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Background: Osteosarcoma typically occurs in adolescents, and the survival rate of
patients with metastatic and recurrent osteosarcoma remains low. Abnormal
regulation of alternative splicing is associated with the development of
osteosarcoma. However, there is no genome-wide analysis of the function and
regulatorymechanismsof aberrant alternative splicing associatedwith osteosarcoma.

Methods: Published transcriptome data on osteosarcoma (GSE126209) derived
from osteosarcoma patient tissue were downloaded. Gene expression profiling by
high-throughput sequencing was performed on 9 normal samples and 10 tumor
samples for genome-wide identification of osteosarcoma-related alternative
splicing events. The potential function of osteosarcoma-associated alternative
splicing events was examined by immune infiltration and correlation analysis.
Regulation of aberrantly expressed RNA-binding proteins (RBPs) related to
alternative splicing in osteosarcoma was clarified by co-expression analysis.

Results: A total of 63 alternative splicing events, which are highly credible and
dominant,were identified.GOenrichment analysis indicated that alternative splicing
may be closely related to the immune response process. Immune infiltration
analysis showed significant changes in the percentages of CD8 T cells, resting
memory CD4 T cells, activated memory CD4 T cells, monocytes, resting dendritic
cells, and activated mast cells in tumors compared to normal tissues, indicating the
involvement of these immune cell types in the occurrence of osteosarcoma.
Moreover, the analysis identified alternative splicing events that were co-altered
with resting memory CD4 T cells, resting dendritic cells, and activated mast cells,
events that may be associated with regulation of the osteosarcoma immune
microenvironment. In addition, a co-regulatory network (RBP-RAS-immune) of
osteosarcoma-associated RBPs with aberrant alternative splicing and altered
immune cells was established. These RBPs include NOP58, FAM120C, DYNC1H1,
TRAP1, and LMNA, whichmay serve asmolecular targets for osteosarcoma immune
regulation.

Conclusion: These findings allow us to further understand the causes of
osteosarcoma development and provide a new research direction for
osteosarcoma immunotherapy or targeted therapy.
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Introduction

Osteosarcoma (OS) is a malignant bone tumor frequently
occurring in children and adolescents (Durfee et al., 2016).
Treatment of OS usually involves chemotherapy and surgical
resection. Chemotherapy improves the survival rate to some
extent. The 5-year survival rate of patients with osteosarcoma is
about 70%, while the 5-year overall survival rate of patients with
metastasis or recurrence is significantly reduced, even less than 20%
(Harrison et al., 2018). Overall, the prognosis of patients with OS has
not changed significantly for more than 30 years (Smrke et al., 2021).
Advanced, recurrent, or metastatic OS is still difficult to cure. Due to
the biological complexity of OS, traditional techniques are not
optimal, resulting in no new improvement in treatment in recent
years. In view of this, new methods for OS treatment need to be
developed.

Alternative splicing (AS) is closely related to the functional
complexity of eukaryotes (Pan et al., 2008). AS is an important
process that is involved in the production of proteome diversity in
eukaryotic cells. Abnormal splicing is related to the occurrence and
development of cancer (Nilsen and Graveley, 2010). Cancer-related
AS events can be used as prognostic factors for disease and as
therapeutic targets (Zhao et al., 2022). For example, Rothzerg found
that AS events in the LEPROT gene may be an important factor in
the development of OS (Rothzerg et al., 2020). Nevertheless, there
are no studies analyzing the function of OS-associated aberrant AS
on a genome-wide scale.

RNA-binding proteins (RBPs) are a general term for a class of
proteins that are associated with the regulation of RNA metabolism
and RNA binding. RBPs recognize special RNA-binding domains to
interact with RNA and participate in various post-transcriptional
regulatory processes, such as RNA splicing, transport,
polyadenylation, intracellular localization, translation, and
degradation (Glisovic et al., 2008). Regulation of RBPs is related
to various biological processes in cells (Cainap et al., 2015). Previous
studies have shown that RBPs play an important role in the
development of many diseases, including cancer (Cabibbo et al.,
2010), and abnormal expression of RBPs is closely related to the
prognosis of tumor patients (Dreyfuss et al., 2002; Huang et al.,
2014). The RNA-binding protein MSI1 is more highly expressed in
OS tissues than in adjacent tissues. The knockdown of MSI1 in OS
cells inhibits their proliferation and tumorigenesis (Niu et al., 2017).
The expression of PTBP1 in chemotherapy-resistant OS tissues is
significantly higher than that in chemotherapy-sensitive OS tissues
(Cheng et al., 2020). AS is a very important process in post-
transcriptional regulation of RBPs, and AS makes gene
expression more complex, increases transcription efficiency,
promotes protein diversity, and plays a significant role in cell
differentiation and disease (Venables, 2004). However, the
mechanism by which RBPs regulate AS in OS has not yet been
elucidated.

We hypothesized that after the occurrence of OS, a large number of
RBPs are abnormally regulated, and then, these regulate the AS of gene
pre-mRNAs, which may cause different AS events to produce different
proteins, playing a regulated role in the development of OS by affecting
the immune microenvironment. For this study, we downloaded
published transcriptome data for OS (GSE126209) and analyzed the
gene expression profile of 9 normal samples and 10 tumor samples by

high-throughput sequencing. The regulatory changes in AS in OS and
the regulated relationship betweenAS and changes in immune cells were
revealed. Co-expression analysis was also carried out, and the RBP-RAS
regulated network and immune cells related to OS were established.

Materials and methods

Retrieval and process of public data

Public sequence data files were downloaded from Sequence Read
Archive (SRA). The SRA Run files were converted to FASTQ format
with the NCBI SRA Tool fastq-dump. The raw reads were trimmed of
low-quality bases using the FASTX-Toolkit (v.0.0.13; http://hannonlab.
cshl.edu/fastx_toolkit/). The clean reads were evaluated using FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc).

Read alignment and differentially expressed
gene analysis

Clean reads were aligned to the human genome by HISAT2
(Kim et al., 2015), and the human genome version is GRCh38.
Uniquely mapped reads were ultimately used to calculate read
number and fragments per kilobase of exons per million
fragments mapped (FPKM) for each gene. The expression levels
of genes were evaluated using FPKM. When we carried out gene
differential expression analysis, we had chosen DESeq2_
1.30.1 software (Love et al., 2014). DEseq2 will model the
original reads and use the scale factor to explain the difference of
the library depth. Then, DESeq2 estimates the gene dispersion and
reduces these estimates to generate more accurate dispersion
estimates so as to model the read count. Finally, the model of
negative binomial distribution is fitted by DESeq2, and the
hypothesis is tested by the Wald test or likelihood ratio test.
DESeq2 can be used to analyze the differential expression
between two or more samples, and the analysis results can be
used to determine whether a gene is differentially expressed by
the fold change (FC) and false discovery rate (FDR).

**There are two important parameters**
1) FC: Fold change, the absolute ratio of expression change.
2) FDR: False discovery rate.

**The criteria of significant difference expression were as
follows**

FC≥ 2 or≤ 0.5, FDR ≤ 0.05.

Identification of differentially expressed
RBPs in the groups

DESeq2_ 1.30.1 software, which is specifically used to
analyze the differential expression of genes, was used to
screen the raw count data for differentially expressed genes
(DEGs). The results were analyzed based on the fold change
(FC ≥ 2 or ≤0.5) and false discovery rate (FDR≤0.05) to
determine whether a gene was differentially expressed. Then,
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the expression profile of differentially expressed RBPs was
filtered out from all DEGs according to a catalog of
2,141 RNA-binding proteins (RBPs) retrieved from four
previous reports (Castello et al., 2012; Gerstberger et al.,
2014; Castello et al., 2016; Hentze et al., 2018).

Alternative splicing analysis

Regulated alternative splicing (RAS) was defined and quantified
using the splice-site usage variation analysis (SUVA) pipeline
(Cheng et al., 2021). Differential splicing in each group was
analyzed. The read proportion of SUVA AS events (pSAR) of
each AS event was calculated.

Co-expression analysis

Co-expression analysis was performed for all differentially
expressed RBPs and RASs (pSAR≥50%). The Pearson correlation
coefficient between differentially expressed RBPs and RASs was
calculated, and RBP-RAS relationship pairs satisfying the absolute
value of the correlation coefficient ≥0.8 and p-value ≤0.01 were
screened. Co-expression analysis was performed for all differentially
expressed RBPs and RASs (pSAR ≥50%) and immune cells. The

Pearson correlation coefficient between differentially expressed RBPs
and RAS and immune cells was calculated, and RBP-RAS-immune cell
relationship pairs satisfying the absolute value of the correlation
coefficient ≥0.8 and p-value ≤0.01 were screened.

Cell-type quantification

The CIBERSORT algorithm (Newman et al., 2015) was used
with default parameters to estimate immune cell fractions using
FPKM values of each expressed gene. A total of 22 human immune
cell phenotypes were analyzed, including the following: six T-cell
types [CD8 T cells, naïve CD4 T cells, memory CD4 resting T cells,
memory CD4 activated T cells, T follicular helper cells, and
regulatory T cells (Tregs)]; naïve and memory B cells; plasma
cells; resting and activated NK cells; monocytes; macrophages
M0, M1, and M2; resting and activated dendritic cells; resting
and activated mast cells; eosinophils; and neutrophils.

Functional enrichment analysis

To explore functional categories of DEGs, Gene Ontology (GO)
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathwayswere identified using the KOBAS 2.0 server (Xie et al., 2011).

FIGURE 1
Identification of RAS events between tumor and normal tissues. (A) Five different types of AS event models. (B) Barplot showing the number of
regulatory AS detected by SUVA in each group. (C) Barplot showing the RAS number with different pSAR. RAS with pSAR (reads proportion of the SUVA AS
event) ≥50% were labeled. (D) Principal component analysis (PCA) based on RAS of pSAR ≥50%. The ellipse for each group is the confidence ellipse. (E)
Heatmap presenting five classes of RAS (pSAR ≥50%). (F) The top 10 most enriched GO terms (biological process) were illustrated for RAS
(pSAR ≥50%) genes in the tumor vs. normal group. The color scale showing the row-scaled significance (-log10 corrected p-value) of the terms.
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The hypergeometric test and Benjamini‒Hochberg FDR
controlling procedure were used to define the enrichment of
each term.

Other statistical analyses

Principal component analysis (PCA) was performed using the R
package factoextra (https://cloud.r-project.org/package=factoextra)
to show the clustering of samples with the first two components.
After normalizing reads by the TPM (tags per million) of each gene
in the samples, in-house script (Sogen) was applied for visualization
of next-generation sequence data and genomic annotations. The
pheatmap package (https://cran.r-project.org/web/packages/
pheatmap/index.html) in R was used to perform the clustering
based on Euclidean distances. Student’s t test was used for
comparisons between two groups.

Results

Identification of osteosarcoma-associated
RAS events (osteosarcoma RAS) between
tumor samples and adjacent normal tissues

We used SUVA software (https://doi.org/10.1080/15476286.2021.
1940037) to perform the analysis of RNA-Seq data for 9 normal tissues
and 10 OS tumor tissues to identify AS events that are significantly
different between tumor and normal tissue. Five significantly different
regulated alternative splicing events were identified between tumor and
normal tissue (Figure 1A, Supplementary Figure S1A). The figure shows
the number of RAS detected by SUVA in each group (Figure 1B). A
splicing event involves two transcripts, and these two transcripts may
only account for a very small part of the entire gene expression.We hope
tofindmore dominant splicing transcripts. The figure shows the number
of splicing events that account for different proportions of all reads in the

FIGURE 2
Diversity of immune microenvironment characteristics between tumor and normal samples from osteosarcoma patients. (A) Boxplot showing the
fraction of each cell type in each group. The significant difference in the immune cell fractions between tumor and normal samples was calculated by the
Student’s t test. *, p-value ≤0.05; **, p-value ≤0.01; ***, p-value ≤0.001. (B) Principal component analysis (PCA) based on the fractions of different cells of
all expressed genes. The ellipse for each group is the confidence ellipse. (C) Tumor relative to the normal group rank ordered based on decreasing
values of the relative frequency ratio at tumor versus normal groups. (D) Boxplot showing six significantly immune cells.
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region, and some splicing events account for only a small proportion
(pSAR<10%).The figure shows the number of splicing events that
account for a different proportion of all reads in the region. We
selected RAS (green bar, 63 in total) with pSAR≥50% for
downstream analysis in this study (Figure 1C). PCA with the splicing
ratio of differential AS events showed that the principal components of
the tumor and normal groups could be well separated (Figure 1D). A
heatmap displayed the differential splicing event ratio (Figure 1E).
Functional pathway analysis was performed on the genes involved in
the differential splicing events between the tumor and normal groups,
with enrichment mainly in biological pathways such as immune system
processes and immune response and cell proliferation (Figure 1F,
Supplementary Figure S1B).

Diversity of immune microenvironment
characteristics between tumor and normal
samples from osteosarcoma patients

Our previous studies have shown that AS may be closely related
to the immune response. We further analyzed the proportions of

immune cells in tumor and normal samples and the proportions of
various types of immune cells. Among them, CD8 T cells, resting
memory CD4 T cells, activated memory CD4 T cells, monocytes,
resting dendritic cells, and activated mast cells were significantly
different (Figure 2A, Supplementary Figure S2A). PCA using the
differential ratio of immune cells showed that the immune cells in
the tumor and normal groups were well separated (Figure 2B,
Supplementary Figure S2B). Another way is to show the
difference of each cluster of immune cells in tumor and normal
samples, calculate the difference ratio of each cluster, and then take
the log2 value; the positive bar represents the increased cluster in OS
tumors, and the negative bar represents the decreased cluster. The
most significant upregulation was observed for activated mast cells;
CD8 T cells and resting dendritic cells were downregulated most
significantly (Figure 2C). The difference in the proportions of
CD8 T cells, resting memory CD4 T cells, activated memory
CD4 T cells, monocytes, resting dendritic cells, and activated
mast cells in tumor tissues and normal tissues is shown in
Figure 2D. These studies indicate that the function of these
immune cell types may be related to the occurrence and
development of OS.

FIGURE 3
Identification of immune-associated osteosarcoma RAS. (A) The dot plot demonstrated the correlations between each immunemicroenvironment
infiltration cell type and each dysregulated RBP regulator. Different colors indicate correlation of the immunocyte–RBP regulator, and significant
regulators were labeled with star. *, p < =0.05; **, p < =0.01; ***, p < =0.001. (B) The top 10 most enriched GO terms (biological process) were illustrated
for RAS coexpressed cell genes in the tumor vs. normal group. The color scale indicates the row-scaled significance (-log10 corrected p-value) of
the terms. (C) Boxplot showing the splicing ratio of clualt3p199530 NRG1, clualt5p154454 SH3BP2, clualt5p114936 ACKR3, clualt5p152292 IL15,
cluir97910 NFKBIB, and clualt5p204621 IKBKG. *p < 0.001, **p < 0.001, and ***p < 0.001.
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Identification of immune-associated
osteosarcoma RAS

Association analysis of differential AS events and changes in the
proportion of immune cells in OS tumor and normal samples
yielded 41 RAS (regulatory AS) events that correlated
significantly with changes in at least one immune cell

(Figure 3A). GO enrichment analysis of AS events related to
immune cells showed them to be mainly enriched in biological
pathways related to cell proliferation, signal transduction, and
immune response (Figure 3B). Ratio differences of important
immune-related AS events (clualt3p199530 NRG1,
clualt5p154454 SH3BP2, clualt5p114936 ACKR3,
clualt5p152292 IL15, cluir97910 NFKBIB, and

FIGURE 4
Identification of differentially expressed RBPs co-disturbed with immune-related osteosarcoma-RAS. (A) Venn diagram showing the overlap gene
number of RBPs and DEGs. (B) Hierarchical clustering heatmap showing the FPKM of the DERBPs. (C) Network showing the immune cells regulated by
DERBP and RASEs. (D) Survival curves regulated by NOP58, FAM120C, DYNC1H1, TRAP1, and LMNA.
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clualt5p204621 IKBKG) between tumor and normal tissues are
presented (Figure 3C, Supplementary Figures S3A–D).

Identification of differentially expressed
RBPs co-disturbed with immune-related
osteosarcoma RAS

In total, 310 differentially expressed RBP genes were obtained
from the intersection of differentially expressed genes and known
RBP genes (Castello et al., 2012; Gerstberger et al., 2014; Castello
et al., 2016; Hentze et al., 2018) (Figure 4A). Heatmap analysis and
the display of different RBPs showed that about two-thirds of RBPs
were upregulated in tumor tissues. This indicates that these RBP
genes are more activated in osteosarcoma (Figure 4B). By analyzing
RBPs related to immune cells and establishing the regulatory
network of RBP-RAS and immune cells, a large number of RBPs
were found to be changed in immune cells (Figure 4C). We
downloaded the TARGET database (https://ocg.cancer.gov/
programs/target/data-matrix) expression data and prognosis
information in OS. The RBPs (NOP58, FAM120C, DYNC1H1,
TRAP1, and LMNA) related to prognosis are displayed in
Figure 4D and Supplementary Figures S4A, B.

Discussion

We performed an overall AS analysis on the RNA-Seq data in
OS, and 63 highly credible and dominant AS events were identified.
These AS events are closely related to the immune response process.
These RAS events are mainly enriched in biological pathways such
as immune system processes, immune responses, and cell
proliferation. Then, we conducted immune infiltration analysis
based on enrichment of differential AS genes in immune-related
pathways. We analyzed the immune cells of OS tumor and normal
samples to obtain different proportions of immune cells. It was
found that the proportions of CD8 T cells, resting memory
CD4 T cells, activated memory CD4 T cells, monocytes, resting
dendritic cells, and activated mast cells changed significantly. In
addition, we used bar plots to further investigate the proportion of
cell types with significant differences between tumor and normal
samples among total immune cells. Our study shows that these
immune cells play a significant role in the development of OS.
Previous studies have shown that the extent of intratumoral
CD8 T-cell infiltration is strongly associated with better OS
outcomes (Fritzsching et al., 2015). The activation of memory
CD4 T-cell-associated genes CST7, CD5L, hsa-miR-23b-3p, and
hsa-miR-23a-3p may correlate with the prognosis of hepatocellular
carcinoma (Yan et al., 2022). Patrol monocyte levels may play a key
role in whether OS patients develop metastasis (Hanna et al., 2015;
Chen and Zhao, 2020).

Some studies have shown that AS plays a significant role in
the immune microenvironment (Kim et al., 2017; Tan et al.,
2017). We first analyzed the correlation between changes in AS
and the proportion of immune cell types and found 41 RAS
events to be significantly associated with changes in at least one
immune cell type. The study found that these alternative splicing
events were significant covariants of activated mast cells, resting

dendritic cells, and resting CD4 T cells. This finding indicates
that these AS events may be related to the regulation of the OS
immune microenvironment.

In addition, we identified 310 differentially expressed RBPs in
OS tumor and normal tissue samples. Heatmap analysis of these
differentially expressed RBPs revealed that RBP expression was
activated during OS development. By establishing a regulatory
network of RBP, RASs, and immune cells, we found that
abnormal expression of RBPs may regulate AS of related genes in
the immune pathway, thereby affecting changes in AS of
downstream genes. We downloaded the expression data and
prognostic information for OS from the TARGET database
(https://ocg.cancer.gov/programs/target/data-matrix) and found
that NOP58, FAM120C, DYNC1H1, TRAP1, and LMNA may be
associated with OS prognosis.

Our research also has some limitations. First, the number of
samples is small. However, this study verified differential RBP and
AS events in a clinical setting, and the biological significance of OS
needs to be confirmed through functional experiments.

Conclusion

Weare the first to analyze genome-wideAS inOS. Sixty-three highly
credible and dominant AS events were identified that were mainly
enriched in immune response-related biological pathways. AS events
were associated with the regulation of the OS immune
microenvironment. There is a co-alteration regulated network
involved in AS, immune cells, and RBPs. NOP58, FAM120C,
DYNC1H1, TRAP1, and LMNA may serve as molecular targets for
OS immune regulation; thismay contribute to targeted therapy in clinical
practice.
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