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Background: Predicting the resistance profiles of antimicrobial resistance (AMR)
pathogens is becoming more and more important in treating infectious diseases.
Various attempts have been made to build machine learning models to classify
resistant or susceptible pathogens based on either known antimicrobial resistance
genes or the entire gene set. However, the phenotypic annotations are translated
from minimum inhibitory concentration (MIC), which is the lowest concentration
of antibiotic drugs in inhibiting certain pathogenic strains. Since the MIC
breakpoints that classify a strain to be resistant or susceptible to specific
antibiotic drug may be revised by governing institutes, we refrained from
translating these MIC values into the categories “susceptible” or “resistant” but
instead attempted to predict the MIC values using machine learning approaches.

Results: By applying a machine learning feature selection approach on a
Salmonella enterica pan-genome, in which the protein sequences were
clustered to identify highly similar gene families, we showed that the selected
features (genes) performed better than known AMR genes, and that models built
on the selected genes achieved very accurate MIC prediction. Functional analysis
revealed that about half of the selected genes were annotated as hypothetical
proteins (i.e., with unknown functional roles), and that only a small portion of
known AMR genes were among the selected genes, indicating that applying
feature selection on the entire gene set has the potential of uncovering novel
genes that may be associated with and may contribute to pathogenic
antimicrobial resistances.

Conclusion: The application of the pan-genome-based machine learning
approach was indeed capable of predicting MIC values with very high
accuracy. The feature selection process may also identify novel AMR genes for
inferring bacterial antimicrobial resistance phenotypes.
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Introduction

Antimicrobial resistance (AMR) of bacterial pathogens is a
global issue associated with high morbidity and mortality (Akova,
2016; Frieri et al., 2017). According to a 2013 US Center for Disease
Control and Prevention (CDC) report, at least 23,000 people died
due to antibiotic-resistant infections (Prestinaci et al., 2015). The
same report also estimated that treating AMR-related infectious
diseases may cost as much as 55 billion USD per year, indicating the
huge losses caused by AMR pathogens.

There are multiple factors related to the rise of the AMR
pathogens. Drug resistances naturally occur when
microorganisms evolve mechanisms to protect themselves from
antimicrobial agents. This is especially the case during the
treatment phase of infectious diseases, in which pathogens may
quickly develop resistance against the antibiotic drugs and impede
the entire medical process. Very often patients with infectious
diseases are unnecessarily prescribed broad spectrum antibiotics
due to the inability of predicting the antimicrobial resistance
patterns as quickly as possible for the pathogens (Akova, 2016).
This practice may lead to a dramatic increase of bacterial resistance
to administered drugs, and, if not controlled, may result in the
spread of the drug-resistant bacteria to other patients and the
environments, eventually rendering the antibiotic drugs less
useful (Akova, 2016).

Antibiotic resistance in microbial pathogens is largely related to
their genetic content (Botelho and Schulenburg, 2021), and one of
the most common approaches for identifying potential AMR
pathogens is through the annotation of drug resistance genes by
comparing genes against databases to infer genotypic resistance
profiles of the pathogens (Peterson and Kaur, 2018). However, the
major limitation of the database-based approach is that novel
resistance genes and mechanisms cannot be uncovered using
database-based methods (Berman and Riley, 2013).

Pan-genome-based AMR data mining approaches are becoming
more and more popular in recent years. The concept of pan-genome
analysis is the appropriate approximation of genetic elements to
describe a species (Medini et al., 2005). In a nutshell a pan-genome is
a collection of all genes found in a bacterial species. Upon
considering multiple strains in the same species, the genes can
then be classified into core genes (i.e., present in all or most of
the strains) and accessory genes (or auxiliary genes, in which genes
can only be identified in a portion of the bacterial genomes) based on
the gene presence/absence patterns (Medini et al., 2005; McInerney
et al., 2017). Due to its nature in representing multiple strains for a
bacterial species, pan-genomes are very commonly applied to
conduct phenotypic association studies such as AMR analysis.
For example, Scoary is an analysis software that scores pan-
genome components based on their associated phenotypes
(Brynildsrud et al., 2016). PARMAP is another pan-genome-
based computational framework for predicting antimicrobial
resistance (Li et al., 2020). These and other tools (Lees et al.,
2018; McCarthy and Fitzpatrick, 2019; Tonkin-Hill et al., 2020)
show that pan-genome analysis can be very useful in drawing
antimicrobial resistance genotype/phenotype associations.

Since pan-genome data is, by its nature, a collection of gene
presence/absence patterns of different strains within a species, it can
be converted into machine learning-applicable format very easily.

Machine learning approaches can then be applied on the pan-
genome data to build prediction models for phenotypes such as
drug resistance profiles of pathogens based on the entire collection of
gene set. The main difference between the traditional approach
(i.e., mining and analyzing known resistance genes) and the pan-
genome-based approach is that the pan-genome is capable of
incorporating and analyzing all possible genes instead of just
known resistance genes, thereby avoiding the “uncharacterized
resistance genes” problem. Attempts have been made to predict
antimicrobial resistances based on the constructed pan-genomes
and yielded good prediction results (Kavvas et al., 2018;
Moradigaravand et al., 2018; Maguire et al., 2019; Hyun et al.,
2020; Khaledi et al., 2020). We have also developed pan-genome-
based approaches that predicted antimicrobial resistance profiles for
different pathogens using machine learning feature selection
methods (Her and Wu, 2018; Yang and Wu, 2022; Yang and
Wu, 2023). These examples demonstrated that applying machine
learning approaches on the pan-genome data may enhance the
prediction of AMR pathogens by including both known and
uncharacterized AMR genes.

Assessment of bacterial susceptibility to antimicrobials is based
on either inhibition zones or MIC values. By definition the MIC
values are the lowest concentrations of the water-soluble antibiotic
drug to inhibit the growth of specific microbial strains (Mann and
Markham, 1998). Upon obtaining the MICs, the values can then be
interpreted by breakpoints (which are source-specific such as CLSI
veterinary medicine standards) for specific pathogens established by
organizations such as the Clinical and Laboratory Standards
Institutes (CLSI), the European Committee on Antimicrobial
Susceptibility Testing (EUCAST), or other institutes like the U.S.-
centric CDER (U.S. Food and Drug Administration Center for Drug
Evaluation and Research) (Humphries et al., 2019). In other words,
the “resistant” and “susceptible” phenotypes were translated from
the defined breakpoints.

Onemajor drawback for suchMIC-phenotype translation is that
breakpoints may be revised based on gathered clinical data,
pharmacokinetic-pharmacodynamic property, or MIC
distributions (Hombach et al., 2012). For example, the CLSI has
revised breakpoints for several anaerobic bacteria in 2010/2011,
including the zone diameter breakpoints for Enterobacteriaceae,
Pseudomonas aeruginosa, and Acinetobacter baumannii against
third-generation cephalosporins, carbapenems, and
fluoroqinolones (Hombach et al., 2012). In 2019 the CLSI again
revised ciprofloxacin and levofloxacin breakpoints for
Enterobacteriaceae and P. aeruginosa, daptomycin breakpoint for
Enterococcus spp., and ceftaroline breakpoint for Staphylococcus
aureus (Humphries et al., 2019). These revisions showed that the
“resistant” or “susceptible” phenotypes may be outdated and
therefore need to be consistently updated with the publication of
new guidelines. In case that machine learning models would predict
categories (susceptible/resistant) instead of MIC-valus, the models
that were trained to outdated breakpoints might predict wrong
phenotypes and may need to be re-trained with the updated
phenotype annotations.

Several attempts have been made to conduct such regression
tasks. For example, Nguyen et al. has extracted k-mers and applied
XGBoost regression model to predict MIC values (Nguyen et al.,
2018), and Pataki et al. has extracted known resistance genes and
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used random forest and linear regression models to conduct feature
selection and MIC regression (Pataki et al., 2020). However Nguyen
et al. only considered ±1 two-fold dilution factor, and Pataki et al.
only incorporated known resistance genes without considering the
entire genome content. To the best of our knowledge a more
universal approach that predicts a wider range of MIC values
based on the entire genome content is still needed to take more
diverse pathogens with a wider range of MIC distribution into
account.

In this work we attempted to predict the MIC values instead of
resistant/susceptible categories based on a pan-genome-based
machine learning feature selection algorithm in order to avoid
the problem of potentially-outdated resistant/susceptible
categories. Since MIC values were numerically distributed, the
model was designed to regress the values based on the pan-
genome content. We applied the model on a Salmonella enterica
dataset as a test example since S. enterica is a zoonotic pathogen that
may colonize animals, humans, and plants and may also be found in
the environments (Knodler and Elfenbein, 2019). Approximately
1.4 million cases of salmonellosis occur on human in the
United States each year (Brenner et al., 2000) and caused
155,000 deaths annually (Eng et al., 2015). The drug-resistant
Salmonella was also associated with many outbreaks in the
United States (Nair et al., 2018). We therefore hope to develop a
computational methodology that allows accurate detection of
pathogen resistance profiles, which may be able to control the
outbreaks in time. In this manuscript we showed that the
protein-based pan-genome machine learning model was capable
of predicting MIC values with very good accuracy, and that the
feature selection approach was able to extract highly-associated
genes for downstream analysis.

Materials and methods

Genome collection and annotation

Fasta files of both genomes (.fna files) and translated proteins
(.faa files) of S. enterica strains were downloaded from the
PATRIC database (Wattam et al., 2017), which was one of the
most comprehensive antibiotic resistance databases that
consisted of both genome data and drug resistance metadata.
We made sure that only data entries consisted of the term
“Salmonella enterica” in its species name were downloaded
such that no other Salmonella species were included in this
study. The qualities of the genomes were checked by 1)
checkM v1.1.3 (Parks et al., 2015), and 2) mapping 16S
ribosomal RNA gene obtained from the S. enterica NCBI
reference genome (S. enterica subsp. enterica serovar
Typhimurium str. LT2; NCBI acc. NC_003197.2) against the
genomes using BLASTN (Altschul et al., 1997). Only genomes
with checkM completeness > 95%, contamination < 5%, and 16S
rRNA BLAST identity > 99% were considered in the ongoing
analysis. The complete genome ID list and accompanying
metadata (including their corresponding NCBI genome
accession IDs), which was compiled from the metadata file
“genome_metadata” downloaded from the PATRIC ftp site, is
available in Supplementary Table S1.

The protein fasta files (.faa) of the S. enterica strains that passed
the genome quality checks were collected and clustered at 95%
identity using CD-HIT v4.8.1 software (Li and Godzik, 2006)
(parameter: -c 0.95 -d 0 -M 16000) in order to generate the S.
enterica pan-genomes. All genes located on plasmids as well as on
the chromosomes were included in the analysis (will be discussed in
Discussion). The amount of core and accessory genes were then
estimated, in which core genes were defined as those that appear in
all (100%) strains while accessory genes were those that appeared
only in some but not all strains. The gene accumulation curve
distributions of the pan-, core-, and accessory-genes were estimated
by randomly sampling genomes and cumulatively calculating the
number of genes. The sampling process was repeated ten times to
obtain an averaged number of genes for the distributions. The
known AMR genes were identified by annotating known AMR
genes using both CARD/RGI v5.2.0 (Alcock et al., 2019) and
Resfams v1.2 (Gibson et al., 2015) on the representative
sequences of the CD-HIT results; genes that were discovered by
either CARD/RGI or Resfams were considered as known AMR
genes.

The drug resistance/susceptibility metadata (PATRIC_
genomes_AMR.txt) that included the minimum inhibitory
concentration (MIC) of S. enterica strains toward each drug was
also downloaded from the ftp site of the PATRIC database (ftp://ftp.
bvbrc.org/), in which strains with MIC information were obtained
regardless of the lab typing method for MIC (will be discussed in
Discussion). Since the MIC values were measured by gradual
dilution of the drug concentrations, the values were usually
distributed in the power of 2 (say, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64,
etc.). As a result, the downloaded MIC values were adjusted by
log2 when the values were associated with the genome strains.
Special care was taken to deal with signs other than “=” or
“<“==”.>==”. For greater than sign (>), the log2 adjusted MIC
values were incremented by 1. Similarly, for the less than sign (<),
the log2-adjusted MIC values were subtracted by 1. On the other
hand the greater than or equals to sign (≥) and less than or equals to
sign (≤) remained unchanged following (Nguyen et al., 2018). For
example, for the value “>256,” which means that the MIC
breakpoint was above 256, the log2-adjusted MIC values for this
entry is adjusted to be (log2256) + 1 � 8 + 1 � 9. General rules for
adjusting MIC values by log2 was shown in the following equation,
where x represented the de facto MIC value.

TransformedMIC�
log2x( )+1, if MICannotated as>x
log2x, if MICannotated as�x,��x,≤xor≥x

log2x( )−1, if MICannotated as<x

⎧⎪⎨
⎪⎩

Machine learning feature selection
approach for MIC prediction

Since the gene clustering tool, CD-HIT, is capable of putting highly
similar genes (95% amino acid identity) into the same group, each
group can be viewed as a gene “cluster” that encompasses genes that are
highly similar to each other at sequence level. One can think of the gene
clusters as potential gene families since the genes within a cluster are
very similar and may be orthologous proteins with identical or very
similar functions. On the other hand clustering algorithmmay partition
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sequences into different biologically meaningful groups, allowing the
function prediction of genes (Demuth et al., 2006).

To perform machine learning tasks for predicting MICs, the gene
clusters were integrated with the log2- adjusted MIC values to build
machine learning tables. The tables were constructed as follows. For
each table, columns represented the gene clusters (e.g., Cluster1,
Cluster2, etc.) while rows indicated different S. enterica strains. The
presence/absence pattern of the gene clusters were then extracted from
the gene clustering results, in which 1meant presence of the gene cluster
for corresponding strains and 0 otherwise. The log2-adjusted MIC
values of the strains for each drug were specified as an extra column.
Strains without MIC annotations were removed from each of the drug
tables; gene clusters that cannot be associated with any strains after
removing strains without MIC annotations were also purged from the
tables. Since the MIC value distributions for each drug were different,
distinct tables were created for different drugs. Only drugs that were
associated with at least 1,000 strains with MIC entries were included
into the ongoing analysis, including: amoxicillin/clavulanic acid,
ampicillin, azithromycin, cefoxitin, ceftiofur, ceftriaxone,
chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic
acid, streptomycin, sulfisoxazole, tetracycline, and trimethoprim/
sulfamethoxazole. See Supplementary Table S2 for detailed numbers
of strains of the drug datasets.

Feature selection was described as the process of obtaining and
selecting relevant features from the original feature set for making
better predictions in the dataset (Cai et al., 2018). We utilized the
idea of feature selection to find relevant gene clusters for predicting
MIC values. eXtreme Gradient Boosting (XGBoost), a scalable tree-
based machine learning algorithm that combines the advantages of
both Bagging and Boosting (Chen and Guestrin, 2016), was used for
feature selection purpose. Specifically, the function “XGBRegressor”
included in the Python XGBoost package was called to fit the log2-
adjusted MIC values by the gene presence/absence patterns with
default parameters (n_estimators = 100, max_depth = 6).

After applying the XGBoost feature selection approach, all
features with gini-importance > 0 were extracted and sorted by
descending importance order, which were then extracted, one-by-

one cumulatively, to feed into a Random Forest regression model
(scikit-learn package (Pedregosa et al., 2011); n_estimators = 100,
max_depth = None) in order to find the feature set that yielded the
best regression performances. A 10-fold cross validation approach
was utilized to obtain the regression outcome, and the predicted
MIC values were yielded by averaging the results of all 10-fold
models. The goodness-of-fit of the regression models were evaluated
by calculating the R-squared value [R2; indicating the proportion of
variance in the dependent variable explained by the model (Kasuya,
2019)] and root-mean-square error (RMSE) and conducted Pearson
correlation analysis on the pairs of predicted and actual MIC values.
The best feature sets for the drugs were selected as the one that
maximized the R2 values. The codes for running feature selection
and regression on the datasets is available at https://github.com/
mingren0130/regression. The gene clustering CD-HIT files for
generating the pan-genome and the gene presence/absence tables
are available at https://doi.org/10.6084/m9.figshare.21913689.v1.

Results

Totally 7,712 S. enterica genomes were downloaded from the
PATRIC database. After removing 463 low-quality and potentially
contaminated genomes, protein-coding genes in the remaining
7,249 genomes were clustered into 79,536 gene clusters, of which
1,479 and 78,057 clusters belonged to the core and accessory genes
respectively. The S. enterica pan-genome plot shown in Figure 1
demonstrated that the cumulative counts of accessory genes kept
growing with the number of genomes while the core gene number
remained almost stationary (the minimum, 1st quantile, median, mean,
and 3rd quantile numbers of core genes are 1,479, 1,609, 1831, 1961, and
2,329 respectively, indicating that the number of core genes changed very
slightly compared to the entire pan-genome or the accessory genes,
especially after adding just one-fourth of genomes into the pan-genome).
The rapid growth of accessory genes indicated that the gene pool of S.
enterica was likely unlimited and constituted the definition of open-pan-
genome (Costa et al., 2020).

FIGURE 1
Gene number distribution of the Salmonella enterica pan-genome, in which (A) shows the number of genes in the y-axis while (B) shows y-axis as
log10 scale. The x-axis indicates the number of genomes. Blue, red, and green colors represent the distributions of pan-, core-, and accessory-genes
respectively.
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After associating the drug MIC data with the strains in the pan-
genome, we selected 15 drugs that satisfied our selection criteria
(>1,000 MIC entries; see Methods section). An XGBoost feature
selection approach was conducted on the constructed pan-genome
gene presence/absence tables (see Methods) to identify meaningful
features; the features were then extracted to perform regression tasks
using Random Forest regression approach. As shown in Figure 2,
regression made on XGBoost-selected genes performed better than
using all genes, known AMR genes, or a k-mer-based regression
approach (Nguyen et al., 2018). The R2 metric, which can be used to
evaluate the goodness-of-fit of the prediction outcome, clearly
demonstrated that XGBoost-selected genes (R2 median = 0.93, 1st
quantile = 0.77, and 3rd quantile = 0.95) performed better than all
genes (R2 median = 0.85, 1st quantile = 0.69, and 3rd quantile =
0.75), known AMR genes (R2 median = 0.83, 1st quantile = 0.69, and
3rd quantile = 0.91), and the k-mer-based approach (R2 median =
0.80, 1st quantile = 0.38, and 3rd quantile = 0.86). Similar trends can
also be observed in the Pearson correlation analysis and RMSE
statistics (Supplementary Figures S1, S2), in which the XGBoost-
selected genes achieved highest Pearson correlation coefficient and
lowest RMSE for most of the drug datasets. Detailed evaluation
results are available in Supplementary Tables S3–S5.

The actual and predicted MIC values using XGBoost-selected
genes were also compared side-by-side. As shown in the boxplots in
Figure 3, the predicted MIC values were highly correlated with the
actual MIC values, indicating the efficacy of the selected features in
accurately predicting MICs across very wide value ranges (from

2−3–29). This result along with the high R2 values (Figure 2) clearly
supported the notion that the XGBoost-selected genes may serve as
good MIC predictors.

Besides better regression performances, the numbers of
XGBoost-selected genes were clearly fewer than all other gene
sets. As shown in Figure 4 and Supplementary Table S6, the
numbers of XGBoost-selected genes were significantly lower than
all gene set and known AMR gene set (Wilcoxon rank-sum test p <<
0.001 for both comparisons). The significantly lowered number of
genes (1st quantile, median, and 3rd quantile of the gene number
distribution are 36, 238, and 486; the minimum and maximum
number of genes are 11 and 660) indicated that the XGBoost
algorithm may be able to find smaller set of genes that were able
to predict more precise MIC values (Figure 2).

The functional roles of these genes were determined by gene
annotation provided by PATRIC. Among the functions of the genes
selected by the feature selection algorithm, the most abundant one was
hypothetical proteins (i.e., functionally unknown), as shown in Figure 5
(detailed functional occurrences of the XGBoost-selected genes were
provided in Supplementary Table S7). This result suggested that genes
with uncharacterized mechanisms may also play important roles in the
drug resistances, and that the XGBoost-selected genes, which were good
predictors for AMR phenotypes, may serve as potential candidates for
uncovering novel AMR functionalities.

We also cross-compared the proportion of XGBoost-selected
genes that belonged to known AMR genes (i.e., genes that appeared
both in the XGBoost-selected gene set and in the known AMR gene

FIGURE 2
Performance evaluations of different gene sets, including all genes, known AMR genes, the k-mer-based regression approach proposed by (Nguyen
et al., 2018), and XGBoost-selected genes. Y-axis indicates R2 evaluated by Random Forest regression through 10-fold cross validation.
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set for each drug). As shown in Figure 6, we identified that, among
the known AMR genes, the proportion of genes also identified by the
XGBoost algorithm was very low (from as low as 0.20% to as high as
2.56%; Supplementary Table S8). The shared amounts of genes were
shown as Venn diagrams for all 15 drugs in Supplementary Figure
S4. Annotations of known AMR genes (Supplementary Tables S9,
S10) also revealed that certain genes may be more crucial for S.
enterica drug resistances, in which some are more well-known [such
as TetA, TetB, TetC, and TetR for tetracycline resistance (Akiyama
et al., 2013)] while others may worth more investigation (for
example, a sensor protein identified for ampicillin resistance). A
closer look also showed potential cross resistances such as the
identification of chloramphenicol/florfenicol resistance MFS
efflux pump protein (annotated as FloR family) in ampicillin and
trimethoprim/sulfamethoxazole resistance datasets, hinting these
genes may contribute to multiple resistance mechanisms.

Discussion

In this study we attempted to build machine learning models for
predicting MIC values for S. enterica strains. Our purpose, as was

also illustrated in Introduction, was to avoid categorically predicting
whether strains were “resistant” or “susceptible” to certain drugs
since the breakpoints were determined and may be revised by
governing institutes. Once breakpoint revision happens, the
prediction of categories would not succeed anymore and the
model would have to be retrained. In addition different protocols
for microdilution (CLSI, EUCAST, etc.) may influence the
interpretation of AMR breakpoints. By contrast, in case of MIC-
value prediction, any conclusion on phenotypes (susceptible/
resistant) is left to the applying person. In addition, that
information is also useful in case that no breakpoints exist, e.g.,
for assessing MIC-values that differ from the epidemiological cut-off
values (ECOFFs) (European Committee for Antimicrobial
Susceptibility Testing, 2017). In our results we showed that the
MIC values can be predicted with very high accuracy using bacterial
pan-genome gene presence/absence patterns, and that selecting
relevant features is helpful in conducting MIC regression tasks.
Most of the MIC prediction tasks in this study achieved very good
performances, in which more than half of the datasets reached R2 >
0.9, indicating that the selected features were able to explain more
than 90% of the variances. Only three out of 15 dataset
underperformed others (R2 < 0.5); however the p-value yielded

FIGURE 3
Comparison of actual and predicted MIC values. Boxplots represent the prediction distributions of a distinct MIC. The ticks shown in X and Y-axis
indicate log2-transformed MIC values. For better visualization the plot only includes integer entries after the log2-transformation of MIC values.
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FIGURE 4
Quantitative assessment of the numbers of gene clusters for different gene sets, including all genes, known AMR genes, and genes selected by
XGBoost algorithm.

FIGURE 5
Barplots showing the number of XGBoost-selected genes with known and unknown functional annotations for different drug resistance datasets.
The orange parts indicate the proportion of functionally-unknown genes while the green parts represent other functional annotations. (CIP:
ciprofloxacin; TCs: tetracycline; SM: streptomycin; SIZ: sulfisoxazole; CRO: ceftriaxone; FOX: cefoxitin; CTF: ceftiofur; KM: kanamycin; GM: gentamicin;
CAP: chloramphenicol; NA: nalidixic acid; AMC: amoxicillin/clavulanic acid; AZM: azithromycin; SXT: trimethoprim/sulfamethoxazole; AM:
ampicillin).
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from Pearson correlation analysis (Supplementary Table S5, in
which p-values for all drug datasets were << 0.001) still showed
very high correlation between predicted and actual MIC values,
supporting the ability of the XGBoost-selected genes in obtaining
good regression outcome.

Since MIC values were determined using lab typing methods,
different lab typing methods (disk diffusion, broth microdilution,
etc.) may create potential biases for buildingMIC prediction models.
We checked the lab typing methods of the strains used in this study
and found that the majority of lab typing method was “broth
microdilution” that accounted for 86.83% of all MIC records.
Meanwhile 13.16% of the records were annotated as “MIC” in
their lab typing method field (indicating that their typing method
was unknown), and only 0.01% of the entries were annotated as
“disk diffusion”. Since the majority of the lab typing method was
“brothmicrodilution,”we therefore concluded that the biases caused
by lab typing method should be very small and included all records
regardless of their lab typing methods for analysis.

By plotting the side-by-side comparison of the predicted and
actual MIC values, as shown in Figure 3, we again observed very
good prediction power of the XGBoost-selected genes. Since the plot
in Figure 3 aggregated MIC data from 15 drug tables, we plotted the
results for separate drugs. As shown in Supplementary Figure S3,
most of the drugs achieved satisfactory prediction results. We note
that only entries that were integers (both positive and negative ones)
after the log2-transformation were included in the boxplots in both

Figure 3; Supplementary Figure S3. The reason was to show the clear
regression outcome through clean boxplot representation. Certainly
there were non-integer log2-transformed MIC; however these
entries accounted for only 17.82% (entry numbers for integer
and non-integer are 36,558 and 7,925 respectively) for all
datasets. We emphasize that even though those non-integer log2-
transformed MIC entries were not plotted in Figure 3, the excellent
R2 and Pearson correlation analysis (Supplementary Tables S3–S5)
results showed that overall the XGBoost feature selection-based
regression model worked very well on all entries.

Since there were still three drug resistance prediction tasks
(ciprofloxacin, azithromycin, and nalidixic acid) that
underperformed others (i.e., R2 < 0.5) and that these were among
the commonly prescribed antibiotics for treating S. enterica
infection (Khadka et al., 2021), we checked possible reasons
including strain numbers, gene numbers, and MIC distributions
in order to find some clues. We found that two of the three drug
resistance datasets (azithromycin and nalidixic acid) consisted of
fewer strains than most other datasets (Supplementary Table S2),
indicating that the size of dataset may be one of the reasons. This is
however not the case for ciprofloxacin resistances; as a result we
checked the MIC distribution for the drug datasets and found that
ciprofloxacin had the lowest standard deviation (0.31; see
Supplementary Table S11), which might explain the
underperformed prediction for this drug since the MIC
distribution was centralized only at certain ranges. We note that

FIGURE 6
Boxplot showing the proportion of genes shared by both known AMR gene sets and XGBoost-selected gene sets. The proportions are calculated by
dividing the number of shared genes against the known AMR gene numbers for each drug dataset. Actual numbers of gene distributions can be found in
Supplementary Table S8 and the Venn diagrams shown in Supplementary Figure S4.
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azithromycin MIC standard deviation was also among the lowest
ones among all 15 drugs, which might also partly explain the
underperformed MIC prediction of this dataset in addition to
having fewer strains.

One may also notice that in Figure 3, the prediction of MIC =
28 entries seems to be not as precise as other entries. We found that
the reason was related to sulfisoxazole resistance prediction, in
which the results shown in Supplementary Figure S3 suggested that
the sulfisoxazole dataset was the only one that consisted of entries
with MIC = 28. Meanwhile we also observed that sulfisoxazole
dataset had the highest MIC standard deviation (222.53) compared
to other datasets, in which the highly deviated MIC distribution
may also disturb the regression tasks. We therefore concluded that
the MIC distribution may also affect model training and prediction
tasks.

The prediction accuracy of the gene sets showed that the
XGBoost-selected genes performed better than all genes and
known AMR genes, indicating that the XGBoost feature selection
method was able to extract relevant protein-coding genes for
building better regression model. We note that the improvement
was not statistically significant, as the Wilcoxon rank sum test
revealed that the R2 was not significantly different (p = 0.19 and
0.07 for comparing XGBoost-selected genes against all genes and
known AMR genes respectively). We however emphasize that the
regression performances were mostly improved for the majority of
the drugs in terms of R2, Pearson correlation analysis, and RMSE
(Supplementary Tables S3–S5), indicating that genes identified by
feature selection may serve as better predictors compared to known
AMR genes.

Since S. enterica can be classified into a lot of serovars, we
checked whether the MICs of different serovars can also be
predicted. We however identified that the strain numbers of most
serovars, as shown in Supplementary Table S12, are too few to be
subjected to the XGBoost algorithm for training purpose. Even for
Typhimurium serovar dataset, in which about a hundred of strains
can be identified for each drug resistance, the number was still too
few (about only 1/10) compared to the original S. enterica datasets.
In addition we also found that the host types (i.e., where the S.
enterica strains were isolated) of most strains were not annotated
(Supplementary Table S13). We tried to perform regression on three
serovar-specific datasets with higher strain counts (Typhimurium,
Kentucky, and Heidelberg) and, not surprisingly, found that the
overall regression performances were lower than the original S.
enterica datasets, as shown in Supplementary Tables S14–S16. We
however note that the XGBoost feature selection-based method
proposed in this manuscript still reached the highest accuracy
compared to all genes and known AMR genes for most of the
drug datasets, indicating that the XGBoost-based method was still
superior to others. We also checked whether we can extract strains
isolated from human; however the strain numbers were too few (also
shown in Supplementary Table S12) to be trained for machine
learning prediction purposes.

By checking the annotations of the genes extracted by XGBoost
algorithm, we found that more than half of the genes were
functionally unknown (Figure 5), hinting that there may be
uncharacterized AMR mechanisms. Since scientists continue to
uncover novel resistance mechanism from a variety of bacterial
pathogens [e.g., (Sacha et al., 2008; Fraile-Ribot et al., 2017)], our

findings may serve as the starting point for MIC prediction and for
more detailed downstream gene analysis. We note that similar
discovery were also reported in a previous study (Yang and Wu,
2022), in which about half of the genes highly-associated with AMR
phenotypes were hypothetical proteins (e.g., unknown function).
Since network-based tools such as EcoliNet (Kim et al., 2015),
PseudomonasNet (Hwang et al., 2016), or PangenomeNet (Her
et al., 2021) can be used to find functional clues for hypothetical
proteins, we believe that building gene networks for S. enterica
species may be helpful in looking for possible functional roles of the
genes.

A cross comparison between known AMR genes (extracted
using CARD/RGI and Resfams) and XGBoost-selected genes
revealed that there were minimal overlaps between these two
gene sets (Figure 6; Supplementary Table S8), indicating that
most of the XGBoost-selected genes were not known AMR genes.
In other words, the XGBoost-selected genes may act as better
predictors for AMR pathogens. At current stage we have not
deciphered how or why the XGBoost-selected genes performed
better than known AMR genes, as the functions of many
XGBoost-selected genes were uncharacterized. We also note that
known AMR genes performed slightly worse than not just XGBoost-
selected genes but also the all-gene set (statistically insignificant;
Wilcoxon rank sum test p-value = 0.46 and 0.07 for comparing
known AMR genes against all genes and XGBoost-selected genes,
respectively).

Although in this work we showed that the pan-genome gene
presence/absence pattern may be used for predicting MIC values,
and that XGBoost feature selection approach was able to improve
the prediction outcomes, there were still limitations that we can
further improve in our future work. Firstly the pan-genome
construction process did not consider single nucleotide
polymorphism (SNP), which may also be important in some
resistance mechanisms as SNPs may also contribute to drug
resistances. Secondly there may be other factors such as the
expression of genes (Suzuki et al., 2014) that may influence
antimicrobial resistances. Thirdly we did not attempt to check
whether genes were located on chromosomes or plasmids since a
large proportion of PATRIC genomes were still fragmented into a
number of contigs or scaffolds, and that no information can help us
identify whether genes were from genomes or plasmids. Since
horizontal gene transfer (HGT) is one of the main routes for
transferring AMR genes, the ability to identify plasmids may
facilitate better recognition of potential AMR genes. Despite these
limitations, we would like to emphasize that in this work we still
established a workflow that could be used for highly accurate MIC
prediction purpose, and we hope that this workflow could facilitate
or strengthen the prediction of MICs in order to understand the
AMR potentials of isolated pathogenic strains given their genomic
sequences.
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