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Immune checkpoint inhibition for the treatment of cancer has provided a
breakthrough in oncology, and several new checkpoint inhibition pathways are
currently being investigated regarding their potential to provide additional clinical
benefit. However, only a fraction of patients respond to such treatmentmodalities,
and there is an urgent need to identify biomarkers to rationally select patients that
will benefit from treatment. In this study, we explore different tumor associated
characteristics for their association with favorable clinical outcome in a diverse
cohort of cancer patients treated with checkpoint inhibitors. We studied
29 patients in a basket trial comprising 12 different tumor types, treated with
10 different checkpoint inhibition regimens. Our analysis revealed that even across
this diverse cohort, patients achieving clinical benefit had significantly higher
neoepitope load, higher expression of T cell signatures, and higher PD-L2
expression, which also correlated with improved progression-free and overall
survival. Importantly, the combination of biomarkers serves as a better predictor
than each of the biomarkers alone. Basket trials are frequently used in modern
immunotherapy trial design, and here we identify a set of biomarkers of potential
relevance across multiple cancer types, allowing for the selection of patients that
most likely will benefit from immune checkpoint inhibition.
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Introduction

Immune checkpoint inhibition (ICI) is an approved treatment
modality for several cancer types, and various novel combinations of
ICI are being tested in a large number of clinical trials (Tang et al.,
2018). Despite the success of this treatment modality, a substantial
fraction of patients does not respond. Consequently, there is an
urgent need to identify biomarkers that allow for the selection of
patients that are most likely to benefit from ICI. Tumor mutational
burden (TMB), defined as the number of non-synonymous
mutations, has been demonstrated as a potential biomarker
(Chan et al., 2018) also across a diverse set of cancers (Goodman
et al., 2017). However, it is evident that TMB as a single parameter
does not apply to all patient groups (Blank et al., 2018; Holm et al.,
2022). The TMB is believed to drive the antigen recognition of
tumors, and hence the predicted neoepitope load might serve as an
even better parameter to determine the tumor immunogenicity.
Neoepitope load consists of the number of predicted neopeptides
originating from non-synonymous mutations, potentially presented
by the human leucocyte antigen (HLA) class I molecules. Studies
show that the clinical benefit of immunotherapy is associated with
high neoepitope load across multiple cancer types (Wells et al.,
2020), underlining the possibility of using this parameter as a
biomarker, but not all studies agree with this assertion (Wood
et al., 2020). Programmed cell death protein 1 (PD-1),
Programmed death ligand 1 (PD-L1), and 2 (PD-L2) have been
discovered as single biomarkers for ICI treatments that block the
PD-L1/PD-L2 to PD-1 interaction, but the predictiveness of these
biomarkers are complex and do not work for all patients (Latchman
et al., 2001; Yearley et al., 2017; Yang et al., 2019; Burdett and Desai,
2020).

Evaluation of novel immunotherapeutic treatments for cancer
is frequently initiated using a “basket trial” design, as most of such
therapies can potentially benefit patients with different cancer
diagnoses, and that features of responsiveness often appear to be
similar across different cancer indications. This indeed holds true
for both expression of PD-L1 (Herbst et al., 2014; Doroshow et al.,
2021), T cell infiltration (Ros-Martínez et al., 2020), and TMB
(Samstein et al., 2019; Sha et al., 2020). In the present study, we
evaluate a diverse patient group for potential genetic signatures
that can be relevant for response to ICI. We utilize whole exome
sequencing (WES), RNA sequencing (RNAseq), and expression
arrays from patients treated with ICI to investigate the impact of
high TMB, neoepitope load, and transcriptional signatures in the
tumor microenvironment (TME) on patients’ overall survival
(OS) and progression-free survival (PFS). On this basis, we
have identified combinations of tumor characteristics and
immune signatures that can strengthen the identification of
patients that will likely experience clinical benefit following ICI
treatment.

Material and methods

Patients

The study cohort contains thirty-two patients with metastatic
solid tumors referred to treatment with checkpoint inhibitors,

blocking the PD-L1 and PD-1 axis from December 2014 to
February 2018. Patients in this cohort were, by the time of the
first medical appointment, offered inclusion into the Copenhagen
Prospective Personalized Oncology (COPPO) study at the Phase
1 Unit—Rigshospitalet, Copenhagen, Denmark (Tuxen et al., 2014;
Tuxen et al., 2018). Prior to treatment initiation, patients was
informed about and consented to the possibility of
comprehensive genomic analysis, i.e., whole-exome sequencing
and RNA sequencing of their tumors. This program is a
feasibility study in phase I setting for patients with solid tumors
and exhausted treatment options.

Inclusion criteria for immune therapy were defined by the
protocols with available slots (EUDRACT number: 2013-002844-
10, 2014-002835-32, 2014-002605-38, 2014-000948-14, 2015-
003771-30, and 2017-001147-13) and for two patients (pt no.
10 and 20) treatment off-label was given based on high
mutational burden (>1,000 non-synonymous mutations).
Response to treatment was assessed according to the “response
evaluation criteria in solid tumors” (RECIST) 1.1 criteria. For
clinical evaluation, we report, the best RECIST response obtained
and lasting for at least 2 months.

Fresh Tumor biopsies were primarily taken from metastatic
sites, including lymph node and liver. Before the treatment
initiation. DNA was purified from blood (germline) and tumor
to determine the tumor specific somatic mutations through WES.
Three patients were excluded from the analyses, because no pre-
treatment biopsy was available (two patients); or no germline WES
from blood was available (one patient). Consequently, the presented
analyses are based on the remaining 29 patients. Demographic data
for these 29 patients can be seen in Table 1. It should be noted that
the RNAseq analysis for patient no. 19 did not succeed, but the
patient is still included in the data analysis using the
microarray data.

Molecular analysis of tissue biopsies

Biopsies stored in RNAlater (Sigma-Aldrich) were used for
comprehensive molecular profiling. Briefly, DNA and RNA were
isolated using AllPrep DNA/RNA kit (Qiagen). Blood samples
were collected in EDTA tubes, and genomic DNA was extracted
using a Tecan automation workstation (Promega). Molecular
profiling consists of whole-exome sequencing (Illumina
platform) and mRNA expression arrays (Human U133 Plus2.0,
Affymetrix).

DNA libraries were prepared from 200 ng of DNA.
Fragmentation was done on Covaris S2 (Agilent) to
approximately 300-bp fragments, and adaptor ligation was done
using KAPA HTP Library Preparation Kit. Exomes were enriched
with SureSelectXT Clinical Research Exome kit (Agilent).
Sequencing was carried out as paired-end sequencing, aiming at
an average coverage of 50–100x using the HiSeq2500 and
NextSeq500 platforms from Illumina. RNAseq libraries were
prepared from 100 ng of total RNA using the Total RNA-Seq
library Prep Kit (Illumina). Sequencing was done on the
HiSeq2500 and NextSeq500 platforms.

Purified RNA was immediately analyzed on microarrays. RNA
was reverse transcribed and used for cRNA synthesis, labeling, and
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hybridization with GeneChip®Human Genome U133 Plus 2.0 Array
(Affymetrix) according to the manufacturer’s protocol. The arrays
were washed and stained with phycoerythrin conjugated

streptavidin using the Affymetrix Fluidics Station 450, and the
arrays were scanned in the Affymetrix GeneArray 3,000 7G
scanner to generate fluorescent images.

TABLE 1 Overview of diagnoses, given treatment and response pattern.

Id Gender Age Diagnosis Treatment RECIST (best
obtained)

Biopsy site Number of prior
treatments

1 Female 64 PAAD Atezolizumab + Cergutuzumab
Amunaleukin

PD Liver 2

2 Female 62 BRCA Atezolizumab PD Liver 6

3 Female 28 COAD Atezolizumab + Cergutuzumab
Amunaleukin

PD Lung 3

4 Female 46 READ Atezolizumab + Cergutuzumab
Amunaleukin

PD Liver 3

5 Female 42 CESC Atezolizumab + Selicrelumab PD Lymph node 6

6 Male 70 PAAD Atezolizumab + Cergutuzumab
Amunaleukin

PD Lung 2

7 Female 50 CCA-IG Ipilimumab + Nivolumab PD Peritoneum 4

8 Female 51 SKCN Pembrolizumab PD Liver 3

9 Female 43 BRCA Pembrolizumab PD Lymph node 6

10 Male 71 COAD Nivolumab PD Primary tumor 2

11 Male 70 BLCA Pembrolizumab PD Peritoneum 2

12 Female 47 BRCA Atezolizumab + Selicrelumab PD Liver 6

13 Male 61 UC-U Pembrolizumab SD Liver 2

14 Female 38 CESC Pembrolizumab PR Lymph node 4

15 Female 53 CDC-K Nivolumab PR Kidney 1

16 Female 71 BRCA Atezolizumab SD Subcutaneous/
Cutaneous

7

17 Female 56 BLCA Atezolizumab + Selicrelumab SD Other 2

18 Female 70 BLCA Ipilimumab + Nivolumab PR Lymphnode 2

19 Male 64 BLCA Ipilimumab + Nivolumab CR Lymphnode 2

20 Male 42 COAD Pembrolizumab PD Subcutaneous/
Cutaneous

3

21 Male 74 LIHC Nivolumab + Relatlimab CR Liver 2

22 Male 61 BLCA Pembrolizumab PR Lymph node 1

23 Male 73 READ Atezolizumab + Cibisatamab PD Liver 3

24 Female 63 OV Atezolizumab + BET inhibitor PD Subcutaneous 6

25 Female 41 BRCA Chemotherapy + Pembrolizumab PR Lymph node 3

26 Female 42 BRCA Chemotherapy + Pembrolizumab PD Lymph node 1

27 Female 56 COAD Atezolizumab + Cibisatamab PD Liver 2

28 Female 49 OV Atezolizumab + BET inhibitor SD Lymph node 3

29 Male 67 READ Atezolizumab + Selicrelumab PD Liver 4

The cohort consists of 12 different diagnoses, including; BLCA; bladder urothelial carcinoma, BRCA; breast invasive carcinoma, CCA-IG; Clear cell adenocarcinoma-intern genitalia, CDC-K;

Collecting duct carcinoma-kidney, CESC; cervical squamous cell carcinoma and endocervical adenocarcinoma, COAD; colon adenocarcinoma, LIHC; liver hepatocellular carcinoma, OV;

ovarian serous cystadenocarcinoma, PAAD; pancreatic adenocarcinoma, READ; rectum adenocarcinoma, SKCN; skin cutaneous melanoma, UC-U; Urothelial carcinoma-Urethra. The given

chemotherapy consists of Carboplatin and Gemcitabine. In total, the cohort consists of 10 males and 19 females. The average age of the cohort is 56 years ranging from 28 to 74 years. The

average number of treatments prior to the ICI, treatment for this study is 3.2 ranging from 1 to 7 different kinds of treatments.
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Next-generation sequencing data analysis

WES and RNAseq data were processed according to the
Genome analysis tool kit (GATK) best practice guidelines for
somatic variant calling (Van der Auwera et al., 2013). Raw reads
from both were quality trimmed using the wrapper tool Trim
Galore 0.4.0 (Krueger, 2021), combining Cutadapt (Martin,
2011) and FastQC (Andrews, 2010) trimming reads to an
average phred score of 20 and a minimum length of
50 bp. Reads were aligned to the human genome (GRCh38)
using the Burrows-Wheeler Aligner (Li and Durbin, 2009)
version 0.7.16a with default mem options and with a read-
group provided for each sample, thereby ensuring
compatibility with the following steps. Reads were sorted
using Samtools 1.6 (Li et al., 2009). Duplicated reads were
marked using the Picard-tool version 2.9.1 MarkDuplicates.
To reduce false positive variant calls, base recalibration was
performed with GATK version 4.0.1.1. SNV and indel calls
were made using GATKs build-inn version of MuTect2
(Cibulskis et al., 2013) designed to call somatic variants for
both single nucleotide variants (SNVs) and indels from
matched tumor and normal samples. HLA alleles of each
patient were inferred from the WES data using OptiType 1.2
(Szolek et al., 2014) with default settings after filtering the reads
aligning to the HLA region with RazerS version 3.4.0 (Weese
et al., 2012) Kallisto 0.42.1 (Bray et al., 2016) was used to
determine the gene expression from RNAseq data.

Differential expression analysis and gene set
enrichment analysis

Raw microarray data were imported into R and normalized by
the Robust Multi-array Average (RMA) algorithm. The
“hgu133pLus2. db” package version 4.1.0 was used to translate
between probe set IDs and Human Gene Organization (HUGO)
gene names. The “limma” package (Smyth, 2005) (version 3.5.3) was
used to test for differential expression between groups with
770 selected genes from a pan cancer gene panel (Cesano, 2015).
p values were adjusted using the method of Benjamini and Hochberg
(BH). The package “ComplexHeatmap” version 2.13.1 was used to
create heat maps (Yu et al., 2012; Gu et al., 2016) of the differential
expressed genes with adjusted p-value <0.05 and log
foldchange >0.5 and log foldchange < −0.5. Gene Set Enrichment
Analysis (GSEA) is made from the differential expression analysis
results in R with cluserProfiler (Yu et al., 2012) version 4.0.5 and
enrichplot (Yu, 2021) version 1.13.2 with Gene Ontology pathway
database. CYT was calculated as the geometric mean of the gene
expression of granzyme A (GZMA) and perforin (PRF1) both for
microarray and RNAseq.

Assessment of TMB and neoepitope load

The total tumor mutational burden of all mutations acquired
in each tumor was assessed by counting each entry passing the
filtering criteria of GATK4’s MuTect2 output VCF file. This VCF
file was given as input to the neoepitope predictor, mutant

peptide extractor and informer (MuPeXI) 1.2.0 (Bjerregaard
et al., 2017) together with RNAseq expression values obtained
from Kallisto in transcripts per million (TPM) and the HLA
alleles detected by OptiType. The output neopeptides were
selected based on the expression level of the gene of origin
(>0.1 TPM) and the predicted MHC binding eluted ligand
percentile rank (EL %Rank) score <2, evaluated by
NetMCHpan 4.0 (Jurtz et al., 2017). The number of selected
potential neoepitopes was used as the neoepitope load.
Additionally, TMB of non-synonymous mutations were
determined from the MuPeXI output logfile summarizing
peptides originating from missense variant mutations, in-
frame insertions, and deletions, together with frameshift
mutations. Mutation types were determined by Ensembl’s
variant effect predictor (VEP) version 87 (McLaren et al.,
2016) as a dependency of MuPeXI.

Determination of T cell diversity by
CDR3 sequence identification from RNAseq

MiXCR (Bolotin et al., 2015) version 2.1.1 was used to
determine complementarity-determining region 3 (CDR3)
sequences from bulk RNAseq data with the optimized setting
for this specific purpose (Brown et al., 2016). The quality
trimmed reads from RNAseq were used as input following
MiXCR’s identification of specific clone identification from the
IMGT database (Smyth, 2005) reference of known
CDR3 sequences, together with the clone count of each clone
detected referring the reads aligning to this specific clone of the
CDR3 reference library. Shannon entropy (Shannon, 1948) was
calculated as a T cell diversity measurement based on the number
of unique CDR3 sequences, or T cell clones, detected in the
individual patient (Stewart et al., 1997).

Survival analysis

Patients are separated into two groups compared to the median
of the observed value. For a patient to be included in the “high”
category in the combination of biomarkers, that patient must have
values above or equal to the median for all biomarkers within the
combination, while the remaining patients are then placed in the
“low” category. Additionally, we included combinations of whether
patients were “high” in three or more and two or more of any of the
four investigated biomarkers compared to the remaining patients.
Hazard ratios with the corresponding confidence intervals were
calculated for each biomarker and all combinations, whereas the
single and the best combinations were using the suvminer packages
version 0.4.9 (Alboukadel Kassambara et al., 2021) and survival
packages version 3.5.0 (Therneau and Grambsch, 2000) in R studio
version 4.1.1.

Statistical analysis

Since the data analyzed in this study is not normally
distributed, an unpaired Mann-Whitney/Wilcoxon rank-sum
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test was used, with normal approximation using continuity
correction of the calculated p-value to calculate and determine
statistically significant differences between groups using R
statistical software version 4.1.1.

Validation cohort

The validation cohort consists of 24 metastatic urothelial
carcinoma (mUC) patients (Holm et al., 2022). WES and
RNAseq are preprocessed in the same manner as the sequencing
data from this study, and a detailed description can be found in
(Holm et al., 2022). Shortly, variants are called with GATK 3.8, and
TPM from each gene was found by Kallisto alignment.

Results

Patient cohort and clinical outcome

We investigated different biomarkers for their potential to
identify patients with a favorable clinical outcome in a diverse
cohort of 29 cancer patients with 12 different tumor indications
treated with 10 different ICI combinations. All treatments included
blocking the PD-1 to PD-L1/PD-L2 interaction (Table 1). In total,
15 patients were treated with PD-1 ICI (Pembrolizumab, or
Nivolumab) and 14 patients with PD-L1 ICI (Atezolizumab),
often in combination with other treatment modalities (e.g.,
Ipilimumab, chemotherapy or antibodies blocking other immune
checkpoint molecules).

FIGURE 1
Treatment trajectory, Tumor mutational bourdon and neoepitope load. (A) The treatment trajectory for each patient is plotted according to
response, with annotations of key dates, treatment period is highlighted in pink. (B) Each patient is represented in a barplot of predicted neoepitope load
with annotations according to best obtained RECIST criteria, cancer type, and immunotherapy treatment combination. Patients with high microsatellite
instability are annotated with a triangle. BLCA; Bladder Urothelial Carcinoma, BRCA; Breast invasive carcinoma, CCA-IG; clear cell adenocarcinoma
- intern genitalia, CDC-K; collecting duct carcinoma-kidney, CESC; Cervical squamous cell carcinoma and endocervical adenocarcinoma, COAD; Colon
adenocarcinoma, LIHC; Liver hepatocellular carcinoma, OV; Ovarian serous cystadenocarcinoma, PAAD; Pancreatic adenocarcinoma, READ; Rectum
adenocarcinoma, SKCN; Skin Cutaneous Melanoma, STAD; Stomach adenocarcinoma, UC-U; Urothelial carcinoma-Urethra. (C-E) The mutation and
neoepitope load are colored according to best obtained RECIST criteria and grouped by progressive vs. non-progressive disease statistic test are med
with Wilcox test. (C) Total mutation burden (p-value = 0.069, Wilcoxon rank sum test). (D) Non-synonymous mutations (p-value = 0.012, Wilcoxon rank
sum test) and (E) number of predicted neopeptides—referred to as neoepitope load (p-value = 0.009, Wilcoxon rank sum test).
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FIGURE 2
Immunological transcriptional profiling. Differential gene expression analysis between patients with progressive disease vs. non-progressive disease
displayed as a volcano plot. (A) Shoving all probes extracted from the 770 gene PanCancer Immune Profiling Panel colored according to log foldchange
(LogFC) for probes with an adjusted p-value below 0.05 and LogFC above 0.5 and below minus 0.5. Probes with the highest variety in LogFC and lowest
p-values are highlighted together with probes for PRF1, GZMA, and PDCDLG2. (B) The mean expression of the significant probes was gathered to
reveal 188 significantly differentially expressed genes with z-scores displayed in a double clustered heatmap annotated with best-obtained RECIST
criteria, neoepitope load, and T cell diversity (Shannon Entropy). (C+D) Significantly gene ontology (GO) pathways enriched in the non-progressive group
from the gene set enrichment analysis. (C) Lymphocyte activation and lymphocyte differentiation. (D) T cell activation and T cell differentiation. (E-H)
Comparing non-progressive with progressive disease patients and the statistic test are made with Wilcoxon rank sum test. (E) Expression of PD-L2 was
found to be significantly higher in patients with the non-progressive disease (p-value = 0.001). However, when separating PD-L2 expression into patients

(Continued )
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Response to therapy was evaluated using RECIST 1.1 as the
best obtained response was reported. The patient cohort included
two complete responders (CR), five patients with partial response
(PR), four with stable disease (SD), and 18 with progressive
disease (PD). In this study, we investigate the differences
between patients with PD and non-progressive disease (CR,
PR, SD). The cohort included twenty deceased patients due to
progressive disease, while ten patients were still under
observation by the end of the analysis (five of these with no
signs of disease progression) (Figure 1A). All patients had
previously been treated with at least one and up to seven prior
treatment lines, none of which were immunotherapies (Table 1).
It is noteworthy that two patients obtained CR, and both received
a combination of checkpoint inhibition treatments, nivolumab
and ipilimumab, and nivolumab and relatlimab (LAG-3),
respectively. When looking into the different checkpoint
inhibition combinations used and the cancer type of the
patients included, no obvious difference in clinical response
related to treatment regimen nor cancer type was observed
(Figure 1B). When comparing the survival of the patients
receiving monotherapy to those receiving combination
therapy, no difference was observed (Supplementary Figure
S1). It should be noted, however, that this study is not
intended to identify the difference between tumor or
treatment indications since each tumor type and treatment
strategy are scarcely represented.

Neoepitope load is associated with non-
progressive disease

First, we investigated biomarkers known to influence overall
survival in uniform cohorts of one cancer type including the
TMB and the neoepitope load. When ranking the 29 patients
according to the predicted neoepitope load, we observed that
patients do cluster based on clinical outcome, progressive
compared versus non-progressive disease (Figure 1B).
Interestingly, the two patients with colon cancer with
microsatellite instability (MSI) were found in the PD patient
group (patient no. 10 and 20), despite their very high
neoepitope load. When comparing the two patient groups,
progressive disease vs. non-progressive disease, no significant
difference between was observed in the TMB for all mutations
identified (Figure 1C), but we did observe a significant
difference (p-value = 0.069) in TMB for non-synonymous
mutations only (Figure 1D), and the prediction of their
neoepitope load provided even further separation (p-value =
0.009) between the two patient groups (Figure 1E).

Selected T cell signatures identifies patients
with treatment benefit

To investigate whether distinct gene signatures differentiate the
patients with progressive disease vs. non-progressive disease, we
performed a differential expression analysis of a 770-pan-cancer-
immune-related-gene-panel from both the expression array data
and the RNAseq data. Due to higher sensitivity, we display the
analysis of the microarray data in the main figures. The differential
expression analysis revealed that 322 microarray probes,
(Figure 2A), were differentially enriched between the two groups.
Following double cluster analysis of the mean of these enriched
probes, they condense into 188 genes. This gene signature tends to
cluster according to disease outcome (RECIST), with a particular
clustering of the patients with non-progressive disease vs.
progressive disease (Figure 2B). We note that the two MSI
colorectal cancer patients with the highest neoepitope load are
clustered together with the other progressive disease patients
according to the gene enrichment signature from the TME,
indicating that an unfavorable tumor microenvironment may
override the role of the high TMB in promoting tumor
foreignness and immune recognition (Figure 2B). To identify
biological pathways of interest, a gene set enrichment analysis
(GSEA) was performed, revealing lymphocyte differentiation
(Figure 2C) and more specifically, T cell differentiation pathways
(Figure 2D) to be significantly enriched in the group of patients with
non-progressive disease.

To investigate potential biomarkers from the tumor
microenvironment (TME) that could be used to identify patients
who will benefit from treatment, we investigated the intratumoral
T cell presence and associated factors immunological signatures.
Based on two different probe sets we find PD-L2 (gene synonym
PDCD1L2), highlighted in Figure 2A, to be preferentially expressed
in the TME from patients with non-progressive disease. When
evaluating the expression level of PD-L2 in the individual
patients, we observed a significantly higher expression (p-value =
0.001) in patients with non-progressive disease compared to
progressive disease patients (Figure 2E, left) and confirmed in
RNAseq (Supplementary Figure S2A). The ICI treatment with
anti-PD-Ll blocks the interaction between PD-1 and PD-L1 but
have no direct effect on the binding of PD-L2 to PD-1. Hence, we re-
evaluated the PD-L2 expression data by splitting patients into two
groups depending on their treatment modality including anti-PD-
1 or anti-PD-L1, respectively. As a consequence of this split, the
number of subjects is low, and the PD-L1 treated cohort includes
only SD patients in the “non-progressor” group. Albeit the data
suggest that the predictive effect of PD-L2 expression is stronger in
the anti-PD-1 treated patients (Figure 2E, middle + right).

FIGURE 2 (Continued)
receiving PD-1 immune checkpoint inhibition (ICI) and those who have received PD-L1 ICI only a significant difference in PD-L2 expression can be
found for the PD-1 ICI treated patients (p-value = 3.1 · 10−4) and not for those who have been treated with PD-L1 ICI (p-value = 0.456). (F) The same was
found for the cytolytic value (CYT), measured as the geometric mean of granzyme A and perforin (p-value = 0.003). (G) T cell infiltration analysis
identifying CDR3 sequences from bulk tumor RNAseq data showed that the patients benefiting from treatment had a significantly higher T cell
diversity measured by the Shannon Entropy (p-value = 0.002).
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We investigated Cytolytic activity (CYT) as a biomarker in this
cohort, which previously has been described as a biomarker for
response to immunotherapy (Rooney et al., 2015), and found that
CYT has a significantly higher expression (p-value = 0.003) in
patients with non-progressive disease (Figure 2F), further
confirmed in the RNAseq (Supplementary Figure S2B). Further,
we examined the T cell infiltrate by the T cell diversity, and we found

that the patients with non-progressive disease have a significantly
higher (p-value = 0.001) T cell diversity compared to patients with
progressive disease (Figure 2G). The T cell diversity correlates with
CYT (person correlation = 0.744) as both strategies quantify the
T cell infiltrate (Supplementary Figure S2C). We found that both
neoepitope load, PD-L2 expression, CYT, and T cell diversity can be
used as potential biomarkers to distinguish non-progressive disease

FIGURE 3
Survival analysis. (A) Cox-regression analysis for four suggested biomarkers PD-L2 expression (PDL2), Cytolytic Activity (CYT), T cell diversity
measured by the Shannon Entropy (Tdiv), and Neoepitope load (NeoLoad), and all combinations of these four biomarkers where “high” were defined by
values above or equal to themedian. On the x-axis, the square indicates the hazard ratio (HR) and the error bars indicate the confidence interval. The color
indicates whether the biomarker is a single biomarker (in black) or a combined biomarker (in orange). Left; the analysis for Overall Survival (OS) and
right; the analysis for progression-free survival (PFS). (B) Kaplan-Meier curves for the top four combinations obtained from the analysis made from the
cox-regression analysis with survdiff log-rank test for p-values. Left; a combination of high NeoLoad, high PD-L2 expression, and high CYT showed
significantly improved survival probability for both PFS (p = 2 · 10−4) and OS (p = 0.003). Middel-left; patients with high in three or more signatures, also
had increased survival probability both for PFS (p = 4.4 · 10−5) and OS (p = 3.7 · 10−4), middel-right; patinets with high NeoLoad and CYT, respectively PFS
(p = 4.6 · 10−4) and OS (p = 0.010). Right; patients with high NeoLoad, and PDL2, respectively, also had increased survival probability both for PFS (p =
1.0 · 10−4) and OS (p = 0.004).
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patients from progressive disease patients. By combining predicted
neoepitopes with PD-L2 expression, non-progressive disease
patients are clustered in the high-high quadrant split by the
median of each value (Supplementary Figure S2D). The same
pattern can be observed with CYT and PD-L2, as well as
neoepitope load and CYT (Supplementary Figures S2E, F).
Consequently, these may be interesting features for a combined
biomarker.

Combined biomarkers improve survival
probability

To examine the probability of four different suggested
biomarkers, Neoepitope load (NeoLoad), PD-L2 expression
(PDL2), CYT, and T cell diversity (Tdiv), and combinations
hereof to identify patients with a favorable clinical outcome, we
applied cox regression to analyze the association with OS and PFS.

FIGURE 4
Validation cohort. Cox-regression and survival analysis from the validation cohort with survdiff log-rank test for p-values. (A) Kaplan-Meier curves for
best four combinations found in the cohort from the basket trail with progression-free survival (PFS) in the top and overall survival at the bottom where
high indicates values above or equal to the median for the cohort. Left; comparing patients with high neoepitope load (NeoLoad), high cytolytic activity
(CYT), and high PD-L2 expression (PDL2) to the remaining patients which showed that patients with high NeoLoad, CYT, and PDL2 had a higher PFS
and OS probability (p = 0.034 and 0.046). Middle-left; three or more signatures as high compared to the remaining where PFS is significant in PFS (p =
0.034) and non-significant in OS (p = 0.065). Middel-right; patients with high NeoLoad and CYT, respectively PFS (p = 0.092) OS (p = 0.163). Right;
patients with high NeoLoad and PDL2, respectively, compared to the remaining patients resulted in a significantly higher PFS probability for the patients in
the “high” group (p = 0.046) and a significantly higher OS probability (p = 0.011). (B) Cox-regression analysis of the four different suggested biomarkers
including PD-L2 expression (PDL2), Cytolytic Activity (CYT), T cell diversity measured by the Shannon Entropy (Tdiv), and Neoepitope load (NeoLoad) and
all their combinations illustrated for overall survival (OS) and Progression-free survival (PFS). Black squares indicate the hazard ratio, whereas the error bars
indicate the confidence interval. The color indicates whether the biomarker is a single biomarker (in black) or a combined biomarker (in orange).
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We analyzed all biomarkers individually and all possible
combinations of the biomarkers. For the analysis, two groups
(“high” and “low”) were established for each biomarker split by
their median value. From this analysis, we found that the best
combination of biomarkers according to the hazard ratio for PFS
and OS was obtained when CYT, NeoLoad, and PDL2 were
combined (Figure 3A) with hazard score of 0.05 (0.01–0.42) and
0.14 (0.03–0.63), respectively. The four best biomarker
combinations were illustrated using Kaplan-Meier curves
(Figure 3B). All four combinations can significantly separate
favorable from unfavorable patient outcome, based on PFS and
OS, respectively. All individual biomarkers were illustrated with
Kaplan-Meier curves (Supplementary Figure S3).

Validation cohort

WES and RNAseq from a cohort of 24 metastatic urothelial
carcinoma (mUC) patients all treated with anti-PD-L1 ICI (Holm
et al., 2022), were used to validate the investigated biomarkers. The
first combination with NeoLoad, CYT, and PDL2 was significant in
identifying patients with longer PFS (p-value = 0.034) and OS
(p-value = 0.046) (Figure 4A, left). The combination of any three
or more biomarkers categorized as high also showed a significant
difference in PFS (p = 0.034) and borderline non-significant
separation in OS (p = 0.65) (Figure 4A, middle-left). Thus, while
confirming the findings from the basket trial, the CYT value seemed
to play less of a role in the mUC cohort (Figure 4A, middle-right),
and where the combination of only NeoLoad and PDL2 provided
equally good separation related to both PFS (p-value = 0.046) and
OS (p-value = 0.011) (Figure 4A, right). Neoepitope load, CYT, T cell
diversity, and PD-L2 were also individually investigated for their
predictive value in the validation cohort, but no significance was
observed based on the single parameters (Supplementary Figure S4).
Cox-regression analyses were conducted for the validation cohort, as
in the primary cohort, using all suggested biomarkers and all
combinations (Figure 4B). Again, this demonstrated that
NeoLoad and PDL2 was the best combination to predict patient’s
outcome, related to both PFS and OS.

Overall, both the primary cohort and the validation cohort agree
that a combination of biomarkers was better at predicting survival
than a single biomarker alone. Summarizing based on the two
cohorts, patients with high neoepitope load, and high PD-L2
expression, potentially combined with high CYT, resulted in a
significantly improved survival probability.

Discussion

Despite the recent success of immunotherapy, the objective
response rate rarely reaches >50% (Yarchoan et al., 2017;
Chowell et al., 2022). Hence, there is a need to segregate patients
likely to respond to treatment and understand the biological basis of
treatment success and failure.

In this study, we explore the impact of neoepitope load, PD-L2
expression, cytolytic transcriptional signature (CYT), and T cell
diversity (Tdiv) as biomarkers for predicting the outcome of ICI
treatment. Our data suggest that individual parameters can serve as

biomarkers to distinguish progressive from non-progressive disease
patients, but are rarely sufficient to predict treatment benefit across
broader patient cohorts, where tumor heterogeneity may be
substantial (Dagogo-Jack and Shaw, 2018; Liu et al., 2018). Here,
we observe that a single parameter, the neoepitope load (NeoLoad)
obtained a hazard score of 0.31 and 0.36 respectively, for PFS and
OS, but the two MSI patients with the highest NeoLoad represents
outliers, that did not benefit from the treatment, despite their high
NeoLoad. Using CYT alone, a hazard score of 0.24 and 0.26,
respectively, for PFS and OS was achieved, and in this case MSI
patients belonged to the “low” category, in accordance to their
clinical outcome. Similar observation can be obtained by observing
T cell diversity alone. These case stories demonstrates that single
biomarkers rarely covers the immune-response relevant
characteristics of a broader cohort. Consequently, the three single
biomarkers (NeoLoad, CYT, and Tdiv) revealed among the lowest
predictive value when used independently, both in main cohort and
the validation cohort (Figure 3A; Figure 4B). PD-L2 as a single
biomarker obtained the lowest hazard score compared to the other
single biomarkers, but the predictive value was further improved by
pairing with other characteristics, NeoLoad, CYT or Tdiv. When
using PDL2 as a single biomarker some of the PD patients were
placed in the “high” group and hence be wrongly predicted
(Supplementary Figure S2). All these observations suggests that a
combination of biomarkers is better suited to cover the patient- and
tumor diversity, and consequently provide a more robust predictive
value for patient selection. As such, the combination of NeoLoad
and PD-L2, and possible CYT expression could significantly identify
patients with clinical benefit in both our primary and validation
cohorts. Additionally, the selected biomarkers provided a significant
separation of patients, measured by their progression free survival
and overall survival, which may relate to both a predictive and
prognostic value of such immune signatures.

The clinical study examined here was conducted as a so-called
“basket” trial, where patients with numerous different cancer types
are subjected to the same clinical strategy and our data suggest that
the identified biomarkers can be used for patient stratification across
different tumor types and ICI treatments. This clinical practice
relates to the increased understanding that the characteristics
associated with clinical responses to immunotherapy are often
tumor-type agnostic and are defined by the immune and
inflammatory signature and foreignness of both the tumor cells
and the TME. Such characteristics can vary in different tumor types,
leading to different response rates to ICI, but the mechanism on
interaction and influence on treatment is most often tumor agnostic
(Taube et al., 2014; Chowell et al., 2022).

Our data demonstrate that combining biomarkers is more
robust than using a single biomarker, and analysis from the
validation cohort supports those findings. As an illustrative case,
patient no. 26, initially categorized as a partial responder progressed
quickly after the first treatment (therefore not meeting the
requirement of sustained a RECIST response for at least
2 months after treatment initiation). This patient turned out to
have a gene expression profile corresponding to non-progressors
(Figure 2B) but displayed the lowest detected neoepitope load of this
cohort. This example suggests that not only is the right immunologic
gene expression profile of the tumor tissue important but also a
sufficient neoepitope load is needed, most likely for the tumor cells
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to be “visible” to the immune system. On the other hand, a high
neoepitope load alone is not sufficient, as seen for the PD MSI
patients no. 10 and 20, who, despite having the highest neoepitope
load of the cohort (Figure 1D), displayed an immunological gene
signature comparable to the progressive disease patients (Figure 2B).
Interestingly, previous data has demonstrated high response rates to
checkpoint inhibition therapy in patients with MSI tumors (Le et al.,
2015), and based on such data checkpoint inhibition therapy is
approved for the treatment of all MSI cancers, despite origin
(Lemery et al., 2017). The two MSI-high cases included in our
cohort did not respond to therapy, and illustrates that additional
biomarkers are needed to identify those patients where checkpoint
inhibition is not sufficient even in this category of patients with a
high TMB.

Taken together, our study demonstrates the need to combine
different markers rather than relying on isolated markers when
selecting patients likely to benefit from ICI. The interactions
determining how T cells recognize and, ultimately, kill cancer
cells are the result of myriad processes, and modulating immune
response by check-point inhibition is only a single trigger in a
larger biological cascade. Attempts to establish a multiparametric
system comprising the mechanisms behind these interactions,
such as the cancer immunogram (Blank et al., 2016) have been
made, but the applicability in a clinical setting requires algorithms
capable of managing not only large-scale data but also different
types of data, and how to balance the input of the different
parameters. The idea of combining neoantigen and immune
signatures as a biomarker has been suggested in melanoma
patients treated with adoptive cell transfer (ACT) (Lauss et al.,
2017). Machine learning strategies with multiple biomarkers have
also been used to predict patient outcome for treatment with ICI
but these machine learning algorithms needs large-scale data to
make valuable predictions (Acharjee et al., 2020) and are therefore
not used in this study, where the patient cohort is relatively small.
The strategy applied here has the limitation that by separating
patients into two groups with respect to high and low expression of
certain gene signatures, some patients display borderline
characteristics, and hence may be false categorized. The
strength of machine learning approaches is their capacity to
address a continuum of expression and a large number of
parameters, thereby avoiding the need for strict and pre-defined
cut-off values. But as mentioned, this requires very large datasets to
avoid overfitting results and to capture the variability that is
observed within and across cancer patient cohorts. Access to
biological and clinical data from such large cohorts, where
sequencing data from different biological specimens are
available at high quality is still a major limitation towards
developing such algorithms.

PD-L2 interaction with PD-1 inhibits T cell activation
(Latchman et al., 2001). Furthermore, the function and
importance of PD-L2 have recently been investigated and
suggested as an important target for cancer (Solinas et al., 2020).
We see a correlation between high expression of PD-L2 and better
survival probability both for patients treated with anti-PD-1 and
anti-PD-L1. This trend could be explained by high expression of PD-
L2 in TME, being a signature of immune activity in the tumor site.
This agrees with a previous study that showed a positive correlation
between high PD-L2 expression and lymphocytic infiltration and

improved overall survival (Obeid et al., 2016). Furthermore, for
patients treated with anti-PD-1, the PD-L2 molecule is directly
involved in the immunosuppressive axis that is being blocked by
treatment.

The biomarkers suggested in this study, is identified from the
analysis of sequencing data and microarray data. Although two
datasets have been used, further validation of such signatures using
targeted strategies, such as qPCR, are warranted for validation.
Additionally, single-cell experiments would be of interest,
especially considering the PD-L2 expression, to determine
whether the expression arises from tumor cells or other cells in
the TME.

A challenge associated with most of the biomarkers currently
identified as relevant for the prediction of response to
immunotherapy, including those described here, is that they
require the availability of tumor material. Future initiatives are
heading towards an understating of how susceptibility to
immunotherapy can be evaluated by studying circulating tumor
cells (CTCs) and circulating tumor DNA (ctDNA) in peripheral
blood. Such material might be useful to determine the neoepitope
load if sufficiently representative of the tumor.

In conclusion, this study adds to the potential impact of PD-
L2, neoepitope load, CYT, and T cell diversity as potential
biomarkers. Data from our study and the validation cohort
suggest that PD-L2 and neoepitope load both with and
without CYT significantly predict patient survival. Due to the
small sample size, our results need further validation in larger
cohorts.
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