GSVA). First, we
obtained a set of cell state-related genes from the CancerSEA
database. This gene set included genes that were known to be
associated with various cell states, such as quiescent cells,
activated fibroblasts, and immune cells. Next, we used the
GSVA function in the GSVA package to calculate the score
of the corresponding cell state for each sample with the gene
expression data. This allowed us to obtain a quantitative
measure of the degree to which each sample was associated
with each of the 14 cell states included in the gene set. Finally,
we obtained the enrichment scores of all 14 kinds of cell states
for each sample. These scores provided a comprehensive view of
the extent to which each cell state was represented in the gene
expression profile of each tumor sample.

2.17 R script

We uploaded all the code and some of the data for this study
to GitHub (https://github.com/bioWzz/Multi-omics-profiling-
reveals-characterization-of-the-early- recurrence-and-early-
metastasis-in-pan-c). All the codes were in the .txt file called
multi-omics profiling reveals characterization of the early
recurrence and early metastasis in pan-cancer. The rest was
part of the input or output data.
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3 Results

3.1 Significant association between early
recurrence, metastasis, and negative
prognosis of cancer

Understanding the impact of recurrent and metastatic tumors
on patient survival is crucial for improving cancer management
strategies. To this end, we conducted a comprehensive analysis of the
impact of recurrent and metastatic tumors on survival. Our findings
indicated that both recurrence and metastasis have a significant
impact on the prognosis for cancer at all stages, with metastasis
having a greater impact than recurrence (p = 1.59*e−38, Figure 2A).
Further analysis of patient survival at different stages revealed that
recurrence was not a significant risk factor for patients in stage I (p =
0.3714224), while metastasis was observed to be a relatively
important factor affecting survival (Figure 2B). For patients with
stage II (p = 1.85*e−21) and stage III (p = 5.20*e−14) cancer, the
Kaplan–Meier survival curves showed that both recurrence and
metastasis impacted the prognosis (Figures 2C,D). Notably, our
results indicated that neither recurrence nor metastasis had any

significant impact on the survival of patients in stage IV and V (p =
0.133) (Figure 2E).

To further study the impact of recurrence and metastasis on
patient survival, we used the Cox proportional hazard regression to
investigate the risk of recurrence and metastasis tumors for patient
survival. Our findings, as shown in Figure 2F, revealed that the
effects of recurrence and metastasis on survival varied depending on
the tumor stage. Specifically, the impact of recurrence on poor
prognosis increased with the advancement of tumor stages, with the
exception of stage IV and stage V (HR for stage I: 0.9323
(0.6550–1.3270), HR for stage II: 1.5348 (1.1776–2.0004), HR for
stage III: 1.6592 (1.4299–1.9255), and HR for stage IV and V: 0.8690
(0.6628–1.1396)). Conversely, the impact of metastasis on poor
prognosis decreases with the development of tumor except for
stage II (HR for stage I: 2.8020 (2.0209–3.8849), HR for stage II:
2.9064 (2.3169–3.6459), HR for stage III: 1.6226 (1.2966–2.0307),
and HR for stage IV and V: 0.8150 (0.6054–1.0972)). Additionally,
our analysis revealed that the effect of drug treatment on primary
tumors, recurrent tumors, and metastatic tumors was also different
(Supplementary Figure S1). Importantly, once recurrence and
metastasis occur, the efficacy of drug treatments becomes less

FIGURE 2
Impact of recurrence and metastasis on patients’ survival in various stages of cancer. (A) Kaplan–Meier survival curves of all patients with primary,
recurrent, and metastatic tumors. (B–E) Kaplan–Meier survival curves of patients with primary tumors, recurrent tumors, and metastatic tumors in stages
I, II, III, and IV + V. (F)Cox regression analysis of the impact of recurrence andmetastasis on each stage patients’ survival. The point represents the risk ratio,
and the line segment represents the 95% confidence interval.
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apparent. These findings underscore the importance of timely
detection and management of recurrent and metastatic tumors
for improving cancer treatment strategies and patient
outcomes.

3.2 Difference in clinical characteristics of
recurrence and metastasis in different stage
cancer patients

To further explore the differences in clinical characteristics
among early recurrence, early metastasis, and other stages, we
investigated their differences in a patient cohort of
8,324 individuals. The cohort was stratified into nine different
groups based on the stage and state of cancer progression,
including primary tumors, recurrence at stage I, metastasis at
stage I, recurrence at stage II, metastasis at stage II, recurrence at

stage III, metastasis at stage III, recurrence at stage IV and V, and
metastasis at stage IV and V.

Then, we examined the distribution of recurrence andmetastasis
across different cancer types to identify differences in the incidence
of these events in various cancers. Our analysis of TCGA data
revealed the difference of recurrence and metastasis in different
cancer stages (Figure 3A and Supplementary Figure S2). For
example, certain cancers, such as bladder urothelial carcinoma
(BLCA) and liver hepatocellular carcinoma (LIHC), had no
recorded cases of metastasis patients in certain stages, while lung
adenocarcinoma (LUAD) and pancreatic adenocarcinoma (PAAD)
had significantly higher rates of metastasis. We also investigated the
differences in survival rates among different groups and discovered
that the survival of patients with primary tumors, recurrence in stage
I, and recurrence in stage II was better, as shown in Figure 3B (p <
0.0001). We also observed significant differences in tumor weight
between recurrent tumors in stage I and stage II (p = 0.002),

FIGURE 3
Differences in the clinical characteristics of cancer patients with primary tumors, recurrent tumors, and metastatic tumors. (A) The distribution of
cancer patients with primary tumors, recurrent tumors, and metastatic tumors in BLCA, LIHC, LUAD, and PAAD in each stage. Each circle from the inside
to the outside were stages I, II, III, and IV + V. (B–C) Kaplan–Meier survival curves and tumor weight. (G) Boxplot of patients with primary tumors, recurrent
tumors, and metastatic tumors in various stages. (D–F) Distribution histograms on age and gender of patients with primary tumors, recurrent
tumors, andmetastatic tumors on various stages of cancer. The age groups were divided into young adults aged 10 to 40, middle-aged adults aged 41 to
70, and older adults aged 71 to 90.
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compared to other stages, with recurrent tumors generally weighing
more than metastatic tumors at each stage (Figure 3C). Next, we
compared the distribution of groups at different stages of cancer and
discovered that the probability of recurrence and metastasis
increases as cancer progresses, with the exception of stage IV
and stage V (Figure 3D). Furthermore, we analyzed the
differences of age and gender among different groups
(Figures 3E,F) and discovered that the proportion of stage III
recurrence and metastasis was the largest in patients of different
age groups, and the proportion of metastases in the remaining
stages increased with cancer progression. Meanwhile, the
proportion of female patients with stage III recurrence was
higher, and the proportion of recurrence and metastasis from
stage I to stage II varied significantly regardless of gender
(female: p = 0.0016 and male: p = 3.03*e−08).

Our findings suggest that several factors, including age, gender,
and type of cancer, may influence the status of recurrence and
metastasis of patients with different stages of cancer.

3.3 Increased expression of specific genes
leads to early recurrence

To investigate the potential biomarkers and molecular
mechanisms of early recurrence in cancer, we conducted
differential expression analysis of gene expression data from
primary and recurrent tumors at different stages and identified
14 genes that were specifically differentially expressed in stage I (|
log2FC|>1, p < 0.05, Figure 4A). Next, we performed functional
enrichment analysis on these 14 differentially expressed genes using

FIGURE 4
Biomarkers associated with early recurrence in cancer. (A)Heatmap of fold-change values of stage-specific differentially expressed genes in stage I.
Red indicates that gene expression was upregulated in recurrent tumors, while blue indicates downregulation in recurrent tumors. (B) GO enrichment
analysis of stage-specific differentially expressed genes in stage I. The size of the dot indicates the number of genes involved in the pathway, and the color
of the dot indicates the p-value. (C) Cox regression analysis of stage I-specific differentially expressed genes related to prognosis. The point is the
value of the hazard ratio, and a value greater than 1 indicates that it was related to poor prognosis. (D) Boxplot of the expression of S100P and BPIFB1 in
normal, primary, and recurrent tumor samples. (E) GO enrichment analysis of three genes. Each dot represented a pathway, and the connecting two
pointsmeant that the same genes were in the pathways. (F) Based on these three genes, the ROC curve of the classifier constructed by the support vector
machinemethod. (G) For the GSE31210 dataset, the Kaplan–Meier survival curve of the SVM classification result. Red indicated samples predicted to have
recurrence, and blue indicated samples predicted to have no recurrence. (H) For the GSE37745 dataset, the ROC curve of the k-nearest neighbor
classifier (left) and the survival curve of the classification result (right). Red indicates samples predicted to have recurrence, and blue indicates samples
predicted to have no recurrence.
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the clusterProfiler package, and enrichment analysis revealed that
these genes were associated with biological processes including
protein processing and hormone metabolism (Figure 4B). Then,

we performed Cox regression analysis to identify genes associated
with poor prognosis in recurrence to further test whether these genes
can be used as biomarkers to predict recurrence in early cancer

FIGURE 5
Gene expression-based biomarkers related to early metastasis. (A) Heatmap of specific differentially expressed genes in stage I. Red indicates that
gene expression was upregulated in metastatic tumors, while blue indicates downregulation. (B) GO enrichment analysis of specific differentially
expressed genes in stage I. The size of the dot indicates the number of genes involved in the pathway, and the color of the dot indicates the p-value. (C)
Cox regression analysis of stage I-specific differentially expressed genes related to prognosis. The point is the value of the hazard ratio, and a value
greater than 1 indicates that it was related to poor prognosis. (D) Boxplot of the expression of ANKRD22 and IGHV5-51 in normal, primary, and metastatic
tumor samples. (E)GO enrichment analysis of nine genes that were related to poor prognosis and specifically differentially expressed in stage I (up). Each
dot represents a pathway, and the connecting two points mean that the same genes were in the pathways; KEGG enrichment analysis of the nine genes
(down). Specific genes in the KEGG pathway were marked in yellow. (F) Based on these nine genes, the ROC curve of the classifier constructed by the
support vectormachinemethod and the Kaplan–Meier survival curve of the result of the classifier. Red indicates samples predicted to developmetastasis,
and blue indicates samples predicted to have no metastasis. (G) For the GSE44295 dataset, the ROC curve of the k-nearest neighbor classifier and the
Kaplan–Meier survival curve of the classification result. Red indicates samples predicted to develop metastasis, and blue indicates samples predicted to
have no metastasis. (H) For the GSE20685 dataset, the ROC curve of the k-nearest neighbor classifier and the Kaplan–Meier survival curve of the
classification result. Red indicates samples predicted to develop metastasis and blue indicated samples predicted to have no metastasis.
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(Figure 4C). According to the results of differential expression
analysis and Cox regression analysis, we identified three
upregulated genes specifically in stage I (p = 0.00021, p = 0.0025,
and p = 0.0059), which are associated with poor prognosis in early
recurrence (Figure 4D and Supplementary Figure S3). The
enrichment analysis results of these three genes (S100P, BPIFB1,
and SLC6A14) showed that the enrichment pathways were roughly
divided into two parts, one was transport-related pathways,
including BPIFB1 and SLC6A14, and the other was immune-
related pathways only including BPIFB1. These associated
pathways may contribute to the occurrence of recurrence.

According to previous results, these three genes were not only
specific differentially expressed in stage I but also associated with
poor prognosis. We further validated the potential of the three
identified genes, S100P, BPIFB1, and SLC6A14, as biomarkers for
predicting the recurrence of early-stage cancer. Therefore, we used
an SVM to construct the classifier with these three gene expression
levels and found the classifier to be effective in predicting the
recurrence of early-stage cancer (AUC: 0.766) (Figure 4F).
Furthermore, to further verify that these three genes have a
general ability to predict the risk of developing early recurrence,
we validated the performance of these genes using independent
datasets from GEO (GSE31210 and GSE37745) and observed that
they exhibited good predictive ability (GSE31210: p-value of the
difference in survival between the predicted primary and predicted
recurrence samples: 0.0037; GSE37745: p-value of the difference in
survival between the predicted primary and predicted recurrence
samples: 0.0092 and AUC: 0.628) (Figures 4G,H).

These findings suggest that S100P, BPIFB1, and SLC6A14 may
serve as reliable biomarkers for predicting the risk of recurrence in
early-stage cancer. Their overexpression may increase the likelihood
of early recurrence.

3.4 Identification of diagnostic biomarkers
associated with early metastasis

Identifying differentially expressed genes associated with early-
stage metastasis can provide valuable insights into the biological
processes driving the metastasis. Therefore, we investigated the
genes associated with stage I metastasis using a method similar
to that used for studying early cancer recurrence and identified
18 genes that were specifically differentially expressed in stage I (|
log2FC|>1,p < 0.05, Figure 5A); that is, the expression of these genes
was only altered in stage I metastatic tumor samples compared with
primary tumors, and there were no significant differences in
metastatic samples from other stages. Also, it showed the results
of enrichment analysis of these 18 genes and found that these
pathways were mostly related to immune function (Figure 5B).
Interestingly, these pathways were distinct from those identified in
the case of recurrence, and it could be attributed to the fact that
recurrence involves the emergence of a new tumor in the original
site, where the tumor microenvironment is already in balance with
the immune system and does not require immune suppression. In
contrast, metastasis involves the emergence of a new tumor at a new
location, which requires immune suppression to establish and grow.
These results suggest that immune-related pathways may play an
important role in the development and progression of metastasis.

We further investigated the potential use of these genes for
predicting early metastasis in cancer. We used the same methods as
the recurrence; according to the results of differential expression
analysis and Cox regression analysis (Figure 5C), we identified nine
upregulated genes specifically in stage I, including KLHDC78-DT,
ANKRD22, RAB27B, LIPM, IGHV5-51, IGLC3, IGHA1, IGLL5,
and IGKV3-20 (Figure 5D and Supplementary Figure S3, p < 0.05),
which are associated with poor prognosis in early metastasis. Gene
enrichment results obtained by an emapplot function showed that
the nine genes enriched pathways shared many of the same genes
and most of them were associated with immune functions that may
promote metastasis. Moreover, we identified an RAB27B-related
pathway by an enrichKEGG function, which is involved in the
transport of intracellular vesicles and proven to be associated with
the metastasis (Koh and Song, 2019; Wu et al., 2019).

Above all, these nine genes were not only significantly
differentially expressed in stage I cancer but also associated with
poor prognosis. Therefore, we constructed a classifier to investigate
if these genes could be serve as potential to predict metastasis in
early-stage cancer and obtain a good feedback (AUC: 0.818, p-value
of the survival difference between the predicted primary sample and
the predicted metastatic sample: 0.041) (Figure 5F). In order to
verify the accuracy of the classifier, the gene expression data and
relevant clinical data of GSE44295 and GSE20685 were downloaded
from the GEO database for verification (GSE44295: p-value of the
difference in survival between the predicted primary and predicted
metastatic samples: 0.043 and AUC: 0.638; GSE20685: p-value of the
difference in survival between the predicted primary and predicted
metastatic samples: 0.002 and AUC: 0.624) (Figures 5G,H). The
results demonstrated that the classifier was effective in predicting
metastasis, which suggests that these genes could be potential targets
for developing diagnostic strategies for early cancer metastasis.

3.5 Identification of a gene mutation
signature for early metastasis prediction

To gain deeper insights into the molecular mechanisms
underlying early recurrence and early metastasis, we performed
additional analyses to identify a specific signature from the angle of
gene mutations that could potentially serve as biomarkers for early
recurrence and early metastasis. First, we investigated the
relationship between the number of gene mutations and the
likelihood of early metastasis by studying the ratio of metastasis
to primary in different mutation groups. The results revealed that
tumors with a number of gene mutations within the range of
600–1,199 were most prone to metastasis, as demonstrated by the
highest proportion of metastasis in this group (Figure 6A). To
further verify this result, we respectively calculated the
proportion of metastasis or primary in the total metastasis or
total primary in each group and found that except for the first
group, the proportion of metastatic samples in 600–1,199 was
indeed the largest (Figure 6A). Although groups 1–199 had the
largest proportion of metastatic samples, this was due to an
imbalance caused by the large number of samples in this group,
and the proportion of metastatic tumors in this group was very small
and, thus, could be ignored. Our results suggest that tumors with
600–1,199 gene mutations are most likely to metastasize.
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Then, we used Fisher’s exact test to identify specific mutation
genes (Section 2.13) that exhibited a significant difference only in
stage I, with a p-value less than 0.05 only in stage I and greater than
0.05 in the other stages. We did not observe an overlap between
genes with specific mutations and high-frequency mutation genes
with a mutation rate greater than 5% in cases of early recurrence.
However, in metastasis, we identified 27 genes with both specific
mutations and high-frequency mutations in stage I (Figure 6B).
Furthermore, when combined with significantly differentially
expressed genes in stage I metastasis, we discovered that

IGHA1 was a gene that had mutations and expression specifically
in stage I, even though it was not a high-frequency mutation gene.
Among these 28 genes, there were more early metastasis mutations
than primary tumors (p = 2.2*e−08), which could cause worse
prognosis (Figure 6C). In order to verify whether the higher the
number of mutations, the worse the prognosis, we grouped the
primary and metastatic samples according to the number of
mutations in these 28 genes and analyzed the survival difference
between the groups and found that the number of mutated genes
was positively correlated with the worse prognosis (p < 0.0001)

FIGURE 6
Genes specifically mutated in early metastasis. (A) The distribution of primary and metastatic tumors in different mutation number groups (up).
Changes in the distribution of primary andmetastatic tumors in the total primary andmetastatic tumors in differentmutation groups (down). The abscissa
represented groups with different numbers of mutant genes. (B) Heatmap of Fisher’s exact test p-value of mutant genes related to specific metastasis in
stage I. (C) For these 28 genes, the difference in the number of mutations between the primary and metastatic tumor. (D) Kaplan–Meier survival
curves of samples with different numbers of mutations. (E)GO enrichment analysis of 28 genes. Each dot represents a pathway, and the connecting two
points mean that the same genes were in the pathways. (F) For these 12 genes, left: difference in number of mutations between primary and metastatic
tumor samples; middle: the proportion of primary and metastatic tumors in groups with a different number of mutations, where green was the primary
tumor and yellow was themetastatic tumor; and right: survival differences in samples with or without genetic mutations. (G) Based on 12 genes, the ROC
curve of the classifier constructed by k-nearest neighbors and the Kaplan–Meier survival curve of the result of the classifier. Yellow indicates samples
predicted to develop metastasis, and blue indicates samples predicted to have no metastasis. (H) KEGG enrichment analysis of 12 genes. Related genes
are marked in red.
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FIGURE 7
Copy number variation in stage Imetastatic tumors ismore complicated. (A) For primary, recurrent, andmetastatic samples of stage I, the proportion
of samples with copy number variations to the total samples. The upper part of 0 indicates the copy number amplification rate, which was the sum of the
low-level copy number amplification rate in light yellow, and the high-level copy number amplification rate is in dark yellow. The lower part of 0 indicated
the copy number deletion rate, which was zero minus its true value. Themutation rate is the sum of the single-copy deletion rate in light green, and
the homozygous deletion rate is in dark green. Dotted lines separated different chromosomes. (B–C)Boxplot of the number of amplifications or deletions
in each sample. (D) In metastatic tumors, heatmap of the log2FC value of specific copy number variant genes in stage I (small) and heatmap of Fisher’s
exact test p-value (large). Stages I, II, III, and IV + V of cancer from the inside to the outside. (E–F) GO enrichment analysis and KEGG enrichment analysis
of 29 genes. Each dot represents a pathway, and the connecting two points mean that the same genes were in the pathways. The size of the dot indicates
the number of genes in these 29 genes, and the color of the dot indicates the p-value.
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(Figure 6D). Next, the result of Go enrichment analysis suggested
that the 12 genes, namely, FAT3, NRXN1, DCHS2, PCDH15,
HYDIN, DNAH8, SYNE2, DNAH11, DNAH3, ADGRV1, USH2A,
and IGHA1, were mainly involved in homeostasis, cell motility, and
cell adhesion pathways (Figure 6E), which are known to play a
critical role in metastasis (Zhou and Huang, 2011; Bhatia et al., 2019;
Läubli and Borsig, 2019). Interestingly, the analysis of these 12 genes
showed that there were more gene mutations in early metastatic
patients (p = 7.6*e−06), and the proportion of early metastatic
samples increased with the increase in the number of mutated
genes. Moreover, patients with mutations of these 12 genes
showed significant differences in survival from those without
mutations (p < 0.0001), indicating that these genes can serve as
biomarkers for early metastasis (Figure 6F). So, we constructed a
classifier based on these 12 genes, and the results of the classifier
showed that the mutations in these genes can distinguish patients
with or without metastasis, with an AUC of 0.733 and a p-value of
0.013 for the survival difference between the predicted primary and
the predicted metastatic samples (Figure 6G). Then, we investigated
the relationship between these 12 genes and early metastasis in
cancer by pathway analysis. Gene enrichment analysis for KEGG
revealed two pathways, the Hippo pathway, where DCHS2 was
located, and the WNT/calcium pathway, where FAT3 was located,
both of which are widely believed to be closely related to cancer
(Figure 6H) (Sanchez-Vega et al., 2018).

These findings suggest that mutations in these 12 genes may
impact early metastasis and could serve as potential biomarkers for
early detection. Importantly, our results also indicate that there is no
specific mutation in stage I that could affect recurrence, highlighting
the fact that early metastatic tumors exhibit more differences in
mutations compared to primary tumors.

3.6 Specific copy number variation in the
early stage may drive early metastasis in
cancer

CNV is a type of genetic variation that can lead to amplification
or deletion of genes and is closely related to cancer (Liang et al.,
2016). Therefore, we investigated the differences of copy number
variation on all chromosomes at each stage of primary tumor,
recurrent tumor, and metastatic tumor and found that the copy
number variation rates of specific genes, such as those located in
chromosomes 1 and 8, were observed to increase significantly at
each stage of recurrent and metastatic tumors compared to primary
tumors (Figure 7A and Supplementary Figure S4). Also, the copy
number variations of recurrent and metastatic tumors are
significantly higher than those of primary tumors, and metastatic
tumors have the most copy number variations (Figure 7B). In
addition, the patients of stage I had consistently lower numbers
of copy number deletions compared to other stages, while the
numbers of copy number amplifications in stage I metastasis
were relatively higher (Figure 7C), indicating a more intricate
environment. Therefore, we then focused on amplification in
stage I metastasis and identified 5,858 genes with specific
amplification in stage I that may affect metastasis, using Fisher’s
exact test (p < 0.05). As amplification typically leads to upregulation
of gene expression, we further selected 29 genes from these

5,858 genes with upregulated expression in stage I (|log2FC| >
0.8) and downregulated expression in other stages (Figure 7D).
The enrichment results of these 29 genes revealed significant
associations with immune-related and anti-viral functions, as
demonstrated by the GO analysis results (Figure 7E),
Additionally, it highlighted the involvement of these genes in
various cell-mediated functions and transcriptional disorders as
demonstrated by KEGG analysis results (Figure 7F).

In brief, primary tumors, recurrent tumors, and metastatic
tumors exhibit significant differences in copy number variation.
Amplification of stage I-specific genes may lead to early metastasis,
while there were no specific copy number variations associated with
early recurrence. Our study also revealed that the genome of early
recurrence may not differ significantly from that of the primary
tumor in terms of mutation and copy number variation. Therefore,
the high variability of the genome may contribute to the occurrence
of early metastasis, emphasizing the need for identifying biomarkers
associated with early metastasis.

3.7 Identification of tumor
microenvironment characteristics
associated with early recurrence and early
metastasis

The investigation of the tumor microenvironment and immune
status in relation to early recurrence and early metastasis is crucial
for gaining new insights into cancer progression. To investigate the
impact of immune cell infiltration on early recurrence and early
metastasis, we calculated the cell infiltration score of 13 cell types
(Section 2.5). Based on the immune cell infiltration scores, we used
Cox regression analysis to study the relationship between immune
cells and new tumor generation and found that a negative
correlation between six immune cell infiltration scores and the
production of new tumors in stage I recurrence (Figure 8A).
However, we did not detect any immune cell types that exhibited
a specific association with the recurrence of stage I tumors; in other
words, the infiltration of these six immune cells may affect the
recurrence of cancer at all stages, not just in stage I. Meanwhile, three
kinds of immune cell (B cells, fibroblasts, and T cells) were observed
as cells that promote the production of new tumors in stage I
metastasis by Cox regression analysis (Figure 8B). Also, we
compared the difference of cell infiltration level between different
cancer stages with the t-test and discovered that B cells, fibroblasts,
and T cells in stage I metastasis present specific significant high cell
infiltration, which suggest that the high levels of three cells
infiltrating may promote early metastasis (p = 0.0094, p = 0.0013,
and p = 0.035) (Figure 8C). Notably, according to our findings, high
infiltration of immune cells may lead to metastasis instead, and for
this, we further investigated the expression changes of T-cell
dysfunction and T-cell inflammatory genes in metastasis patients
at different stages, in comparison to the primary tumor. The results
demonstrated that the genes related to T-cell inflammation and
positive regulation of T-cell dysfunction in these cells were
specifically upregulated in stage I metastasis (Figure 8D). This
finding suggest that despite the high enrichment of T cell in the
tumor microenvironment of patients with metastasis in early tumor,
most infiltrating T cells underwent functional dysfunction and
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inflammation, which indicated that T cells were likely to be
assimilated by cancer cells during this stage, thereby jointly
promoting poor prognosis. Subsequently, a classifier was
constructed using the k-nearest neighbor method based on the
aforementioned immune cells (AUC: 0.733, p-value of the
survival difference between the predicted primary sample and the
predicted metastatic sample: 0.002) (Figure 8E), suggesting that the
infiltration of these three cells could potentially impact early
metastasis.

Next, we examined the correlation between other immune
characteristics and the occurrence of early recurrence and early
metastasis in stage I tumors. According to the scores of immune
characteristics, we calculated the difference p-value and
up–downregulation between patients with recurrence or

metastasis, and primary patients at each cancer stage through
difference analysis, we identified specific immune characteristics
that were positively associated with the emergence of new tumors in
stage I, as shown in Figure 9A. In particular, three immune
characteristics (TCR richness, B cells naive, and TCR evenness)
related to the emergence of new tumors were identified as
biomarkers associated with early recurrence and Cox regression
analysis (Figure 9B). Then, the scores of these three features were
used to construct a classifier to further verify their good performance
as biomarkers (AUC: 0.705, p-value of the difference in survival
between the predicted primary and predicted recurrence samples:
0.012) (Figure 9C). Similarly, in the case of metastasis, 14 specific
immune characteristics in stage I were found through the scores of
immune characteristics by difference analysis (Figure 9D). Also,

FIGURE 8
Immunemicroenvironment and immune characteristics. (A–B) Cox regression analysis of immune cell infiltration in recurrent tumors or metastatic
tumors. At this time, the endpoint event was the generation of new tumors. The dot represents the hazard ratio, and having a value greater than
1 represents the promotion of new tumors. (C): Boxplots of the infiltration of B cells, fibroblasts, and T cells in primary and metastatic tumors at various
stages. Blue is the primary tumor, and red is the metastatic tumor. (D) Heatmap of log2FC values of genes related to positive regulation of T-cell
dysfunction and genes related to T-cell inflammation calculated based on gene expression data. (E) Based on the infiltration of the three types of cells, the
ROC curve of the classifier constructed by k-nearest neighbors and the Kaplan–Meier survival curve of the result of the classifier. Red indicates samples
predicted to develop metastasis, and blue indicates samples predicted to have no metastasis.
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10 of them were positively associated with the generation of new
tumors in stage I, which are considered to be possible biomarkers of
early metastasis (Figure 9E). Then, the classifier we constructed
confirmed the good performance of these immune characteristics in
predicting early metastasis (AUC: 0.750, p-value of the difference in
survival between the predicted primary and predicted metastasis
samples: 0.036) (Figure 9F).

In summary, we found that the high infiltration of B cells, T cells,
and fibroblasts is positively correlated with early metastasis, while no
immune cells may serve as a potential biomarker for early
recurrence. Furthermore, we identified specific immune
characteristics unique to stage I tumors, such as B-cell naive
proliferation, which appeared to contribute to an increased risk
of early recurrence, and macrophage M1 polarization, which

appeared to contribute to an increased risk of early metastasis.
Our findings present the potential of immune characteristics as
useful biomarkers for predicting the likelihood of tumor recurrence
and metastasis in stage I cancers.

3.8 Primary, recurrent, and metastatic
tumors exhibit distinct cellular states

The cellular states of primary, recurrent, and metastatic tumors
play a critical role in cancer progression and treatment and in order
to gain insights into the cellular states that are involved in early
recurrence and early metastasis of cancer; we identified different cell
states in early recurrence and early metastasis. Using the expression

FIGURE 9
(A–D)Dot plots of stage I-specific immune characteristics in recurrent andmetastatic tumors. The color of the dot indicates the change in the score
of the immune characteristics, and the size of the dot indicates the p-value. (B–E) Cox regression analysis of stage I-specific immune characteristics in
recurrent andmetastatic tumors. The endpoint event at this timewas the generation of new tumors. The dot represents the logarithmic transformation of
the HR value, and greater than 0 indicates that it promoted the generation of new tumors. (C–F) Based on the immune characteristics that promote
the generation of new tumors, the ROC curve of the classifier constructed by k-nearest neighbors and the Kaplan–Meier survival curve of the result of the
classifier. Red indicates samples predicted to develop metastasis, and blue indicates samples predicted to have no metastasis.
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of 14 cell state-related genes, we calculated the cell state scores for
each patient using GSVA. We identified four cell states (cell cycle,
apoptosis, hypoxia, and metastasis) that were different in stage I and
other stages of recurrence than in the primary tumor, that is, there
was no stage I recurrence-specific cell state. Meanwhile, six cell states
(cell cycle, angiogenesis, epithelial–mesenchymal transition, DNA
repair, proliferation, and stemness) were significantly different in
stage I metastasis (Figure 10A). Notably, these six cell states were not
significantly different in other stages, indicating that cell states were
more specific in early metastasis than in early recurrence.
Furthermore, these four cell states in early recurrence were
primarily related to the microenvironment, while these six cell
states in early metastasis were primarily related to the tumor’s
invasiveness, which more clearly explained the two different
states of early recurrence and early metastasis. To further
investigate these cell states, we analyzed the signature genes

associated with each state by differential expression analysis and
discovered that 27 genes specific for early recurrence and 128 genes
specific for early metastasis that were differentially expressed in stage
I when compared with other stages (Figure 10B and Supplementary
Figure S5).

Ligand–receptor interactions between cells can help us
understand the heterogeneity of tumor microenvironment better,
so the 3,398 ligand–receptor pairs were then analyzed. We first
identified stage I-specific ligand–receptor pairs in early recurrence
and early metastasis. These genes exhibited differential expressed in
stage I (|log2FC| > 0.8 and p < 0.05), with no expression differences
in other stages. Then, for the networks comprising these
ligand–receptor pairs, we further screened out hub nodes in
networks, which had a degree no less than three (hub nodes of
recurrence: FN1, ITGA3, and VLDLR and hub nodes of metastasis:
GIP, DPP4, SDC2, and CD36) (Figures 10C,D). These hub nodes

FIGURE 10
Differences in primary, recurrent, andmetastatic tumors at the cellular level. (A) Boxplot of the scores calculated by the cell state-related gene set for
each sample. (B)Heatmap of log2FC values of genes related to cell status calculated based on gene expression data. The cell status type was indicated on
the right. (C–D) Specific ligand–receptor pair networks for stage I recurrence (C) and metastasis (D). The triangular points are the ligands, and the round
points are the receptors.
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were all confirmed to be associated with recurrence (Gong et al.,
2018; Zhai et al., 2019) andmetastasis (Anderluh et al., 2016; Pascual
et al., 2017; Tsoyi et al., 2019; Du et al., 2020; Hua et al., 2020).

These results demonstrate that early metastasis exhibits greater
divergence from the primary tumor in terms of changes in cellular
states compared to early recurrence. Moreover, the analysis of
ligand–receptor interactions between cells can help better
understand the heterogeneity of the tumor microenvironment.
Targeting these hub nodes could potentially inhibit early
recurrence and early metastasis by affecting adjacent genes in the
network.

3.9 Targeted therapy and immune
checkpoint inhibitors show promise for
improved responses in patients with early
metastasis

Targeted therapy is a kind of treatment at the molecular level
and can be tailored to each patient’s specific genetic mutations,
making it a personalized approach that can potentially improve
patients’ quality of life and survival rates (Lee et al., 2018). To
identify the potential response of targeted therapy, we analyzed the
number of gene mutations in primary, recurrent, and metastatic

FIGURE 11
Targeted therapy and immune checkpoint therapy are more effective for early metastases. (A) Boxplot of the number of mutated genes in primary,
recurrent, and metastatic tumors, boxplot of the number of mutated genes in primary, recurrent, and metastatic tumors of each stage, boxplot of the
number of mutated genes in metastatic tumors of stage I and other stages. (B) For 158 genes related to targeted therapy, boxplot of the number of
mutated genes in each sample. (C) Histogram of the mutation rate of specific targeted therapy-sensitive genes. The samples were divided into
primary, recurrent, andmetastatic samples at different stages. (D)Dot plot of the score of immune cell infiltration inmetastatic tumors. All the scores were
reduced by the cell infiltration fraction of stage I. If the scores of other stages were less than 0, we considered that the cell had the highest infiltration level
in stage I metastatic tumor. (E) Heatmap of FC values of genes related to immune checkpoint calculated based on gene expression data.
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tumors. We discovered that the number of mutated genes exhibited
different patterns of increase across primary, recurrent, and
metastatic tumors. Specifically, stage I metastatic tumors showed
a significant increase in the number of mutated genes, while primary
tumors displayed a gradual increase with tumor development. In
recurrent tumors, the number of mutated genes increased with
tumor development, except in stage III tumors. Subsequently, we
further compared the number of mutated genes in stage I metastatic
tumors with those in other stages and found that the number of
mutated genes in stage I metastatic tumors was significantly higher
than those in other stages (Figure 11A). These results suggest that
stage I metastatic tumors may respond better to targeted therapy.
Among the 158 genes associated with targeted therapy obtained
from the OncoKB database, there were still the most mutated genes
in stage I metastatic tumors (Figure 11B). Moreover, by calculating
the mutation rate of genes, we identified five genes that exhibited
specific sensitivity to targeted therapy in stage I metastatic tumors.
These five genes have particularly high mutation rates of greater
than 5% in stage I metastases, and these genes have therapeutic
information (Figure 11C). Suppose that mutations in the twelve
biomarker genes observed through gene mutation data were
detected in early cancer stages. In this case, targeted therapy with
corresponding drugs for the aforementioned five gene loci may be
considered to delay or inhibit the occurrence of metastasis and
improve prognosis. Specifically, C481S, C481F, C481Y, T316A,
T474I, and T474S mutate of BTK could be affected by ibrutinib
to improve the prognosis of patients with chronic lymphocytic
leukemia or small lymphocytic lymphoma. Olaparib can be used
to inhibit oncogenic mutations or truncating mutations of CDK12 to
reduce the risk of prostate cancer or NOS metastasis. Sonidegib can
improve the prognosis of patients with embryonal tumor by
inhibiting PTCH1 truncating mutations. Everolimus or
temsirolimus can improve the prognosis of patients with all solid
tumors by affecting the mutation status of mTOR. Fusions of
NTRK2 were inhibited by entrectinib or larotrectinib to reduce
the risk of metastasis in patients with all solid tumors.

Immune checkpoint inhibitor therapy has proven to be one of
the most promising and effective immunotherapies in recent years
by modulating immune cells to inhibit tumor (He et al., 2021). In
order to analyze the difference of cellular infiltration between stage I
metastasis and other stages, the 13 immune cell infiltration scores in
stage I of the metastatic tumor samples were subtracted from the
score of each stage, and we found that the majority of immune cells
showed a highly cell infiltrated level at stage I metastasis
(Figure 11D), suggesting a favorable response to immune
checkpoint therapy in patients at this stage. Genes associated
with immune checkpoints obtained from the GeneCards database
were then studied through differential expression analysis, and four
genes in T cells and five genes in tumor cells were observed to be
specifically upregulated in stage I metastasis (|log2FC| > 0.8 and p <
0.05) (Figure 11E), which are associated with immune checkpoints.
Similarly, suppose the three immune cells we identified as
biomarkers were detected to be highly infiltrated in early cancers.
In this case, personalized immune checkpoint therapy with
corresponding drugs for the aforementioned nine gene loci in
different patients may be considered to delay or inhibit the
occurrence of metastasis and improve prognosis (Supplementary
Table S1).

Overall, when patients with high risk of metastasis in stage I
tumors are identified, personalized targeted or immune
checkpoint therapy with corresponding drugs for the
aforementioned specific gene loci may be considered to delay
or inhibit the occurrence of metastasis and improve prognosis.
It is important to note that the effectiveness of immune
checkpoint therapy and targeted therapy may vary depending
on the individual patient’s cancer type and status. Therefore,
careful consideration of each patient’s unique circumstances is
necessary to determine the optimal treatment approach. By
providing timely and effective treatment, we can more
comprehensively and effectively control disease’s
development and improve patient outcomes.

4 Discussion

Our study aimed to identify biomarkers related to early
recurrence and early metastasis in pan-cancer patients by
analyzing multi-omics data. These findings highlight the
importance of identifying these biomarkers as they could aid in
the detection of cancer patients with a high risk of early recurrence
and metastasis. We observed significant differences in the
distribution of various factors between patients with and without
recurrence or metastasis in early cancer, indicating the importance
of identifying high-risk patients for early intervention. We also
identified several specific genes related to early recurrence and
metastasis that, when overexpressed, could promote their
occurrence. Additionally, mutations and copy number
amplifications in certain genes were observed to increase the risk
of early metastasis. Interestingly, by comparing the genes identified
in the genome and the transcriptome, we discovered that there were
intersections between these genes. The overexpression and copy
number amplification of ANKRD22 and LIPM in early cancer, and
overexpression, mutation, and copy number amplification of
IGHA1 in early cancer may all promote early metastasis. The
reasons for this intersection are worth investigating further.
Furthermore, we identified immune characteristics related to
early recurrence and early metastasis and also found treatment-
sensitive genes that may help improve therapeutic outcomes for
cancer patients.

Our findings are consistent with previous studies that have
identified specific genes and pathways associated with cancer
recurrence and metastasis. For example, a study by Hwang et al.
(2021) found that overexpression of the gene S100P was associated
with an increased risk of early recurrence and poor prognosis in
patients with hepatocellular carcinomas . Hendrix et al.
demonstrated that the gene RAB27B was associated with
metastasis of breast cancer (Hendrix et al., 2010). Other studies
have identified mutated genes associated with early recurrence,
including FAT3 and USH2A (Kim et al., 2021; Qiu et al., 2021).
In addition, other researchers have also used multi-omics data to
identify biomarkers for cancer recurrence and metastasis. For
example, a study by Aftimos et al. (2021) used genomic and
transcriptomic data to identify a set of genes associated with
metastasis in breast cancer. Another study by Yang et al. (2021)
found that changes in copy number and expression of gene and
changes in infiltration of immune cells may be associated with early
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metastasis in pancreatic ductal adenocarcinoma by using multi-
omics data.

Our study adds to the growing body of the literature on the use
of multi-omics data to identify biomarkers for early cancer
recurrence and metastasis. By integrating transcriptomic,
genomic, and immune cell data, we were able to identify specific
genes and characteristics associated with early recurrence and early
metastasis in pan-cancer. These findings may provide insights into
the underlying mechanisms of early cancer recurrence and
metastasis and may have implications for the development of
new strategies for early cancer recurrence and metastasis
identification.

One of the strengths of our study is the integration of
transcriptomic, genomic, and immune cell data to identify
specific genes and characteristics associated with early
recurrence and early metastasis in pan-cancer. However, there
are some limitations that should be considered. One limitation of
our study is the exclusion of several cancer types due to the lack of
pathological stage information. Although our study includes
most cancer types, it is possible that relevant biomarkers for
early recurrence and early metastasis may have been missed.
Therefore, future studies should consider obtaining more
comprehensive pathological stage information to improve the
accuracy of the results. Another limitation of our study is the lack
of treatment response data in TCGA. While we identified
treatment-sensitive genes, the lack of relevant data may have
biased our results. Future studies should aim to incorporate more
comprehensive treatment response data to better understand the
relationship between treatment and early recurrence and early
metastasis. Furthermore, our study only analyzed transcriptomic,
genomic, and immune cell data. Additional omics data, such as
epigenomics and proteomics, may provide additional insights
into the mechanisms of early recurrence and early metastasis in
cancer. Therefore, future studies should aim to incorporate other
omics data to gain a more comprehensive understanding of these
processes.

Despite these limitations, our study adds to the growing body
of literature on the use of multi-omics data to identify biomarkers
for early cancer recurrence and metastasis. Our findings may
have implications for the development of new therapies and
strategies for the identification of early cancer recurrence and
metastasis. Not only that, future studies should also aim to
incorporate other omics data, such as epigenomics and
proteomics, to further understand the mechanisms of early
recurrence and early metastasis in cancer.

5 Conclusion

In summary, our multi-omics analysis reveals that early
recurrence and early metastasis in various cancer types have
distinct molecular mechanisms and tumor microenvironments.
The biomarkers identified through our multi-omics analysis have
context-dependent prognostic implications and potential as targets
for predicting the risk of early recurrence and early metastasis. These
findings provide new insights into the underlying biology of cancer
progression and may have implications for the development of
personalized therapies for cancer patients.
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SUPPLEMENTARY FIGURE S1
Kaplan-Meier survival curves of primary tumors, recurrent tumors, and
metastatic tumors that with drug treatment and those without drug
treatment in each stage. The abscissa was the survival time and the ordinate
was the survival rate.

SUPPLEMENTARY FIGURE S2
The distribution of patients with primary tumors, recurrent tumors and
metastatic tumors at different stages in different cancer. A circle represent a
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type of cancer, from the inside to the outside, respectively representing
stage I, stage II, stage III, and stage IV+V.

SUPPLEMENTARY FIGURE S3
(A): Comparison of recurrent tumors with primary tumors, the boxplot of
the expression of stage I specific differentially expressed genes. (B):
Comparison of metastatic tumors with primary tumors, the boxplot of
the expression of stage I specific differentially expressed genes. The
ordinate was the normalized gene expression value.

SUPPLEMENTARY FIGURE S4
The proportion of samples with copy number variation in primary, recurrent
and metastatic patients at stage II, III, IV+V. The ordinate was the copy

number variation rate, and different chromosomes were separated by
dotted lines. The upper part of 0 indicated the copy number amplification
rate, which was the sum of the low-level copy number amplification rate in
light yellow and the high-level copy number amplification rate in dark
yellow. The lower part of 0 indicated the copy number deletion rate, which
was zero minus its true. The mutation rate is the sum of the single-copy
deletion rate in light green and the homozygous deletion rate in dark green.

SUPPLEMENTARY FIGURE S5
(A): Comparing the recurrent tumor with the primary tumor, the heatmap of
log2FC values of genes related to four cell state. (B): Comparing the
metastatic tumor with the primary tumor, the heatmap of log2FC values of
genes related to six cell state.
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