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Background: Lung squamous cell carcinoma (LUSC) shares less typical onco-
drivers and target resistance, but a high overall mutation rate andmarked genomic
complexity. Mismatch repair (MMR) deficiency leads to microsatellite instability
(MSI) and genomic instability. MSI is not an ideal option for prognosis of LUSC,
whereas its function deserves exploration.

Method: MSI status was classified by MMR proteins using unsupervised clustering
in the TCGA–LUSC dataset. The MSI score of each sample was determined by
gene set variation analysis. Intersections of the differential expression genes and
differential methylation probes were classified into functional modules by
weighted gene co-expression network analysis. Least absolute shrinkage and
selection operator regression and stepwise gene selection were performed for
model downscaling.

Results: Compared with the MSI-low (MSI-L) phenotype, MSI-high (MSI-H)
displayed higher genomic instability. The MSI score was decreased from MSI-H
to normal samples (MSI-H > MSI-L > normal). A total of 843 genes activated by
hypomethylation and 430 genes silenced by hypermethylation in MSI-H tumors
were classified into six functional modules. CCDC68, LYSMD1, RPS7, and
CDK20 were used to construct MSI-related prognostic risk score (MSI-pRS).
Low MSI-pRS was a protective prognostic factor in all cohorts (HR = 0.46,
0.47, 0.37; p-value = 7.57e-06, 0.009, 0.021). The model contains tumor
stage, age, and MSI-pRS that showed good discrimination and calibration.
Decision curve analyses indicated that microsatellite instability-related
prognostic risk score added extra value to the prognosis. A low MSI-pRS was
negatively correlated with genomic instability. LUSC with low MSI-pRS was
associated with increased genomic instability and cold immunophenotype.

Conclusion: MSI-pRS is a promising prognostic biomarker in LUSC as the
substitute of MSI. Moreover, we first declared that LYSMD1 contributed to
genomic instability of LUSC. Our findings provided new insights in the
biomarker finder of LUSC.

OPEN ACCESS

EDITED BY

Rajiv Kumar,
German Cancer Research Center (DKFZ),
Germany

REVIEWED BY

Hanchu Xiong,
Zhejiang Provincial People’s Hospital,
China
Bing Song,
University of Texas Southwestern Medical
Center, United States

*CORRESPONDENCE

Huijuan Cui,
cuihj1963@sina.com

SPECIALTY SECTION

This article was submitted to Cancer
Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 04 October 2022
ACCEPTED 30 January 2023
PUBLISHED 17 February 2023

CITATION

Hu Z, Liu Z, Zheng J, Peng Y, Lu X, Li J,
Tan K and Cui H (2023), Microsatellite
instability-related prognostic risk score
(MSI-pRS) defines a subset of lung
squamous cell carcinoma (LUSC) patients
with genomic instability and poor
clinical outcome.
Front. Genet. 14:1061002.
doi: 10.3389/fgene.2023.1061002

COPYRIGHT

© 2023 Hu, Liu, Zheng, Peng, Lu, Li, Tan
and Cui. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 17 February 2023
DOI 10.3389/fgene.2023.1061002

https://www.frontiersin.org/articles/10.3389/fgene.2023.1061002/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1061002/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1061002/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1061002/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1061002/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1061002/full
http://orcid.org/0000-0002-2013-9451
http://orcid.org/0000-0003-2900-0461
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1061002&domain=pdf&date_stamp=2023-02-17
mailto:cuihj1963@sina.com
mailto:cuihj1963@sina.com
https://doi.org/10.3389/fgene.2023.1061002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1061002


KEYWORDS

lung squamous cell carcinoma, genomic instability, mismatch repair system,microsatellite
instability, TP53, prognostic biomarkers

1 Introduction

Lung squamous cell carcinoma (LUSC) comprises 20% of non-
small cell lung cancer (NSCLC) cases (Santos and Rodriguez, 2022).
Compared with lung adenocarcinoma (LUAD), targetable genetic
aberrations are not typical and target therapy is not ideal in LUSC.
Immune checkpoint inhibitor (ICI)-based combination regimens
have been moved into the first-line option, which led to a landmark
change in the treatment of LUSC (Santos and Rodriguez, 2022). In
contrast to LUAD, for smoking or other chemical exposures, the
molecular profile of all LUSC stages is characterized by highly
heterogeneous malignancy, with high genomic instability
contributing to the high tumor mutational burden (Heist et al.,
2012; Chen et al., 2022).

Genomic instability is an enabling hallmark of tumorigenesis
and is the consequence of the DNA damage repair (DDR) system
deficiency. DDR deficiency results from mutations of large-scale
upstream cancer suppressor genes, such as TP53, which is
commonly mutated across pan-cancer and in at least 80% of
LUSC cases, and is enhanced by the following clonal evolution of
cells (Mandal et al., 2019). DDR defects conventionally lead to either
chromosomal instability (CIN) or microsatellite instability (MSI).
CIN describes a wide variety of chromosomal abnormalities,
including chromosomal rearrangements, deletions, insertions, and
amplifications. MSI deriving from deficiency of DNA mismatch
repair (MMR) manifests as the insertion of a few base pairs or
deletion mutations, specifically at a repetitive sequence during DNA
replication and genetic recombination (Zhao et al., 2019).

MMR involves a series of proteins which act in the manner of
homodimers. MutS homologs (MSH2, MSH3, and MSH6) are
responsible for detecting, recognizing, and binding mismatch
errors. MutL homologs (MLH1 and PMS2) participate in the
excision and synthesis of corrected DNA bases. Repression of
transcription or functional defects in one or more MMR enzymes
results in a systemic MMR deficiency (MMR-d). Hypermethylation
and deletion mutations of MMR genes, especially those of
MLH1 and MSH2, lead to transcriptional silence accounting for
the majority of MMR-d. Alternations of MSH6 and
PMS2 contribute a part of the remainder (Xiao et al., 2014;
Yanagawa et al., 2021).

In the absence of an efficient correction system, tumors with
MMR-d backgrounds are particularly sensitive to DNA mismatch
errors and manifest as the accumulation of mutations in brief
repetitive DNA sequences (microsatellite sites), which is
acknowledged as microsatellite instability-high (MSI-H). MSI-H
occurs in about 10%–25% of colorectal cancers, in about 5%–
20% gastric cancers, and in about 13%–30% of endometrial
cancers. MSI-H is associated with TP53 mutations and high
tumor mutation burden (TMB), which leads to tumor
immunogenicity and stimulates the host anti-tumor immune
response, thereby being sensitive to immune checkpoint
inhibitors (ICIs).

The prevalence of MSI-H in NSCLC is not as prevalent as in the
previously described cancers with frequencies of 0.17%–0.8%

(Warth et al., 2016; De Marchi et al., 2022). MSI-H NSCLC
samples were frequently associated with heavy smoking history
and tended to be LUSC or sharing squamous components
(Woenckhaus et al., 2003). MSI may not act as the driver factor
as that in the inherited cancer and tend to represent a type of
genomic instability in lung cancer (Pastuszak-Lewandoska et al.,
2016). The correlation of genome instability and the response to ICIs
has been attached with great importance in NSCLC. A past pan-
cancer study declared a positive association between the DDR-
associated gene defect and the prevalence of programmed cell
death-ligand 1 (PD-L1) in NSCLC. In addition, patients with a
DDR defect acquired clinical benefit from ICIs with improved
median progression-free survival (mPFS) and median overall
survival (mOS) (Chae et al., 2019). Compared with LUAD, LUSC
shares more complex genomic instability. It was reported that a
direct relationship between DDR gene variants and T cell activation
was observed in LUSC rather than in LUAD (Kim et al., 2020).
Therefore, the MSI-H phenotype is presumably meaningful in
LUSC. Distribution of MMR expression potentially reflects the de
novomechanism of genome instability formation; thus, it remains to
be a potential indicator in NSCLC.

So far, the clinical implication of MSI in LUSC remains unclear.
In this study, MSI-related prognostic risk score (MSI-pRS) was
established by machine learning and bioinformatics methods. The
MSI status of LUSC samples was distinguished based on the
expression of MMR systems. According to the MSI status,
differentially expressed genes (DEGs) were identified and then
classified into the functional gene modules by weighted
correlation network analysis (WGCNA). Ultimately, four key
MSI-related prognostic genes, CCDC68, LYSMD1, RPS7, and
CDK20, were screened and used to construct a new risk score
model named MSI-pRS to predict LUSC. We further analyzed
the genomic features, immune infiltration, and the association
with driver genes. Internal and external dataset validations were
used to further verify the MSI-pRS model.

2 Methods

2.1 Data collection and processing

TCGA–LUSC level 3 RNA-seq data (HTSeq-Counts) were
directly downloaded using the GDC data transfer tool (https://
portal.gdc.cancer.gov/). The TCGA cohort was randomly assigned
into a training cohort and a validation cohort at a ratio of 3:2 using
the caTools package. GSE73403 (Agilent-014850, whole human
genome microarray 4x44K G4112F) was downloaded from Gene
Expression Omnibus (GEO) datasets (https://www.ncbi.nlm.nih.
gov/). GSE135222 was used for exploring the association between
ICI response and gene expression (Ritchie et al., 2015). HTSeq-
counts were transformed into log-2-transformed transcripts per
kilo-base per million mapped reads (TPM). Gene length was
calculated as the sum of lengths of the non-redundant exon.
Agilent one-color microarray intensity data were read by the
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“read.maimages” function, background-correlated by
“backgroundCorrect” function, and normalized by the
“normalizeBetweenArrays” function. The processes described
previously were all implemented in the limma package (Aryee
et al., 2014).

TCGA–LUSC DNA methylation data (IDATs) were also
downloaded and read by the “read.metharray.exp” function
applied in minfi and filtered by the “champ.filter” function in
the ChAMP R package (Wilkerson and Hayes, 2010; Tian et al.,
2017). Particularly, poor performing probes with p-value above
0.05, belonging to a sex chromosome, known to have common
SNPs at the CpG sites, or having been demonstrated to be
mapped to multiple places in the genome were removed
before differential methylation analysis. Normalization was
performed by the BMIQ method with the “champ.norm”

function (Chae et al., 2019). TCGA–LUSC minus germline
somatic copy number alternations (CNAs) and merged
somatic simple-nucleotide variation (sSNV) segmented data of
the cohort were downloaded from GDAC Firehose (Broad
Institute TCGA Genome Data Analysis Center, https://gdac.
broadinstitute.org/) for analysis of mutation status.

2.2 Unsupervised classification of
TCGA–LUSC samples for MSI status

An unsupervised clustering algorithm was applied to classify
the MSI status of TCGA–LUSC samples based on the expression
of seven genes encoding MMR proteins (MSH2, MSH3, MSH6,
MLH1, MLH3, PMS2, and PMS1). The median absolute
deviation (MAD) of the data matrix was used for further
cluster analysis. 1,000 time repetitions were applied for
guaranteeing the stability of classification. The agglomerative
hierarchical clustering algorithm was based upon Pearson’s
correlation distance. The highest cluster group was set as 6
(k = 6). The heatmap of consensus matrices, cluster-consensus
plot, and item-consensus plot were used for defining the
ultimate MSI clusters by taking the stability and purity of
clusters into consideration (Hänzelmann et al., 2013). The
aforementioned steps were carried out using the
ConsensusClusterPlus package.

Gene set variation analysis (GSVA) was performed to derive
the MSI score based on the MMR system gene set that contained
the seven genes to identify the MSI status of each sample
(Chalmers et al., 2017). Genomic instability of different
groups based on MSI status was characterized and compared
by measuring TMB, mutant-allele tumor heterogeneity
(MATH), DNA ploidy status, and aneuploidy score. TMB was
calculated as the rate of somatic non-synonymous mutations per
megabase of sequenced DNA. The exome size was estimated as
38 Mb (Mayakonda et al., 2018). To evaluate tumor genomic
heterogeneity, MATH was calculated as the MAD and the
median of variant allele frequencies of non-synonymous
variants using the “inferHeterogeneity” implemented in
maftools (Carter et al., 2012). DNA content is the
main biologic index of tumor multiplication potentiality.
Ploidy reflects the actual DNA content of cancer cells (Taylor
et al., 2018). Aneuploidy reflects the imbalance and

complication of DNA replication. DNA ploidy calculated
using the Absolute algorithm and the aneuploidy score of
TCGA–LUSC samples was directly downloaded from https://
gdc.cancer.gov/about-data/publications/panimmune
(Langfelder and Horvath, 2008).

2.3 Identification of MSI-related genes
regulated by DNA methylation

DNA methylation is the critical epigenetical mechanism of
regulating MSI through transcriptionally silenced or activated
hub gene expression in the MSI-related signaling by hyper- or
hypo-DNA methylation of gene promoters, including TSS200,
TSS1500, 1stexon, and 5′UTR. We further obtained the MSI-
related genes regulated by DNA methylation in the following
three steps. First, differentially expressed genes (DEGs) were
identified from the intersection of results calculated by two
methods based on limma and DESeq2. Second, similar ways were
used to obtain different methylation probes (DMPs) using ChAMP
and minfi packages (Pastuszak-Lewandoska et al., 2016; Chae et al.,
2019). Third, the overlapping of genes targeted by DMPs in
promoters and DEGs was obtained. Genes with the reverse
methylation and expression status were identified as MSI-related,
which were regulated by DNA methylation and used for further
prognostic analysis.

Gene annotation was based on Homo. sapiens
GRCh38.p13 GFF3 (v35) file (GENCODE website, https://www.
gencodegenes.org/). The ensemble ID was converted into a gene
symbol. Genes with duplicate annotation were represented by genes
on the minor chromosomes. The threshold of DEGs and DMPs was
defined as |logFC| > 0 and p-value <0.05.

2.4 Functional classification of
epigenetically regulated MSI-related genes

MSI-related genes regulated by DNAmethylation were classified
into functional modules by gene co-expression networks using the
WGCNA R package (Kuleshov et al., 2016). In this way, genes with
similar patterns were grouped into the same module to realize
feature dimension reduction. The soft thresholding power was set
to 5 on the criterion of approximate scale-free topology by the
“pickSoftThreshold” function. The weighted adjacency matrix was
transformed into a topological overlap degree matrix (TOM).
Hierarchical clustering was used to produce a hierarchical
clustering tree of genes whose densely interconnected branches
were highly co-expressed genes. Modules having shared similar
expression profiles were simplified by a dynamic tree cut.
Different colors represent different modules. We then quantified
the associations of modules with an MSI phenotype to identify
the MSI-related gene modules. Gene significance (GS) was defined
as the absolute value of the correlation between the gene and the
clinical phenotype. Module membership (MM) was defined as
the correlation between the summary profile of the module
and gene expression. The biological functions of gene modules
were characterized by gene ontology (GO) using EnrichR (Gu
et al., 2022).
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2.5 Development of the MSI-related
prognostic risk score (MSI-pRS)

The least absolute shrinkage and selection operator (LASSO)
regression was performed using the glmnet R package for
downscaling prognostic genes (Chen et al., 2021). Particularly,
LASSO regression analyses were applied to the genes included in
the functional modules classified in the 2.4 of the training cohort.
The fitted lambda value for the model was screened by cross-
validation. Prognostic genes derived from the modules were
integrated for further stepwise variable selection procedure based
on the multivariate Cox model to construct the ultimate MSI-pRS
using the My.stepwise R package.

The expression matrix of the selected genes for the model was
extracted, and the MSI-PRS of each sample was calculated using the
following formula:

MSI − pRS � ∑
n

i�0
exp ji *coefj.

The MSI-pRS of sample i was calculated as the expression of
candidate gene j in sample i, weighted by the coefficient in the
multivariate Cox regression model. All the samples were stratified
into high- and low- MSI-pRS groups. The cutting points were
selected by the “surv-cutpoint” function implemented in the
survminer R package, according to Chen et al. (Blanche et al.,
2013). All potential cutting points were repeatedly tested to find
the maximum rank statistic to reduce the calculated batch effect. We
divided the whole cohorts based on the MSI-pRS to further explore
the prognostic value of the MSI-pRS for convenient routine use. The
“surv-cutpoint” function was used to dichotomize the MSI-pRS, and
the Kaplan–Meier method was used and log-rank tests between
groups were performed. Hazard ratios (HRs) of the MSI-pRS were
derived from univariate Cox regression. Subgroup analysis of MSI-
pRS groups was performed to eliminate the interference of
interactive variables. The multivariate Cox model fitting into age,
stage, and MSI-pRS was applied in training, internal validation, and
external validation cohorts. Receiver operating characteristic (ROC)
curves at years 1, 3, and 5 of the model were drawn to evaluate the
discriminative ability of the MSI-pRS using the timeROC R package
(Vickers and Elkin, 2006). The efficiency of the MSI-pRS was
assessed by comparing the decision curve analyses (DCA) and
curves of models with or without the MSI-pRS group
(Charoentong et al., 2017). Statistical analysis was conducted
using R software (version 4, 4.1.2). Survival analyses were carried
out using the survival R package, and the forest plots were pictured
using the forestplot R package.

2.6 Functional enrichment analysis

Tumor-infiltrated cells were estimated by single-sample gene set
enrichment analysis (ssGSEA) using the GSVA package
(Hänzelmann et al., 2013). Transcriptional data of tumor-
infiltrating cells used for functional analysis were derived from
Charoentong et al. (Rooney et al., 2015). The positive immune
regulators were defined as the collection of “effector” cells, active
dendritic cells (aDCs), natural killer cells (NKs), and natural killer
T cells (NKTs). Negative immune regulators were defined as the

collection of regulatory T cells (Tregs) and myeloid-derived
suppressor cells (MDSCs). The “effector” cells were defined as
active T cells (aCD4+T and aCD8+T) and effector memory
T cells (CD4+Tem and CD8+Tem). Cytolytic activity (CYT) was
used for evaluating immune activity and calculated as the geometric
mean of granzyme A (GZMA) and perforin (PRF1) expression levels
as previously defined (Cancer Genome Atlas Research Network,
2012). Functional enrichment analysis between groups was realized
by GSVA based on gene expression data matrices.

3 Results

3.1 MSI status and the genomic instability
features of LUSC

The construction process of theMSI-pRS is shown in Figure 1. A
total of 551 samples consisting of 502 tumor samples and 49 normal
samples were contained in the TCGA–LUSC RNA-seq dataset. A
total of 472 LUSC patients with clinical outcomes, transcriptomics,
and mutation data were included for the analysis. The expression
data of 49 normal samples were used for the control.

The MSI status was determined by the expression data of the
MMR proteins in the following process: (Santos and Rodriguez,
2022) the relative MSI status in the TCGA–LUSC cohort was
identified by consensus clustering using k-means as the base
method (Chen et al., 2022). The MSI score of each sample was
calculated by GSVA, according to MMR proteins. We tested
clustering for K = 2–6 and chose the optimal number of
subgroups using consensus matrices. According to the item-
consensus plot and cluster-consensus plot, K = 2 showed crisp
clusters with acceptable stability and purity in both groups (Figures
2A–C). The patients were divided into two robust groups with low
MSI (MSI-L) containing 196 samples and high MSI (MSI-H)
containing 276 samples.

The principal component analysis (PCA) plot preliminarily
showed that the two groups had some difference in the
expression of MMR proteins that somehow overlapped
(Figure 2D). Particularly, the expression of MMR proteins and
MSI scores were compared among normal samples, MSI-H, and
MSI-L LUSC samples. Among the seven MMR proteins, PMS2,
PMS1, MSH6, and MSH2 were significantly highest in the MSI-H
group, while the expression level of the normal group was lowest
(MSI-H >MSI-L > normal, Figures 2E–I). Expression of MLH3 was
highest in MSI-L samples (Figures 2E, J), and that of MLH1 was
highest in the normal samples and lowest in the MSI-H samples
(Figures 2E, K). MSH3 was not significantly different among the
groups. TheMSI score was highest in theMSI-H group and lowest in
the normal samples (MSI-H >MSI-L > normal, Figures 2E, L). The
difference in the promoter methylation level of MMR genes was
observed in MLH3, and MSH6 was consistent with the expression of
the two proteins (Figures 2M, N). No significant difference in
clinical characteristics was discovered between these two clusters
of patients (Supplementary Table S1).

Genomic features between the two clusters were evaluated by
TMB, tumor heterogeneity, DNA content, and aneuploidy status.
TheMSI-H group tended to obtain a subpopulation of heterogenous
tumors with higher median MATH (Mann–Whitney U-test,
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34.89 vs. 38.38, p-value = 0.002, Figure 3A). Higher TMB, DNA
content (ploidy), and aneuploidy score were observed in the MSI-H
group (Mann–Whitney U-test, 7.63/mb vs. 6.09/mb, p-value =
1.745e-05, Figure 3B; 2.88 vs. 2.05, p-value = 0.013; Figure 3C;
17 vs. 14, p-value = 0.001; Figure 3D). TP53, the alternation of which
was the most universal mutation in LUSC patients, was more
frequently mutated in the MSI-H group (chi-square test,
p-value = 0.0009 Figure 3E). Moreover, the MSI score was higher
in the patients of the TP53 mut group (Student’s t-test, p-value =
4.4e-07, Figure 3F). To sum up, MSI-H in LUSC indicated a
subgroup with higher genetic instability.

3.2 Identification of epigenetically regulated
functional MSI-related genes

There were 7,299 and 4,013 upregulated genes recognized by
limma and DESeq2 methods, respectively. The number of
downregulated genes was 6,663 and 5,607. Ultimately,
3,811 DEGs were upregulated and 4,446 DEGs were
downregulated in MSI-H samples. A total of 63,531 and
16,197 hypermethylated probes were calculated using minfi and
ChAMP, while 63,547 and 45,387 probes were hypomethylated. The
final DMPs were 14,090 hypermethylated probes and
33,501 hypomethylated probes in MSI-H samples. We eventually
identified 843 genes activated by hypomethylation and 430 genes
silenced by hypermethylation in MSI-H tumors (Supplemenatry
Tables S2, S3; Figures 4A–C).

We focused on the MSI-related genes which are epigenomically
regulated by DNA methylation in the gene promoters and classified
them into functional modules by gene co-expression networks. Six
functional gene modules correlated with the MSI phenotype were
identified. The gray module was the cluster of genes not related to
any of the modules. Genes in the brown, turquoise, and yellow

modules were more likely to be upregulated through DNA
hypomethylation in the MSI-H group, whereas genes in blue and
green modules tended to be downregulated by DNA
hypermethylation in the MSI-H group (Figures 5A, B;
Supplementary Figures S1A–D).

The correlation between modules and MSI was measured by
MM and GS. MM indicated the correlation between the defined
module and gene expression (Supplementary Table S4). GS
represented the correlation between the gene and the clinical
phenotype (Supplementary Table S4). The mean GS of each
module was determined by the GS of each gene in the module
(Figure 5C). The functional modules correlated with MSI were
characterized by the high correlation of GS and MM of the genes
in the module. Scatterplots of modules depicted the correlation
between GS and MM (Figures 5D, E; Supplementary Figures
S1E–H). GS and MM of genes in the yellow and turquoise
modules are highly correlated with each other, illustrating that
the genes in the modules are the central elements associated with
the MSI. The association of the module and MSI is shown in the
heatmap. The blue and green modules are negatively correlated
with the MSI-H phenotype, while the brown, turquoise, and
yellow modules were positively correlated with the MSI-H
phenotype. A total of 179 genes were classified into the gray
module and were thereby removed. Since there was no apparent
correlation between the red module and MSI status, genes in the
red module were waived for further prognostic analysis
(Figure 5F). Functional enrichment was performed to illustrate
the biological function of each module (Supplementary Table S5).
The turquoise module represented a combination of genes that
participated in cell cycle and DNA replication. The yellow
module was crucially related to mitochondrion metabolism to
provide energy for the biological process. The blue module
gathered genes participating in the immune processes
(Figures 4G, H).

FIGURE 1
Process of MSI-related prognostic risk score (MSI-pRS) development.
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3.3 Stepwise prognostic analysis of MSI-
related genes and the MSI-pRS construction

The TCGA–LUSC cohort was randomly divided into training
(n = 314) and validation (n = 158) cohorts for survival analysis.
GSE73403 was used as the external validation cohort. The baseline
clinicopathological features of the training cohort and validation
cohorts are shown in Supplementary Table S6. MSI-related genes in

the functional modules were selected to construct the MSI-pRS
under the following two steps.

First, LASSO analyses based on the multivariate Cox model were
carried out in the functional modules, except for the red module
which is defined in the previously described process in the TCGA
training cohort (Supplementary Figure S2). As a result, three
genes,namely, ribosomal protein S7 (RPS7), cyclin-dependent
kinase 20 (CDK20), and LysM domain containing 1 (LYSMD1)

FIGURE 2
Two-group pattern of microsatellite instability (MSI) status by unsupervised classification in TCGA LUSC cohort. (A) Heatmap of consensus matrix
when the classification pattern was two-group (k = 2). (B) Item consensus plot when k = 2 showed that the cluster pattern shared the acceptable purity in
both groups. (C) Cluster consensus plot when k = 2 indicated the stability of the cluster patterns. (D) Principal component analysis (PCA) plot when k = 2
with 196 samples inMSI-L groups and 276 samples in theMSI-H group. (E)Comparation of the MMR proteins expression and theMSI score between
MSI-H and MSI-L groups. MSI-H tended to had higher expression of MMR proteins and MSI score. (F–K) Comparation of MMR proteins among MSI-H,
MSI-L and normal samples. (L) Boxplot of MMR score. MSI score was decreased fromMSI-H samples to normal samples (MSI-H >MSI-L > normal). (M–N)
Beanplot of methylation level of MLH3 and MSH6.
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FIGURE 3
Exploration of the genomic features of MSI-H and MSI-L groups. (A) Boxplot of mutant–allele heterogeneity (MATH) (indicating intratumor
heterogeneity). (B) Boxplot of tumor mutation burden (TMB). (C) Boxplot of ploidy (DNA content). (D) Boxplot of the aneuploidy score. (E)Comparison of
the MSI scores between TP53 mut and TP53 wt groups. (F) Top 10 mutated genes in the MSI-L group. (G) Top ten mutated genes in the MSI-H group.

FIGURE 4
Intersection of the differentially expressed genes (DEGs) and different methylation probes (DMPs) to identify the DNA methylation regulated MSI-
related genes. (A) Process of recognizing DEGs and DMPs. (B) Distribution of DNA methylation on chromosomes. MSI-related genes which were
regulated by DNAmethylation were highlighted. Red points represented probes that were hypermethylated inMSI-H, whereas green points indicated the
probes were hypomethylated in MSI-H. (C) Volcano plot of DEGs between MSI-H and MSI-L groups. MSI-related genes which were regulated by
DNA methylation were highlighted. Red points represented the upregulated MSI genes, and the green points represented the downregulated genes.
Threshold of DEGs and DMPs was defined as: |logFC| > 0 and p-value <0.05.
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in the yellow module and three genes, namely, coiled-coil domain
containing 68 (CCDC68), aldehyde dehydrogenase three family
member B1 (ALDH3B1), and phosphodiesterase 1B (PDE1B) in
the blue module were identified using a LASSO filtering
(Supplementary Figures S2A–D). Genes in the turquoise, brown,
and green modules failed to construct the model (Supplementary
Figures S2E–J).

Second, genes selected in the previous step were brought into
two-way stepwise regression to further simplify the model.

Ultimately, four MSI-related genes, namely, CCDC68,
LYSMD1, RPS7, and CDK20, were used to develop the MSI-
pRS model (p-value = 1e-04, Table 1). Univariate Cox analysis
indicated that the four genes were prognostic elements.
LYSMD1 and RPS7 were protective factors, while
CCDC68 and CDK20 were risk factors (Figure 6A). The
coefficients obtained from the multivariate Cox regression
were utilized as multiplicators, and the MSI-pRS was
calculated as follows: MSI-PRS = CCDC68 expression level *

FIGURE 5
Identification of MSI-related functional gene modules by weighted correlation network analysis (WGCNA). (A) Scatterplots of the log2FC of DMPs
and DEGs in the turquoise module. (B) Scatterplots of the log2FC of DMPs and DEGs in the yellow module. (C) Barplot of mean gene significance (GS) of
each module. GS was defined as the absolute value of the correlation between the gene and the clinical phenotype. Since modules were clusters of
functional genes, themeanGS of eachmodule was correlated with GS of each gene in themodule. (D) Scatterplots showed the correlation between
GS andmodule membership (MM) in the turquoise module. MMwas defined as the correlation between the summary profile of themodule and the gene
expression. (E) Scatterplots showed the correlation between GS and MM in the yellow module. (F) Relationship between functional modules and MSI
phenotypes. Each row corresponded to a module containing functional genes, column to the MSI status. Each cell contains the corresponding
correlation and p-value. The table is color-coded by correlation, according to the color legend. (G) Top three enriched biological processes of every
module by functional enrichment of genes in eachmodule. (H)Correlation among the functional modules. The top enriched biological process was used
to represent the module in the y-axis.
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0.29 + LYSMD1 expression level * (−0.57) + RPS7 expression
level * (−0.24) + CDK20 expression level * (0.43).

The MSI-pRS was a negative prognostic indicator according to
univariate Cox regression in TCGA training, internal validation, and

external validation cohorts (HR = 2.72, 95% CI 1.82–4.07, p-value =
1.22e-06; HR = 1.86 95% CI 1.01–3.43, p-value = 0.046; HR = 2.60, 95%
CI 1.06–6.40, p-value = 0.037). The exploratory subgroup analyses in
the three cohorts were performed (Supplementary Table S7). The low

TABLE 1 Details of genes used for the construction of the MSI-related prognostic risk score (MSI-PRS).

Symbol Protein Location MSI-H Module Genomic instability

CCDC68 Coiled-coil domain containing 68 18q21.2 Down Blue Suppressor

LYSMD1 LysM domain containing 1 1q21.3 Up Yellow Promoter

CDK20 Cyclin-dependent kinase 20 9q22.1 Up Yellow Promoter

RPS7 Ribosomal protein S7 2p25.3 Up Yellow Promoter

FIGURE 6
Construction of MSI-related prognostic risk score (MSI-pRS) in the TCGA training cohort. (A) Forest plot of prognostic genes used to construct MSI-
PRS. Hazard ratio (HR) of each genewas derived from the univariate Cox regression of the four genes. (B) TCGA LUSC training cohort was divided into two
groups according to the MSI-pRS. (C) Kaplan-Meier curves of the high MSI-pRS and low MSI-pRS groups in TCGA LUSC training cohort. The overall
survival (OS) was used as the primary point. (D) Decision curves of the multivariate Cox model with or without MSI-pRS. The model with MSI-pRS
declared a better performance than the model without the MSI-pRS group. (E) Receiver operating characteristic (ROC) curves at years 1, 3, and 5 of the
model including age, tumor stage, and MSI-pRS group. (F and G) Calibration curves of the model, including age, tumor stage, and MSI-pRS group.
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MSI-pRS was a protective factor in the male subgroup and the early
stage (Stages I–II), which was consistent in all cohorts (Table 2).

Patients were assigned into two groups according to the MSI-
pRS (Figures 6B, 7A, 8A). Low MSI-pRS was a protective prognostic
factor in all cohorts (HR = 0.46, p-value = 7.57e-06, Figure 6C; HR =
0.47, p-value = 0.009; Figure 7B; HR = 0.37, p-value = 0.021;
Figure 8B). The C-index of the univariate model of the MSI-pRS
group was 0.72 (95% CI 0.64–0.80), 0.65 (95% CI 0.51–0.78), and
0.70 (95% CI 0.50–0.90) in the three cohorts. We then brought age,
tumor stage, and MSI-pRS group into the multivariate Cox model to
explore whether MSI-pRS added an incremental discriminative
value to the clinical use. The model with the MSI-pRS was
superior to the one without the MSI-pRS in all cohorts
(p-value = 4.64−06, 0.008, 0.040). DCA curves of the two models
demonstrated that the model with the MSI-pRS achieved better
performance in all cohorts (Figures 6D, 7C, 8C).

The predictive accuracy of the MSI-pRS in the multivariate Cox
model was evaluated by the time-dependent ROC and C-index. The

C-index of the multivariate model was 0.64 (95% CI 0.59–0.69), 0.62
(95% CI 0.54–0.69), and 0.65 (95% CI 0.55–0.75) in the three cohorts.
The area under the ROC curve (AUC) at 1 year, 3 year, and 5 year of the
models with the MSI-pRS was 0.65, 0.72, and 0.64, respectively, in the
TCGA training cohort; 0.65, 0.66, and 0.71 in TCGA validation cohort;
0.63, 0.65, and 0.88 in the external validation cohort (Figures 6E, 7D, 8D).
The calibration curves showed that themodel presents satisfied coherence
between the actual survival and predicted survival rates (Figures 6F,G, 7E,
F, 8E, F).

3.4 Correlation between the MSI-PRS and
MSI status in LUSC

Patients with MSI-H tended to have lower MSI-pRS (Student’s
t-test, mean MSI-PRS: −2.18 vs. −2.019, p-value = 2.99e-05,
Figure 9A; Supplementary Figure S3A). The MSI-pRS of normal
samples was calculated for control. Compared with normal patients,

TABLE 2 Subgroup analysis of the MSI-PRS in all LUSC cohorts.

TCGA training cohort TCGA validation cohort GSE73403

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

Male 2.79 (1.77–4.42) 1.15e-05 2.19 (1.13–4.24) 0.020 2.51 (1.02–6.15) 0.044

Early stage (stage I–II) 2.78 (1.73–4.47) 2.41e-05 2.75 (1.38–5.48) 0.004 7.41 (1.37–40.04) 0.020

FIGURE 7
Validation of MSI-related prognostic risk score (MSI-pRS) in the internal test cohort (TCGA test cohort). (A) TCGA LUSC test cohort was divided into
two groups according to MSI-pRS. (B) Kaplan-Meier curves of the high MSI-pRS and low MSI-pRS groups in TCGA LUSC test cohort. (C) Decision curves
of the multivariate Cox model with or without MSI-PRS. The model with MSI-pRS declared a better performance than the model without the MSI-pRS
group. (D) Receiver operating characteristic (ROC) curves at years 1, 3, and 5 of the model including age, tumor stage, and MSI-pRS group. (E and F)
Calibration curves of the model, including age, tumor stage, and MSI-pRS group.
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LUSC samples had lower MSI-pRS (ANOVA test, p-value <2.2e-06,
Figure 9B). The MSI-pRS was negatively correlated with MSI score.
The correlation of the MSI-pRS and MSI score in the MSI-L group
was higher than that of the MSI-H group (MSI-L: r = −0.60, 95%
CI −0.68~−0.50, p-value <2.2e-16; MSI-H: r = −0.38, 95%
CI −0.48~−0.27, p-value = 7.266e-11; Figure 9C).

The expression of the four genes used for constructing the MSI-
PRS model was compared between the MSI-H and MSI-L
group. Except for CCDC68, the other three genes were
upregulated in the MSI-H group (Figure 9D). The correlation
between MMR proteins and four genes used to construct the
MSI-pRS was analyzed (Figure 9E; Supplementary Figure S3C,
D). LYSMD1 was significantly positively related with MMR
proteins, especially in the TP53 wt cohort (Supplementary Figure
S3C, D). The same trend was also observed in CDK20. Despite the
positive correlation between CDK20 and MMR proteins, the
correlation between CDK20 and MSI score was weak.
LYSMD1 and RPS7 were positively correlated with MSI score,
whereas CCDC68 was negatively correlated with MSI score
(Figures 9F–H).

3.5 Low MSI-pRS related to TP53 mutation
and DNA hypomethylation of TP53

TP53 mut tended to have lower MSI-pRS (Student’s t-test,
p-value = 4.4e-07, Figure 10A). TP53 had a higher mutation rate

in the MSI-pRS low group in the training and internal validation
cohorts (chi-square test; p-value = 0.0004, 0.008; Figure 10B;
Supplementary Figure S4A). The comparison of four genes
between the TP53 mut and TP53 wt groups was performed. The
expression of LYSMD1 was significantly higher in the TP53 mut
group, whereas those of the other three genes showed no difference
(Mann–Whitney’s U-test, p-value = 3.313e-06; Figure 10C).

Transactivation domains (TADs) mediate the transcriptional
activity. A total of three and nine mutations on TADs were,
respectively, observed in the MSI-pRS high and MSI-pRS low
groups. There was no difference in the mutations of TADs in the
two groups. The DNA-binding domain (DBD) enables p53 protein
sequence-specific binding to DNA with a highly conserved
structure. Mutations of TP53 concentrated on the DBD. Missense
mutation was the most common mutation type in both groups (chi-
square test; MSI-pRS high: 54.1%, MSI-pRS low: 64.5%; p-value =
0.083; Figures 10D, E). The frequent mutations at six hotspots,
i.e., codons R175, G245, R248, R249, R273, and R282, were 9.1% in
the MSI-pRS high group while 16.4% in MSI-pRS low group (Chi-
square test; p-value = 0.064; Figures 10D, E).

DNA hypomethylation commonly removes suppression of
genes. The average beta value of DNA methylation on TP53
genes was lower in the MSI-pRS low group (Mann–Whitney’s
U-test, p-value = 2.4e-05), especially that on the promoters of
TP53 (cg12041429, cg07760161, cg08691422, and cg10792831,
Mann–Whitney’s U-test, p-value = 2.0e-04, Figures 10F, G). The
expression of TP53 was not significantly different in the MSI-pRS

FIGURE 8
Validation of the MSI-related prognostic risk score (MSI-pRS) in the external test cohort (GSE73403 cohort). (A) All patients were divided into MSI-
pRS high and MSI-pRS low groups. (B) Kaplan-Meier curves of the MSI-pRS high and MSI-pRS low groups in the external test cohort. (C) Decision curves
of themultivariate Coxmodel with or without MSI-pRS. Themodel with the MSI-pRS declared a better performance than themodel without the MSI-pRS
group. (D) Receiver operating characteristic (ROC) curves at years 1, 3, and 5 of the model including age, tumor stage, and MSI-pRS group. (E and F)
Calibration curves of the model including age, tumor stage, and MSI-pRS group.
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high and -low groups (Mann–Whitney’s U-test; p-value = 0.151).
MSI-PRS and CCDC68 were positively correlated with DNA
methylation of TP53, while LYSMD1, CDK20, and RPS7 were
negatively correlated with DNA methylation of TP53.

3.6 Low MSI-PRS associated with genomic
instability

Chromosome 3p alternations are an acknowledged feature of
LUSC, with chromosome 3p loss and 3q amplification involved in
the tumorigenesis of LUSC. The MSI-pRS was lower in the 3p
deletion and 3q amplification group (Student’s t-test; 3p loss vs. 3p
normal: −2.15 vs. −1.85, p-value = 0.0003; 3q amp vs. 3q normal:
−2.11 vs. −1.89, p-value = 0.002; Figure 11A, B). The MSI-pRS low
group had higher TMB, MATH, and aneuploidy scores

(Mann–Whitney’s U-test; p-value = 0.0004, 0.019, 0.015;
Supplementary Figures S4B–D). The MSI-pRS high group had
higher subclonal genome fraction (Mann–Whitney’s U-test;
p-value = 0.006; Supplementary Figures S4E). DNA content had
no significant difference between MSI-pRS groups (Supplementary
Figures S4F). LYSMD1 and RPS7 were higher in the 3p loss and 3q
amplification groups than in the chromosome 3 normal samples,
whereas CCDC68 was higher in the chromosome normal samples
(Mann–Whitney’s U-test; Figures 11C, D).

Functional exploration was performed in the TCGA–LUSC
cohort and GSE73403 validation cohort using the GO BP dataset
by GSVA, according to the MSI-pRS group. Results obtained from
the three cohorts (the training cohort, internal test cohort, and
external test cohort) are intersected to obtain the final functional
enrichment results. DNA-dependent DNA replication initiation and
DNA damage response signal transduction resulting in transcription

FIGURE 9
Relationship between the MSI-related prognostic risk score (MSI-pRS) and MSI status. (A) Flow diagram depicting the correlation among MSI status,
MSI-pRS group, and clinical outcome in the TCGA LUSC training cohort. (B) Comparison of the MSI-pRS among normal samples, MSI-L samples, and
MSI-H samples. MSI-pRS was decreased from the normal samples to the MSI-H samples (normal > MSI-L > MSI-H). (C) Correlation between MSI score
and MSI-pRS. MSI-pRS was negatively correlated with MSI score. (D) Comparison of the four elements used to construct the MSI-pRS model
between MSI-H and MSI-L groups. LYSMD1, CDK20, and RPS7 were higher in the MSI-H group, while CCDC68 was higher in the MSI-L group. (E)
Relationship between MMR systems and MSI-pRS. (F) Correlation of CCDC68 and MSI scores. (G) Correlation of LYSMD1 and MSI scores. (H) Correlation
of RPS7 and MSI scores.
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FIGURE 10
Relationship between the MSI-related prognostic risk score (MSI-pRS) and TP53 status. (A) TP53 mut had lower MSI-pRS than the TP53 wt. (B)
Incidence of TP53 mutations was more frequent in the low MSI-pRS group in the TCGA training cohort. (C) Comparison of the four elements used to
construct the MSI-pRS model between TP53 mut and TP53 wt groups. LYSMD1 and RPS7 were higher in the TP53 mut group. (D) Landscape of TP53
mutations in the MSI-pRS high group. (E) Landscape of TP53 mutations in the MSI-pRS low group. (F) Correlation of the MSI-PRS and its elements
with DNA methylation probes on TP53 genes. MSI-pRS and CCDC68 were positively correlated with TP53 DNA methylation, whereas LYSMD1, CDK20,
and RPS7 were negatively correlated with TP53 DNA methylation. (G) Comparison of DNA methylation on TP53 genes between MSI-pRS high and low
groups in TCGA LUSC cohort.
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FIGURE 11
Genomic feature exploration of the MSI-related prognostic risk score (MSI-PRS). (A)MSI-pRS was lower in the chromosome 3p deletion LUSC. (B)
MSI-pRS was lower in the chromosome 3q amplification LUSC. (C) Comparison of the four elements used to construct the MSI-pRS model between 3p
loss and 3p normal groups. LYSMD1 and RPS7 were higher in the 3p loss group, while CCDC68 was lower in the 3p loss group. (D)Comparison of the four
elements used to construct the MSI-pRS model between 3q amplification and 3q normal groups. LYSMD1 and RPS7 were higher in the 3q
amplification group, while CCDC68 was lower in the 3q amplification group. (E) DNA replication, DNA damage response, and cell cycle checkpoint were
upregulated in theMSI-pRS low group. LowMSI-pRSwas associated with high genomic instability with active DNA damage repair response, whereas high
MSI-pRS was vice versa. (G) Correlation of MSI-pRS and the transcriptional/ translational control associated biological processes. High MSI-pRS was
negatively associated with transcriptional/translational control. LYSMD1 and RPS7 were positively correlated with the previously described processes. (F)
Correlation of the MSI-pRS and its four elements. LYSMD1 and RPS7 were negatively correlated with the MSI-pRS, while CCDC68 and CDK20 were
positively correlated with the MSI-pRS. Correlation of the MSI-pRS and four elements and DNA replication and cell cycle checkpoint processes. MSI-pRS
and CCDC68 negatively related to the processes, whereas LYSMD1 and RPS7 were positively correlated.
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were upregulated in the MSI-pRS low group (Figure 11E). In
particular, a number of meiotic cell cycle-related processes were
upregulated in the MSI-pRS low group in all cohorts.

Biological processes that highly correlated with MSI-pRS and
the expression of genes used to construct the MSI-pRS were
explored. MSI-pRS was negatively correlated with meiotic cell
cycle checkpoint signaling and DNA-dependent DNA replication
initiation (Figure 11F; Supplementary Figure S5A). Moreover, MSI-
pRS was negatively correlated with transcriptional and translational
control, including mRNA and protein modification (Figure 11F;
Supplementary Figures S5B).

Among the four genes comprising MSI-PRS, LYSMD1 and
RPS7 were negatively related to DNA replication initiation and
meiotic cell cycle checkpoint signaling and positively correlated with
the transcriptional control (Figures 11F, G; Supplementary Figures
S5B, C). LYSMD1 was highly correlated with the mRNA
modification in the TCGA–LUSC cohort and the
GSE73403 cohort, while RPS7 was tightly correlated with

ubiquitin protein ligase activity in all cohorts (Figures 11F, G;
Supplementary Figures S5B). CCDC68 was negatively correlated
with the DNA replication initiation process and meiotic cell cycle
checkpoint signaling but had a weak relationship with
transcriptional and translational control processes. Although the
expression of CDK20 was weakly correlated with all explored
functional processes, it was the critical elements that composed
the MSI-pRS (TCGA-LUSC: r = 0.38, p-value < 2.2e-16; GSE73403:
r = 0.52, p-value = 4.2e-06; Figures 11F, G; Supplementary Figures
S5A, B).

3.7 High MSI-pRS was characterized with an
inflamed TME

We then explored the immune features of the MSI-pRS
group. CYT represented the ultimate anti-tumoral cytotoxicity
and was higher in the MSI-pRS high group in all cohorts

FIGURE 12
Immune features exploration of the MSI-related prognostic risk score (MSI-pRS). (A) Cytolytic activity (CYT) was higher in the MSI-pRS high group in
the training cohort. (B) Heatmap of immune cells in tumor microenvironment in the training cohort. (C) Lollipop plot of the altered biological processes
concentrating on the immune process and cell cycle, according to the MSI-pRS group in the three cohorts. (D) Correlation plot of the four genes in the
MSI-pRS model and the altered biological processes in the TCGA training cohort. Abbreviation: LUSC, lung squamous cell carcinoma; MSI,
microsatellite instability; MSI-pRS, MSI-related prognostic risk score; ICIs, immune checkpoint inhibitors; CYT, cytolytic activity; TME, tumor
microenvironment; TP53, tumor protein p53; PD-L1, programmed death-ligand 1; MLH, MutL homologs; MSH, MutS homologs; TCGA, The Cancer
Genome Atlas; GEO, Gene Expression Omnibus; GSEA, gene set enrichment analysis; WGCNA, weighted correlation network analysis; GO, Gene
Ontology; OS, overall survival time; PFS, progression-free survival; DCA, decision curve analyses; HR, hazard ratios; ROC, receiver operating
characteristic; AUC, area under the ROC curve; DEGs, differentially expressed genes; DMPs, different methylation probes; MHC, major histocompatibility
complex; CCDC68, coiled-coil domain containing 68; RPS7, ribosomal protein S7; CDK20, cyclin-dependent kinase 20; and LYSMD1, LysM domain
containing 1.
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(Mann–Whitney’s U-test; p-value = 0.021, 0.023, 0.033; Figure 12A;
Supplementary Figures S6A, B), indicating a stronger immune
response in the MSI-pRS high group. Tumors with high MSI-
pRS were infiltrated by a higher abundance of immune cells,
including both positive immune executors and negative immune
regulators in all cohorts (Figure 12B; Supplementary Figure S6C).
Functional enrichment by GSVA showed that T cell activation,
especially through the major histocompatibility complex (MHC) II
class process, was upregulated in the MSI-pRS high group, while
processes involved in protein translation were downregulated in all
cohorts (Figure 12C). Moreover, blood vessel remodeling and
maturation were upregulated in the MSI-pRS high group
(Figure 12C). CCDC68 was positively correlated with T cell
activation, while LYSMD1 and RPS7 were negatively correlated
(Figure 12D, Supplementary Figure S6D).

4 Discussion

Lung squamous cell carcinoma comprises approximately 30% of
NSCLC with a high rate of protein-altering mutations (Gerber et al.,
2015). In contrast to better-known driver alterations in
adenocarcinoma, such as EGFR, KRAS, and ALK, passenger
mutations seem to contribute to the high somatic mutation rate
in LUSC (Perez-Moreno et al., 2012). Passenger mutations
dynamically accumulate under the background alternations of
oncological gene drivers on the upstream of the cell cycle, such
as TP53, for which target therapy is always invalid in LUSC. Based
on the intricate genomic features of LUSC, the study explored the
genome instability of LUSC and established a prognostic signature
associated with it.

MSI is the molecular feature of the cancers with MMR
deficiency. Ensuring high-fidelity DNA replication is essential for
maintaining genome stability. The newly synthesized strand
containing mismatches that have escaped proofreading by
excision followed by resynthesis and ligation during DNA
replication are corrected by MMR with the help of DNA
replicative polymerase and DNA ligase (Hsieh and Zhang, 2017).
In addition to its roles in editing replication errors, the MMR system
also triggers cell cycle arrest and apoptosis in DDR. Loss of MMR
results in inherited cancer susceptibility, such as Lynch syndrome, as
well as an increased incidence of sporadic cancers (Knijnenburg
et al., 2018; Xiao et al., 2021).

The major alternation leading to MMR-d is DNA
hypermethylation in the MLH1. DNA hypermethylation or
mutations (single-nucleotide polymorphism, deletion, etc) of
MSH2 and other MMR genes may explain a portion of the
silencing of MMR proteins and the fellow molecules. It was
reported that the methylation rate of the MLH1 promoter
CpG islands was 72.9% in gastric cancer and 89% in
endometrial cancer. When it comes to NSCLC, the
methylation rate of MLH1 was reported as 27%–35.7%,
whereas the incidence of MSI-H was rare (Seng et al., 2008;
Pastuszak-Lewandoska et al., 2016). The previously described
phenomena indicated that epigenetical markers of MMR proteins
were not consistent with MSI status and genomic instability.
Generally, despite the complexity of the LUSC genome with high
mutation rates, MSI is not commonplace with the incidence of

less than 1% (Xiao et al., 2014; Yanagawa et al., 2021). We
proposed that MSI status potentially performs its roles in
genomic instability with other mechanisms.

The MSI phenotypes were defined in the LUSC by the
unsupervised classification. TCGA–LUSC data were divided into
MSI-H and MSI-L groups, according to MMR protein expression.
The MSI status of each sample was identified by MSI score based on
the expression of MMR proteins. Compared with normal samples,
LUSC samples had higher MSI score, and patients with an MSI-H
phenotype had higher MSI score. The MSI-H phenotype was
characterized by high TMB, DNA content, and rate of
aneuploidy. In addition, TP53 was at a high rate of aberrations in
the MSI-H cluster. MSI-H tumors displayed high genomic
instability, which was tightly associated with the clonally
expanded mutations in cancer driver genes and led to tumor
heterogeneity. The MSI status defined by MMR proteins in this
study revealed the severity of genomic instability in LUSC.

The MSI status was relatively clustered according to MMR
proteins in the dataset and discriminated the genomic features of
LUSC in some respects. The MSI-pRS defined the clinical outcome
of LUSC patients based on the MSI status. The MSI-pRS was
composed of CCDC68, LYSMD1, RPS7, and CDK20 and was
negatively correlated with the MSI score. Compared with tumor
tissues, the MSI-pRS was higher in normal tissues. The MSI-pRS of
the MSI-H group was lower than that of the MSI-L group. The MSI-
pRS was a negative prognostic indicator with good discrimination
and calibration. Patients with low MSI-pRS tended to have an
improved OS. DCA curves suggested that the model added extra
value to the prognosis not only in the training cohort but also in the
internal and external test cohorts.

The association of MSI-pRS and MSI status was explored. Low
MSI-pRS was associated with high genomic instability with high
tumor heterogeneity and TMB. The TP53 gene encodes the
p53 protein which acts as the guardian of the genome to
preserve genomic integrity (Marei et al., 2021). The MSI-pRS low
group had a higher incidence of TP53 mutation and DNA
hypomethylation of TP53. Aneuploidy is defined as the
unbalanced number of chromosomes and is a salient feature of
cancer genomes. Chromosome 3 alterations including 3p loss and 3q
amplification participated in the tumorigenesis of LUSC. The
incidence of aneuploidy was detected more frequently in the
MSI-pRS low group. Moreover, LUSC with 3p loss or 3q
amplification had a higher MSI-pRS. Functional enrichment
declared that low MSI-pRS was associated with the upregulation
of a DNA damage response signal, DNA replication initiation, cell
cycle checkpoint signaling, and transcriptional and translational
control. Past studies confirmed that MSI-H is associated with better
survival in colorectal cancers but is inconclusive in other cancers.
Low MSI-pRS was characterized by genomic instability and was
associated with better clinical outcomes (Popat et al., 2005). The
association of genomic stability and clinical outcomes found in the
study was consistent with that of the previous study. The MSI-pRS
shows promise to be an optional prognostic genomic biomarker in
LUSC as the substitute of MSI.

Tumors with high MSI-pRS are displayed as an inflamed
immune phenotype with acquired immune escape. Both immune
effectors (active T cells and effect memorial T cells) and immune
regulators (Tregs and MDSCs) were also highly infiltrated in the
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MSI-pRS high group. Functional enrichment indicated that
processes associated with antigen presentation by MHC II were
upregulated. Moreover, blood vessel remodeling and maturation
might contribute to high-grade malignancy. The MSI-pRS high
group was characterized by an inflamed immunophenotype,
while the MSI-pRS low group was characterized by a cold one.
Patients with high MSI-pRS might be the potential subpopulation
that derives profit from ICIs.

The elements of MSI-pRS were explored. CCDC68 was
positively correlated with MSI-pRS and is a tumor-suppressive
gene by reducing cell proliferation and enhancing apoptosis,
which is strongly expressed in the lung cancer tissues (Hua et al.,
2020). The gene predicted short OS in LUSC patients. MSI-H, 3p
loss, and 3q amp samples tended to have lower CCDC68. The gene
was negatively correlated with DNA replication initiation and cell
cycle checkpoint, but positively correlated with tumorigenesis-
associated immune response and tumorous vessel modification.
The findings declared that CCDC68 had a suppressive role in the
genomic instability and a promoting role in the inflamed TME.

LYSMD1 encodes a highly conservative receptor containing a
lysin motif domain, the role of which in cancerogenesis has not been
elucidated so far. In the study, we first declared that LYSMD1 was a
promoter of genomic instability. LYSMD1 was a positive prognostic
biomarker and was negatively correlated with MSI-pRS. LUSC
samples with MSI-H, TP53 mut, 3p loss, and 3q amplification
were more likely to have a higher expression of LYSMD1. The
gene was positively correlated with MMR proteins and participated
in active DNA replication and transcription. Nevertheless,
LYSMD1 was negatively correlated with anti-cancer immunity,
which might contribute to cold TME and immunosuppression.

RPS7 encodes a component of the small 40 S subunit of the
ribosome, which is a critical performer in protein translation (Wu
et al., 2021). The gene was a positive prognostic biomarker and
negatively correlated with MSI-pRS. RPS7 is upregulated in the
MSI-H, TP53 mut, 3p loss, and 3q amplification LUSC samples.
The gene also contributed to active DNA replication, transcription,
and translation, especially in the activity of ubiquitin ligase in the post-
translationalmodification. RPS7might contribute to the cold TMEwith
the negative correlation with immune cells in the TME.

CDK20 was once reported as a promoter of the G1/S transition and
a regulator of G0/G1 checkpoint. Overexpression of CDK20 promotes
proliferation and is regarded as a tumorigenesis-related factor in many
cancers (Lai et al., 2020). CDK20 was a risk factor of clinical outcomes
and positively correlated withMSI-pRS. TheMSI-pRSwas higher in the
MSI-H and was positively correlated with the expression of MMR
proteins, especially in the TP53 wt group. However, TP53mut, 3p loss,
and 3q amplification LUSC samples had no difference in
CDK20 compared with the wild-type samples.

There were some limitations in the study. First, the MSI status
defined in this study was a relative concept for it was classified based on
the expression of MMR proteins in the TCGA–LUSC dataset. As it was
declared before, MSI-H in LUSC represents a type of genetic instability.
We observed the higher expression of MMR proteins in the MSI-H
samples compared with the normal and MSI-L samples, which was
different from that seen in colorectal cancer. The consistent trend of
DNA methylation on the promoters and expression was observed in
MSH3 and MSH6. MMR proteins might be activated by the genomic
instability in the MSI-H group. So far, the most widely used MSI

detection method was polymerase chain reaction (PCR) amplification
of microsatellite markers using different panels available comprising a
combination ofmononucleotide and dinucleotide repeats. Tumors with
instability at two or more of these markers were defined as being MSI-
H, whereas those with instability at one repeat or showing no instability
were defined as MSI-L tumors (Buhard et al., 2006). Evaluating the
expression of the MMR proteins by immunohistochemistry (IHC) on
histological tissue sections has been regarded as a valid surrogate to
identify tumors with a higher probability of instability. The two
methods also involved a discordance because MSI also resulted from
other mechanisms (Cherri et al., 2022). The two methods are
inappropriate for the cancers with low incidence of MSI and MMR
dysfunction. With the widespread use of next-generation sequencing
(NGS), it has been an alternative molecular test for assessing MSI and
other genomic features, such as TMB and MATH, as well as revealing
the molecular mechanisms leading to genomic instability. A panel of
MSI-associated gene expression of tumors based on the transcriptomic
data might identify the MSI status of cancer with low incidence of MSI
(Li et al., 2020). Therefore, we suggested that MSI status in LUSC could
be distinguished according to the expression of MMR.

Second, MSI-H tumors in the study were characterized by high
DNA ploidy and aneuploidy scores, which were commonly derived
from CIN. Generally, CIN represents abbreviations in DNA content
and is mutually exclusive withMSI (Yoshioka et al., 2019). Both CIN
and MSI result from genomic instability and derive from replication
stress-associated DNA double-strand breaks (DSBs). CIN develops
when DSBs are not effectively repaired by homologous
recombination under the circumstance of an MMR proficient
background (Matsuno et al., 2019). MSI and hypermutation
generate by erroneously repaired DSBs when MMR systems are
deficient concurrently. Based on the previously described processes,
we assumed that MMR proteins acted as regulators of genomic
instability in LUSC, which is reflected by MSI status clustered by
expression of MMR proteins.

Furthermore, the MSI-pRS was constructed with an aim of
excavating the meaning of MSI in LUSC profoundly. More
prospective cohort studies are needed to estimate the clinical
significance of the MSI-pRS signature, which might be
accomplished by direct immunohistochemistry or gene
sequencing of tissues. In the study, we proposed bioinformatics
evidence for the correlation between the MSI-pRS and immune
phenotype and inferred that LUSC patients with high MSI-pRS
could derive benefits from ICIs and the combination of ICIs and
angiogenetic therapy. However, the molecular mechanism needs
more experimental verification.

5 Conclusion

In conclusion, we performed an integrative analysis to explore
the MSI status in LUSC. Four hub MSI-related genes, namely,
CCDC68, LYSMD1, RPS7, and CDK20, were identified and used
to establish a prognostic score related to genomic instability named
MSI-pRS in LUSC. Low MSI-pRS predicted better OS. LUSC with
low MSI-pRS was associated with increased genomic instability and
cold immunophenotype. MSI-pRS is a promising prognostic
biomarker in LUSC as the substitute of MSI. In addition, we first
declared the promotive role of LYSMD1 in genomic instability of
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LUSC. Our findings provided new insights in the biomarker finder
of LUSC.
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