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Sustenance of smallholder poultry production as an alternative source of food
security and income is imperative in communities exposed to hydrocarbon
pollution. Exposure to hydrocarbon pollutants causes disruption of
homeostasis, thereby compromising the genetic potential of the birds.
Oxidative stress-mediated dysfunction of the cellular membrane is a
contributing factor in the mechanism of hydrocarbon toxicity. Epidemiological
studies show that tolerance to hydrocarbon exposure may be caused by the
activation of genes that control disease defense pathways like aryl hydrocarbon
receptor (AhR) and nuclear factor erythroid 2p45-related factor 2 (Nrf2). Disparity
in themechanism and level of tolerance to hydrocarbon fragments among species
may exist and may result in variations in gene expression within individuals of the
same species upon exposure. Genomic variability is critical for adaptation and
serves as a survival mechanism in response to environmental pollutants.
Understanding the interplay of diverse genetic mechanisms in relation to
environmental influences is important for exploiting the differences in various
genetic variants. Protection against pollutant-induced physiological responses
using dietary antioxidants canmitigate homeostasis disruptions. Such intervention
may initiate epigenetic modulation relevant to gene expression of hydrocarbon
tolerance, enhancing productivity, and possibly future development of
hydrocarbon-tolerant breeds.
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Introduction

Hydrocarbon pollution from oil spillage, natural gas flaring and organic pollutants is
ubiquitous and of some fundamental health welfare concern in communities exposed to that
pollution such as the Niger Delta region of Nigeria (Sam and Zabbey, 2018; Srivastava et al.,
2019). The degradation of the environment by these pollutants destabilizes the ecosystem
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(Anejionu et al., 2015; Kponee et al., 2015; Croitoru et al., 2020),
leading to the loss of biodiversity of organisms and low productivity
of aquatic organisms, which serve as the major source of livelihood
and animal protein supply to rural households (Izah, 2015; Osuagwu
and Olaifa, 2018; Ansah et al., 2022). Diversification of income
sources was recommended as a crucial strategy for achieving poverty
reduction and economic stability in order to increase resilience and
reduce the vulnerability of the rural poor to the effects of
environmental deterioration (Yakubu, 2017). Poultry may be a
good substitute due to its intrinsic qualities of having a short
generational gap, high prolificacy, rapid turnover, and acceptance
across all socio-cultural, economic, and religious strata (Oleforuh-
Okoleh, 2010).

Due to their toxic effects, environmental stresses such as those
caused by hydrocarbon pollutants may prevent the full expression of
the genetic potential of these birds. The severity of hydrocarbon
toxicity is dependent on the exposure route, type of chemical
compound, dosage, and duration of exposure. Hydrocarbon
tolerance is regulated by biological (metabolic, genetic, and signal
transduction) pathways whose expression upon exposure may create
species-specific tolerance variances (Miller et al., 2018). Interactions
between different classes of pollutants, the generation of reactive
oxygen species (ROS), and the onset of oxidative stress conditions
are partly modulated by changes in the levels and functions of redox-
sensitive signaling proteins and transcription factors (Regoli and
Giuliani, 2014). Modulation of the biological pathways using
enzymatic and non-enzymatic molecules that can prevent
metabolic dysfunctions caused by oxidative stress becomes
expedient (Figure 1). There is evidence of effective dietary
interventions using exogenous antioxidants to regulate the impact

of environmental perturbances on organisms and hence gene
expression with regards to tolerance (Hennig et al., 2007;
Hoffman et al., 2017; Andreescu et al., 2018; Ideraabdullah and
Zeisel, 2018).

Epidemiological studies indicate that oxidative stress modulates
the organism’s epigenome and thus regulates gene expression
(Malireddy et al., 2012; Hedman et al., 2016). Karchner et al.
(2006) and Bianchini and Morrissey (2020) highlighted the fact
that there are species-specific differences in the mechanism and level
of tolerance to hydrocarbon fragments. This disparity could be
observed between chickens raised in severely hydrocarbon-
polluted environments and those raised in unaffected areas. The
extent of vulnerability could be due to evolutionary capability being
dependent on factors such as the genetic structure and strength of
the selection pressure (Dutilleul et al., 2015). Modifications of the
genetic structures, such as those associated with fecundity, survival,
and morphology, are experiential (Nacci et al., 2002; Charmantier
and Garant, 2005). Whitehead et al. (2017) asserted that the genetic
architecture core to adaptive traits may interrelate to form the
possibility of evolutionary rescue from pollution. Thus, genomic
variability is critical for adaptation and serves as a survival
mechanism in response to environmental pollutants (Oziolor and
Matson, 2015).

Crucial to the successful establishment of smallholder poultry
production in regions affected by hydrocarbon pollution is,
therefore, an understanding of the impact of hydrocarbon
pollutants on poultry with respect to gene-environment
interaction as well as the mitigation effect of such an impact
using exogenous antioxidants. This review highlights some
physiological dysfunctions arising from exposure to hydrocarbon

FIGURE 1
Consequence of hydrocarbon exposure andmitigation effect of antioxidant modulation. Crude oil exploration results in the release of hydrocarbon
pollutants to the environment. Exposure to these pollutants via inhalation, dermal contact and/or ingestion results in interactions between different
classes of pollutants, generation of reactive oxygen species and onset of oxidative stress conditions which are partly modulated by redox-sensitive
signalling proteins and transcription factors. The mechanism of tolerance to hydrocarbon toxicity involves the activation of the aryl hydrocarbon
receptor (AHR) and nuclear factor erythroid 2p45-related factor 2 (Nrf2) signalling pathways which regulates the expression of xenobiotic metabolism
genes such as the cytochrome P450. To mitigate the impact of exposure on metabolic processes and enhance productivity, dietary interventions in
regulating environmental perturbances could be beneficial.
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pollutants while noting some mechanisms of hydrocarbon toxicity
and connecting dietary modulation to possible epigenetic changes
towards improving tolerance to enhance productivity.

Hydrocarbon pollution and
physiological responses of poultry

Pollutants (both primary and secondary) from crude oil
exploration activities like gaseous emissions from incomplete
fossil fuel combustion and petrochemical industries, particulate
matter (PM), polycyclic aromatic hydrocarbons (PAH), volatile
organic compounds (VOC), and heavy metals (Pb, Cu, Ni, Cr,
and Cd) pose adverse health challenges not only to humans but to
other organisms within the ecosystem (Table 1). The interference of
free radicals and reactive oxygen species (ROS) on the function of
the cellular membrane as well as the enzymatic systems could
possibly explain the mechanism of hydrocarbon toxicity. Though
free radicals in the body system are involved in normal cellular
functions and are essential in reduction-oxidation reactions and
other physiological responses, maintenance of the balance between
oxidation and anti-oxidation is critical (Bouayed and Bohn, 2010).
Exposure of populations to hydrocarbon pollutants results in an
imbalance between free radicals and the cellular antioxidant defense
system, which culminates in various mutagen-induced deleterious
effects. Overproduction of ROS causes them to behave as molecular
sharks whose function is to damage molecules of the cell membrane,
mitochondria, and nucleic acids, leading to oxidative stress (Aher
et al., 2011). In other words, active oxygen species serve as mediators

of the pollutants induced physiological responses by acting as
precursors to various types of diseases, thereby affecting
production (Ekweozor et al., 2002), fitness, and survivability
(Cohen et al., 2017).

The accumulation of petroleum hydrocarbons in different
tissues of exposed organisms has been reported (Bursian et al.,
2017; Alzahrani and Rajendran, 2019). Increased stress levels,
elevated detoxification efforts, and impairment of reproductive
fitness were reported in birds following inhalation of pollutants
(Sanderfoot and Holloway, 2017). A varied degree of biochemical
and cellular responses linked to protein catabolism, bile acid
metabolism, glucose homeostasis, and lipid peroxidation was
observed in birds found in oil spill regions (King et al., 2014;
Bianchini and Morrissey, 2018). Certain diseases such as lipid
pneumonia, pulmonary dysfunction, decreases in hemocrit
values, and immune-toxic effects were diagnosed in exposed
birds (Szaro, 1991; Leighton, 1993; Trust et al., 1994). Al-Badri
et al. (2019) found early and progressive stages of apoptosis in the
hepatocytes of ducks exposed to various sources of air pollution.
Pollutants substantially impacted osmoregulatory mechanisms,
resulting in a decline in kidney function in birds exposed to
pollutants (Amakiri et al., 2009; Dean et al., 2017). In the human
population, there is a correlation between maternal exposure to air
pollution and an increased risk of impaired lung development in the
progeny (Saha et al., 2018). Pre- and post-hatching examinations of
fertile eggs of Larus marinus (Lewis and Malecki, 1984) exposed to
petroleum revealed developmental abnormalities of the embryo,
morbidity, and high mortality in various avian species (Albers, 1978;
Albers, 2006; Dubansky et al., 2018). Ekweozor et al. (2002) noted

TABLE 1 Hydrocarbon pollutants and their effect on physiological responses of different organisms.

Hydrocarbon pollutant Sample Population Physiological response References

Particulate matter (PM)2.5 Lungs Human PAH-Coated with PM induced gene expression of
CYPIAL, NQO1, GST-P, 1 and GST mu-3

Abbas et al. (2009)

Biomass fuel (BMF) smoke Blood and Lungs Human Downregulation of Nuclear factor
Keap1 experimentation in BMF users, activation of
Nrf2 and upregulation of NQO1

Mondal et al. (2018)

Ozone Lungs Rats, mice, guinea pig Elevated lung enzyme activities, alveolar duct fibrosis
in rat and guinea pig

Dormans et al. (1999)

Polycyclic Aromatic Hydrocarbons
(PAHs)

Liver Double crested cormorants Mutations in DNA microsatellites of birds closest to
pollutionsites

King et al. (2021)

PAHs Epigenetic modifications (changes in DNA
methylation, histone modification and miRNA
regulation) resulting in chronic diseases

Das and Ravi (2022)

Ozone Lungs Quail Loss of cilia in bronchi and trachea, necrosis of air
capillary epithelium, inflammatory response

Rombout et al. (1991)

SO2, NOx, PM 2.5 Blood Passerine birds Decrease in red blood cell count, beta globulins and
body weight, increase in ESR size and liver
transaminase

Llacuna et al. (1996)

Air pollutants Lungs, feathers Sparrow Retention of particulate matters in the lungs and
accumulation of toxic metals in the feather as well as
lower T-AOC, SOD, immunoglobulin concentrations

Li et al. (2021)

PM Genes Epigenetic alterations (DNA methylation) Ferrari et al. (2019)

Benzo{a}pyrene (BaP) Blood Broilers Evidence of hemato- and hepatoxicity due to BaP
oxidative stress

Latif et al. (2010)
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that hens exposed to crude oil had diminished growth, egg
production, egg quality, and hatchability. Kubale et al. (2018)
and Jiang et al. (2019) reported incidences of cardiovascular
diseases such as atherosclerosis, right ventricular failure, and
developmental cardiotoxicity in poultry.

Genes’ function in hydrocarbon toxicity

Variations in single-nucleotide polymorphisms from xenobiotic
response elements (like hydrocarbon pollutants) influence gene
expression (Liu et al., 2018). Lodovici and Bigagli (2011) reported
on the mechanisms and pathways by which this occurs. There is
evidence that these pathways are stimulated by oxidants in a number
of cell types and may be involved in the activation of transcription
factors (Samet et al., 2002; Øvrevik et al., 2015). The resultant
physiological dysfunctions (Låg et al., 2020) are evidenced by
abnormal cell differentiation and transcriptional activation of
xenobiotic-activated receptors such as the aryl hydrocarbon
receptor (AHR), nuclear factor erythroid-derived 2 (Nrf2), and
nuclear factor (NF)-kappa B-related genes (Shukla et al., 2000;
Watzky et al., 2022). A redox balance in oxidant-antioxidant
synthesis is critical to cell signaling mechanisms, which are
crucial for regulation of different gene expressions, adaptation to
stress, and ultimately homeostasis maintenance in the body
(Malireddy et al., 2012; Hedman et al., 2016; Surai et al., 2019).

AhR-mediated signaling is known for its role as a sensor for
environmental stimuli (Karchner et al., 2006; Bessede et al., 2014;
Zhou, 2016); it regulates the expression of many genes in response to
xenobiotics. It has been proposed as a signal transducer of
hydrocarbon-induced oxidative stress and inflammation
(Dietrich, 2016; Jang et al., 2019), involved in the regulation of
biological responses to polycyclic aromatic hydrocarbons (Ma and
Baldwin, 2000; Zhou, 2016). It also regulates angiogenesis,
hematopoiesis, drug and lipid metabolism, cell motility, and
immune modulation (Puga et al., 2002). The cellular mechanisms
of the gene showed that when a ligand binds to AhR, it moves into
the nucleus, where it forms heterodimers and triggers transcription
by binding to xenobiotic response enzymes like cytochrome
P450 monooxygenases, aldehyde dehydrogenases 3, glutathione-
S-transferases, and NADPH/quinone oxidoreductases (Gomez
et al., 2018). Reitzel et al. (2014) indicated that different
populations of Atlantic killfish showed strong genetic structure at
the AhR-related loci studied.

Furthermore, genes that protect the cells against damage from
oxidative stress (cytoprotective genes) are induced by antioxidant
response elements at the transcription level mediated by Nrf2
(Jaiswal, 2004). Expression of Nrf2 occurs mostly in tissues easily
affected by external stimuli like the gastrointestinal tract, lungs, and
skin, as well as those that function in detoxification (Speciale et al.,
2011). It plays a key role in the regulation of antioxidant biomarkers
such as superoxide dismutase, glutathione peroxidases, glutathione
S-transferases, and catalase (Zazueta et al., 2022). Evidence from
chromatin immune-precipitation indicates that Nrf2 regulates the
expression of AhR by binding to an antioxidant response element
region in the AhR promoter (Shin et al., 2007). For instance, Shukla
et al. (2000) reported an increase in transcriptional activation of NF-
keppa B-dependent (NF-κB) gene expression, which was inhibited

in the presence of catalase in murine exposed to PM2.5 at non-
cytotoxic concentrations. Inhalation and absorption of pollutants in
different respiratory organ epithelial cells have been observed to
induce oxidative stress (Liu et al., 2018), causing an increase in the
translocation of some NF-κB to the nucleus and their increased
binding to DNA, leading to the expression of genes associated with
NF-κB such as interleukin 6 (IL-6) and tumor necrosis factor alpha
(TNF-α) (Jiang et al., 2019). A study on genes associated with fat
deposition in sanderling (Calidris alba) revealed that exposure to
PAH downregulated the liver basic fatty acid binding protein 1
(Lbfabp) and hepatic lipase (Lipc) expression (Bianchini et al.,
2021). There is evidence of inflammatory and immune diseases
associated with respiratory disorders arising from the AhR-
dependent disease pathway (Neavin et al., 2018).

Antioxidants and hydrocarbon toxicity

Antioxidants are molecules that interact with reactive oxygen
species to cease their oxidative reaction. They function by
neutralizing free radicals (nitrogen, oxygen, and lipidic
radicals) and protecting the body’s systems. Exposure to
hydrocarbon pollutants induces oxidative stress, which
stimulates injurious, inflammatory, adaptive, and reparative
processes that overwhelm the antioxidant. The toxicity effect
on the health and wellbeing of the organism arises from the level
of genomic instabilities and alterations expressed as damage to
biological molecules like proteins, lipids, and nucleic acids (Ren
et al., 2017), resulting in oxidative stress, morbidity, mutation,
and mortality. Oxidative stress is considered one of the critical
pathways for the metabolism of hydrocarbon pollutant effects in
the body (Tashakkor et al., 2011). The maintenance of the
antioxidant status of exposed poultry is critical to halting cell
damage and disrupting normal physiological processes.
Antioxidants function in three ways to lessen the harm
oxidative stress causes. These include enhancement of the
expression of intracellular antioxidant enzymes, inhibition of
the activity of ROS-generating enzymes, and direct reactions with
the ROS (Lü et al., 2010; Poljšak and Fink, 2014).

The use of cellular antioxidants in prevention and protection
against the metabolic dysfunctions can be achieved through
enzymatic and non-enzymatic antioxidant defense systems (Bagyi
et al., 2021) Consequently, dietary supplementation of exogenous
antioxidants to compensate for the deficit in endogenous ones is
imperative (Santos-Sánchez et al., 2019). Exogenous antioxidants
rich in phenolic compounds have been proven to possess high
antioxidant capacity owing to their redox properties, which
enable them to adsorb and neutralize or minimize ROS, quench,
and decompose peroxides (Osawa, 1994; Chen et al., 2020). Dietary
antioxidants have been demonstrated to influence gene expression
involving biochemical and pathological changes with respect to
metabolic tissues, immune function, and disease risk factors
induced by oxidative stress (Dincer and Yuksel, 2021;
Dunisławska et al., 2022). The anti-oxidative effects of dietary
antioxidants in a bid to compensate for the deficit in the
endogenous system are achieved through various mechanisms
and the interplay of signalling molecules, including the mediation
of AhR, Nrf2, and CYP1A1 (Grishanova, 2022). Food polyphenolics
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showed AhR-based interactions at high concentrations (Amakura
et al., 2008). Administration of a 6-shogaol-rich extract from ginger
resulted in the induction of Nrf2 and Ho-1 regulated by mitogen-
activated protein kinases (Bak et al., 2012). Numerous studies have

shown potential benefits of antioxidant supplementation in the
upregulation of transcription factor genes (Nrf2 antioxidant
genes) and downregulation of inflammatory pathways triggered
by oxidative stress (Table 2). Much as phytonutrients are capable

TABLE 2 Impact of antioxidant dietary modulation on different cell functions.

Dietary contents Population Type of
intervention

Physiological response References

Eucalyptus leaf polyphenol Chickens Dietary supplementation Upregulation of antioxidant genes like HAO2, GGT1,
GSTA4L, MGSTI.Inclusion of extract enhanced GSH–Px
activity and reduced MDA in muscle tissues thereby
improving antioxidant states of chickens

Li et al. (2020)

Tea extract granule Chickens Oral administration
(drinking water)

Induction of oxidative stress via intramuscular injection of
cyclophosphamide

Chi et al. (2020)

Supplementation increased body weight and elevated the
activity of SOD, CAT, GPx, with reduced MDA

Vitamin C and Vitamin E Chickens (Lveyang black-
boned breeder rooster)

Dietary supplementation Oxidative stress induced by subcutaneous injection of
dexamethasone. Induced stress decreased SOD, IgM and
mRNA expression of SOD and GSH-Px. Supplementation
with Vitamin C and E had beneficial effect during early
growth phase with increased body weight, improved
antioxidant ability and immune performance in oxidative
stressed roosters through upregulation of the expression of
GSH–Px gene

Min et al. (2018)

Nettle (Urtica dioica) Broiler chickens
(Ross 380)

Dietary supplementation Over expression of catalase, superoxide dismutase 1 in the
lungs and liver of treated group. Attenuation of the right
ventricular hypertrophy. Upregulation of hepatic and
pulmonary antioxidant genes

Ahmadipour and
Khajali (2019)

Vitamin C Broiler chicken eggs
(Arbor Acres)

Inovo injection Improved growth performance traits, hatchability, total
antioxidant capacity, immune status, and splenic expression
of IL-4 and DNMT1, increased in expression of 1L-6, IFN-γ
and TNF—α

Zhu et al. (2020)

Genistein Breeder hens Dietary supplementation Maternal supplementation of genistein alters lipid
metabolism in offspring through epigenetic modification
resulting in improved antioxidant capacity

Lv et al. (2019)

Upregulation in the expression of peroxisome proliferator-
activated receptor (PPAR) genes, induced histone
trimethylation and acetylation in chick liver

Pterostilbene broilers Dietary supplementation Attenuates diquat induced hepatic injury and oxidative stress
of broilers via significant increase expression of Nrf2, heme
oxygenase1, SOD and glutamate-cystein ligase catalytic
subunit

Chen et al. (2020)

Folic acid broiler In ovo feeding at
embryonic age 11 days

Increased hepatic folate content and expression of
methlenetetrahydrofolate reductase and methionine
synthase reductase. Increased plasma lysozyme activity and
IgG and IgM concentray = tion, Histone methylation in IL-2
and IL-4 promoters. Immune function and epigenetic
regulation of immune genes enhanced

Li et al. (2016)

Ginger extract Rat Oral administration Exposure to lead via drinking water to induce oxidative-
hepatic toxicity. Treatment with ginger extract resulted in
upregulation of mRNA expression of antioxidant genes GST-
α1, GPx1 and CAT in ginger extract supplemented
group. GE had an antioxidant protective effects against lead
acetate induced hepatotoxicity

Mohamed et al.
(2016)

Ginger Humans Dietary supplementation Increase in the expression of FoxP3 and PPAR-gamma genes
in treated group and downregulation of the expression of
T-bet and RORyt genes

Aryaeian et al.
(2019)

Phytogenic premix (ginger,
lemon balm, oregano and
thyme)

Broiler chickens Dietary supplementation Supplementation of phytogenic premix upregulated the
expression of cytoprotective genes (SOD1, GPx2,
NQO1 AND HMOX1) and modulated the expression of
Nrf2 and Keap1

Mountzouris et al.
(2020)
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of down- or up-modulating AhR signalling, the mechanism of their
action on AhR and the Nrf2 system is not clear.

Dietary modulation of genes encoding xenobiotic
metabolizing enzymes to speed up the onset of disease
tolerance, like those associated with hydrocarbon toxicity,
would be beneficial even in poultry. Proteomic and
transcriptomic analysis identified nine candidate genes and
two candidate proteins that improved antioxidant status in
chickens given eucalyptus leaf polyphenol extract (Li et al.,
2020). Broiler chickens that were fed nettle (Urtica dioica) had
a significantly upregulated expression of some antioxidant genes
(SOD1 and CAT), which obviously prevented pulmonary
hypertension (Ahmadipour and Khajali, 2019). The expression
of CAT and SOD genes in the heart and lung of chickens reared in
cold and high-altitude environments was increased when birds
were fed Securigera securidaca (Ahmadipour, 2018). Curcumin
and ginger were found to induce a protective effect by
upregulating the activities of antioxidative enzymes, thereby
modulating oxidative stress (Lin et al., 2019; Gao et al., 2022).
A reduction in inflammation from oxidative stress was seen in
mice administered a polyherbal mix of ginger, Chinese date, and
wood ear mushroom (Nakyam et al., 2022).

Gene-antioxidant modulation and
hydrocarbon tolerance

During the selection process for economically important
traits, genetic and environmental factors play a crucial role.
Observed phenotypic characteristics, such as hydrocarbon
tolerance in poultry, will be dependent on various mechanisms
and pathways involving gene expressions pertinent to
maintaining the integrity of cells in the face of pollutant-
induced oxidative stress. Homeostatic misbalance due to
oxidative stress during exposure to hydrocarbon pollutants
may induce modifications in specific epigenetic markers. To
this extent, the accessibility of genes to the cellular proteins
that modulate gene transcription–how, when and where a
gene is silenced or activated is required (Burton and Lillycrop,
2019).

Epigenetic changes are reversible mitotically stable
modifications that do not necessarily change the DNA sequence
but affect the way the sequence is transcribed (Ibeagha-Awemu and
Ying, 2021; Dunislawska et al., 2022). There are therefore heritable
alterations in gene expression that do not necessitate any change in
the DNA sequence (Jirtle and Skinner, 2007; Guerrero-Bosagna and
Skinner, 2012). Epigenetic processes influence the ability of an
organism to adjust to prevailing environmental perturbance and
include DNA methylation, histone acetylation, and non-coding
ribonucleic acids (Ju et al., 2020; Corbett et al., 2021). These
modifications are classical epigenetic mechanisms involved in
packaging the chromatin structure, regulating DNA damage, and
repressing gene expression, among other transcriptional activities
(Bannister and Kouzarides, 2011; Hunt et al., 2013). The alterations
that occur through DNA methylation inhibit gene expression by
silencing the gene (Dhar et al., 2021); that due to histone acetylation
can be in the form of post-transcriptional and post-transitional
modifications (Wang and Ibeagha-Awemu, 2021); while the non-

coding ribonucleic acid is essential for regulating cellular
differentiation and organism development. Of the three
mechanisms, DNA methylation causes differentiated cells to
develop a more stable and long-lasting methylation pattern that
regulates tissue-specific gene expression by recruiting proteins
involved in gene repression or inhibition of the binding of
transcription factor(s) to DNA (Moore et al., 2013; Dhar et al.,
2021).

The use of dietary antioxidants has been shown to be an effective
strategy involving epigenetic DNA methylation and cessation of
oxidative stress. Nayak et al. (2016) emphasized the role of
epigenetic mechanisms in stress regulation. Improving
production, immune-competence, general health and wellbeing of
poultry, through dietary intervention to assure tolerance level
maintenance could involve epigenetic mechanisms. In addition,
diets rich in folates, vitamins C, E, A, and D, as well as
polyphenol metabolites found in phytobiotics, have been shown
to suppress certain diseases via modulation of DNA methylation,
histone modifications, and subsequent epigenetic regulation of gene
expression (Malireddy et al., 2012). Ideraabdullah and Zeisel (2018)
provide a straightforward illustration of how diet regulates genomic
responses and potential physiological outcomes by establishing,
recognizing, and responding to epigenetic markers. Hong and
Gurjit (2012) assert that exposure to particulate matter can
induce glutathione depletion in the methylation cycle, thereby
promoting epigenetic changes, whereas Madrigano et al. (2012)
established that PAHs form adducts inducing DNA methylation
(hypo and hyper) of specific genes linked to physiological
dysfunctions and contribute more to the occurrence and
development of diseases (Cao et al., 2020). Hernández-Cruz et al.
(2022) also reviewed cadium-induced epigenetic alterations and the
use of antioxidant compounds to counteract Cd-induced epigenetic
alterations.

Future perspective

Evaluation of the genetic architecture and risk assessment of
various chicken strains exposed to hydrocarbon contaminants is
crucial for the development of intensive, commercial, and cost-
effective smallholder poultry production in hydrocarbon-polluted
communities. Studies on the regulation of target genes associated
with environmental stress and immune-regulatory mechanisms
related to hydrocarbon pollutants can provide a better
understanding of how the phenotype plasticity of chickens
exposed to hydrocarbon pollution can be utilized to increase
productivity. Since the primary mechanism of hydrocarbon
toxicity is oxidative stress, supplementing the diets of chickens
exposed to pollutants with antioxidants is crucial, and the
possibility of the supplement inducing epigenetic changes that
promote hydrocarbon tolerance should be investigated. Based on
the premise that expression patterns regulated by epigenetic
processes, particularly DNA methylation, serve as a conduit for
transmitting environmental information across generations via
parental germ lines, such a change could be transgenerational
(Weyrich et al., 2016). These studies may contribute to the
identification of molecular markers for the creation of
hydrocarbon-tolerant breeds.
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