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Aim: As the most common cardiomyopathy, dilated cardiomyopathy (DCM) often
leads to progressive heart failure and sudden cardiac death. This study was designed
to investigate the molecular subgroups of DCM.

Methods: Three datasets of DCM were downloaded from GEO database (GSE17800,
GSE79962 and GSE3585). After log2-transformation and background correction with
“limma”package inR software, the three datasetsweremerged into ametadata cohort.
The consensus clustering was conducted by the “Consensus Cluster Plus” package to
uncover the molecular subgroups of DCM. Moreover, clinical characteristics of
different molecular subgroups were compared in detail. We also adopted Weighted
gene co-expression network analysis (WGCNA) analysis based on subgroup-specific
signatures of gene expression profiles to further explore the specific gene modules of
each molecular subgroup and its biological function. Two machine learning methods
of LASSO regression algorithm and SVM-RFE algorithm was used to screen out the
genetic biomarkers, of which the discriminative ability of molecular subgroups was
evaluated by receiver operating characteristic (ROC) curve.

Results: Based on the gene expression profiles, heart tissue samples from patients with
DCMwere clustered into threemolecular subgroups. No statistical differencewas found
in age, body mass index (BMI) and left ventricular internal diameter at end-diastole
(LVIDD) among three molecular subgroups. However, the results of left ventricular
ejection fraction (LVEF) statistics showed that patients from subgroup 2 had a worse
condition than the other group. We found that some of the gene modules (pink, black
and grey) in WGCNA analysis were significantly related to cardiac function, and each
molecular subgroup had its specific genemodules functions in modulating occurrence
and progression of DCM. LASSO regression algorithm and SVM-RFE algorithmwas used
to further screen out genetic biomarkers of molecular subgroup 2, including TCEAL4,
ISG15,RWDD1,ALG5,MRPL20, JTB and LITAF. The results of ROCcurves showed that all
of the genetic biomarkers had favorable discriminative effectiveness.

Conclusion: Patients from different molecular subgroups have their unique gene
expression patterns and different clinical characteristics. More personalized
treatment under the guidance of gene expression patterns should be realized.
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Introduction

Dilated cardiomyopathy (DCM) is the most common type of
cardiomyopathy and a leading cause of death in the cardiovascular
field, which is characterized by enlargement of the ventricle and
reduced cardiac function (Fatkin et al., 2019). DCM can develop
into severe congestive heart failure progressively and threaten the
survival of patients. Although tremendous progress has been made in
the treatment field of DCM in the past decades, the morbidity and
mortality of DCM still remain high (Jefferies and Towbin, 2010). At
present, the etiology and pathogenesis of DCM are still unclear. Most
of DCM cases were thought to be sporadic, but at least 40%–60% of
DCM cases are now found to be familiar. Pedigree analysis showed
that most of families with DCM had autosomal dominant inheritance,
while a few had autosomal recessive inheritance, mitochondrial
inheritance and X-linked inheritance. It is of clinical significance to
identify the underlying the genetic mechanisms of DCM, which will
improve the prognosis of patients with DCM.

With the development of gene sequencing technologies, the public
gene expression profile databases, such as TCGA database and GEO
database, provide us an opportunity to better understand the
underlying genetic mechanisms of DCM. Bioinformatics analysis
can identify the differentially expressed genes (DEGs) of DCM and
uncover the specific biological functions of DEGs, which plays a
crucial role in developing clinical therapeutic measures and new
drugs (Cordero et al., 2008). Xiao et al. used dataset of DCM
(GSE3585) downloaded from GEO database to screen out the
DEGs of DCM patients compared with control group and
identified the hub genes (CTGF, IGFBP3, SMAD7, INSR, CTGF,
IGFBP3) significantly related to DCM by establishing protein-
protein interaction (PPI) network (Zhang et al., 2017). In addition,
Huang et al. also analyzed the DCM heart tissue samples from the
GEO database (GSE79962) using weighted gene co-expression
network analysis (WGCNA) method, and identified gene modules
that are related to the progression of DCM (Kang et al., 2020).

Molecular classification was first proposed in various cancer
researches to reveal the heterogeneity between patients with the same
tumor, shifting tumor classification from traditional morphology to
molecular features-based molecular typing. Considering patients in
different molecular subgroups often have different clinical
manifestations and prognosis, molecular classification is helpful in
judging prognosis and guiding treatment of diseases (Travaglino et al.,
2020a; Travaglino et al., 2020b; Naso et al., 2021). In recent years, more
andmore researchers have focused on the molecular classification among
chronic diseases rather than tumors, such as idiopathic pulmonary
fibrosis (IPF), coronary artery disease (CAD) and hepatitis B virus
(HBV) infection (Ainali et al., 2012; Zhang et al., 2021a; Zhang et al.,
2021b). CAD is a leading cause of death in cardiovascular field. To
investigate the molecular features of patients with CAD in different

molecular subgroups, Peng et al. also performed molecular subgroups
analysis and classified 352 patients with CAD into three molecular
subgroups based on datasets downloaded from GEO database. They
found that patients in different molecular subgroups of CAD not only
showed different gene expression patterns, but also different clinical
characteristics (Ainali et al., 2012). As a complex inherited disease
similar to cancer, DCM also exhibited clinical heterogeneity.
Nevertheless, the molecular subgroups of DCM have not been
reported. Therefore, we carried out this work to conduct molecular
classification of patients with DCM, looking for specific gene modules
in each molecular subgroup and exploring the relationship between each
molecular subgroup and clinical features. Many studies have analyzed the
gene expression profiles related to DCM. However, most of the previous
studies screened out differentially expressed genes (DEGs) between DCM
patients and control individuals, but ignored the existed differences in
gene expression profiles among DCM patients. In the present study, we
further classified DCM patients into molecular subgroups based the gene
expression patterns, and revealed that patients from different subgroups
exhibited different clinical characteristics. Artificial intelligence (AI) is a
new technical science that researches and develops theories, methods,
technologies and application systems for simulating, extending and
expanding human intelligence (Ghazal et al., 2022). Medicine is one of
the earliest applications of AI, including disease diagnosis and the
selection of the best surgical procedures (Goyal et al., 2022). Machine
learning is an important branch of artificial intelligence and has been
widely used in screening characteristic genes and risk factors of diseases
(Dai et al., 2022; Liu et al., 2022; Wu et al., 2022). We also used machine
learning methods to screen characteristic genes in subgroups in an
attempt to correlate gene expression profiles with clinical features in
patients with DCM.

Methods

Data collection

Three gene expression datasets of DCM were downloaded from
GEO database (http://www.ncbi.nlm.nih.gov/geo/) (Barrett et al.,
2013) via the “GEO query” package in R software (version 4.1.1,
http://r-project.org/) (Davis and Meltzer, 2007), including GSE17800
(Liu et al., 2022), GSE79962 (Dai et al., 2022), and GSE3585 (Barrett
et al., 2013). GSE17800 was performed on the GPL570 platform and
included heart tissue samples from 40 DCM patients and eight control
individuals (Ameling et al., 2013). GSE79962 was performed by
GPL6244 platform and included nine DCM samples and
11 control samples (Matkovich et al., 2017). GSE3585 was based
on the platform GPL96, which includes heart tissue samples from
seven DCM patients and five control individuals (Barth et al., 2006).
The detailed characteristics of datasets was shown in Table 1.

TABLE 1 Characteristics of the datasets included in the analysis.

GEO ID Platform Citation Region Control DCM

GSE41177 GPL570; Affymetrix Human Genome U133 Plus 2.0 Array Ameling et al. (2013) Greifswald, Germany 8 40

GSE79962 GPL6244; Affymetrix Human Gene 1.0 ST Array Matkovich et al. (2017) St. Louis, USA 11 9

GSE3585 GPL96; Affymetrix Human Genome U133A Array Barth et al. (2006) Heidelberg, Germany 5 7

GEO: Gene Expression Omnibus; DCM: dilated cardiomyopathy.
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Data processing

Gene expression matrices of GSE17800, GSE79962, and
GSE3585 were established by R software. Then, we employed the
“limma” package to conduct log2-transformation and background
correction, and merged three datasets into a metadata cohort for
further analysis (Davis and Meltzer, 2007). Considering the integrated
datasets were based on different platforms and different experiment
conditions, it is of significance to remove the batch effect. The “SVA”
package was adopted for removing batch effects (Yeh et al., 2013).
Moreover, each gene expression value from different batches were
adjusted by the normalization procedure of “central standardization,”
also known as “mean centering” using “Combat” package. Finally, the
“ggplot2” package was adopted to conduct principal component
analysis (PCA) and draw PCA-plot based on the top two principal
components in PCA (Ito and Murphy, 2013).

Consensus clustering

The consensus clustering of DCM samples from GSE17800,
GSE79962, and GSE3585 was conducted by the “Consensus Cluster
Plus” package (Wilkerson and Hayes, 2010). We set 10 as the
maximum value of cluster groups. The consistency score (greater
than 0.7 in all clusters) and cumulative distribution function (CDF)
was used to determine the number of cluster groups.

Comparing the clinical features among
molecular groups

Clinical characteristics were also obtained by “GEO query”
package (Subramanian et al., 2007; Nidheesh et al., 2017). To
obtain the difference of clinical features among different molecular
subgroups, the clinical characteristics of the three subgroups were
compared in detail. We adopted the Pairwise Wilcoxonʼs rank-sum
test to investigate whether there were differences in age, BMI, LVEF
and LVIDD among three subgroups. The analysis of variance for age,
molecular subgroup and their interaction was also conducted to
validate whether the factor of molecular subgroup classification is
an independent indicator that can predict severity of DCM.

WGCNA analysis

WGCNA method is an effective tool to identify co-expression
modules related to specific biological function (Langfelder and
Horvath, 2008). We adopted WGCNA according to the subgroup-
specific signatures to determine potential gene modules that can
represent the functions of each molecular subgroup of DCM. In
the scale-free network, the best soft-threshold power was
determined by maximal R2. Moreover, we used the average method
and the dynamic method to conduct hierarchical clustering analysis.
After merging of similar modules, the module classification of genes
were ultimately established. Correlation analysis between WGCNA
modules and clinical characteristics was also performed using
Spearmanʼs method.

Enrichment analysis

The “clusterProfler” package (Wu et al., 2021) was used to perform
GO and KEGG pathway enrichment analysis among different
modules to further investigate the biological meaning of different
modules and its roles in occurrence and progression of DCM. We
downloaded the gene group reference of KEGG pathway from
MSigDB database (Kanehisa and Goto, 2000; Kanehisa et al., 2019).
The filter was set as p-value < 0.05 in KEGG analysis.

Identification of biomarkers based on
machine learning methods

We adopted two machine learning methods of LASSO regression
algorithm and SVM-RFE algorithm to screen out biomarkers of
molecular subgroup of DCM. “glmnet” package was employed to
conduct LASSO regression algorithm, which is a linear regression
model and widely used to screen characteristic genes or elements most
closely related to disease occurrence (Zhang et al., 2014). SVM-RFE is
another machine learning algorithm, which has also been widely used
for classification and regression analysis. We used SVM-RFE
algorithm based on “e107” package to identify genes with high
discriminative power (Leavey et al., 2018). Genes identified by both
algorithms were eventually selected as biomarkers.

Evaluation of discriminative power of the
biomarkers

We created receiver operating characteristic (ROC) curve by the
“pROC” package, and area under curve (AUC) value was adopted to
determine the discriminative power.

Results

Removal of batch effect

The detailed characteristics of the datasets included in the analysis,
including GSE17800, GSE79962 and GSE3585, was shown in Table 1.
A total of 11,779 genes were jointly detected by both microarray
platforms of the dataset. Principal component analysis (PCA) was
performed to validate whether the batch effect among the datasets
included in this study was successfully removed. PCA-plot was drawn
based on the top two principal components (PCs) in PCA. Before the
process of batch effect removing, heart samples from patients with
DCM were clustered by batches, indicating that there was significant
batch effect caused by different platforms and different experiment
conditions among the datasets (Figure 1A). In addition, the
distribution range of specimens on the horizontal (PC1) and
vertical (PC2) axes is 100 and 200, respectively, with a large
variation rate. After removing of batch effect between GSE17800,
GSE79962 and GSE3585, including samples of controls and patients
with DCM, the PCA-plot based on PCA of the normalized meta-
cohort data revealed that the batch effect between GSE17800,
GSE79962, and GSE3585 was clearly removed. Of note, the batch
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effect between samples of controls and patients with DCM was also
removed (Figure 1B).

Consensus clustering of DCM cases

After the batch effect was successfully removed, the merged
dataset was employed to conduct molecular subgroup analysis by
consensus clustering. The cluster consensus score of each subgroup
was higher than 0.7 only in the three categories (Figure 2A). In
addition, CDF curve showed that the CDF score was the largest in
the three categories (Figure 2B). Both evidences suggested that three
molecular subgroups were more robust than others in DCM patients.
Therefore, heart tissue samples would be clustered into three
molecular subgroups according to the consistency score and the
CDF curve. In the consensus matrix, we observed that there is a
high similarity of gene expression patterns within each molecular
subgroup (Figure 2C). Ultimately, we adopted consensus clustering
algorithm to divide 56 heart tissue samples from patients with into
three molecular subgroups based on the gene expression patterns.

The differences of clinical characteristics in
the three molecular subgroups

DCM cases in subgroup 1, subgroup 2, and subgroup 3 had
different gene expression patterns. To further investigate the
clinical characteristics of three groups, the age, BMI, LVEF, and
LVIDD were analyzed in detail in DCM cases from

GSE17800 dataset. We found that patients in subgroup 2 had
lower LVEF than patients in subgroup 1 and subgroup 3 with
statistical difference (Figure 3A). However, the results of age, BMI,
and LVIDD statistics showed that there was no significant difference
among three groups (Figures 3B–D). As a result, not only did gene
expression differs, but the severity of the disease also varied among
three subgroups of DCM cases. As shown in Table 2, the analysis of
variance (ANOVA) on age and our molecular classification was
performed, indicating that the molecular classification in the
present study was an age-independent indicator for the severity
of DCM.

WGCNA analysis

Based on Pairwise differential expression analysis, we identified
605, 697, and 1,557 specific differentially expressed genes in subgroups
1, subgroups 2, and subgroups 3 compared with other subgroup
(Benjamin-Hochberg adjusted p < 0.05, absolute difference of
mean > 0.2) (Table 3). We also compared the gene expression
profile of each molecular subgroup with that of control individuals.
There was 1,236, 1,388, and 2,617 differentially expressed genes in
subgroups 1, subgroups 2, and subgroups 3 compared with the control
individuals (Table 3). To further reveal the differences in gene
expression patterns and the resulting functional differences among
molecular subgroups of DCM, WGCNA was performed based on the
specific differentially expressed genes in each group. We carried out
WGCNA analysis based on topological overlaps and scale-free
network and created a hierarchical clustering tree based on the

FIGURE 1
PCA plots of the gene expression datasets. The points of the PCA plots visualize the samples based on the top two PC (PC1 and PC2) without (A) and with
(B) the removal of batch effect between GSE17800, GSE79962 and GSE3585. PCA, Principal component analysis; PC, principal components.
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dynamic-hybrid cut (Figure 4A). According to the results of scale-free
topology criterion, we selected 8 as the soft-thresholding power (R2 =
0.89; Figure 4B). Ultimately, a total of nine co-expressed modules were
identified for further research. Figure 4C shows the cluster
dendrogram of the modules and the clustering of module
eigengenes was shown in Figure 4D. Figure 5 shows the identified
nine WGCNA modules, of which the corresponding subgroups are
shown in Table 3. To further study the relationship between WGCNA
modules and clinical features of patients with DCM, the correlation
coefficients between WGCNA models and clinical features were
calculated. As shown in Figure 5, age was correlated positively with
module blue, and negatively correlated with module brown, module
black, module turquoise, module red and module pink. LVEF was

positively correlated with module pink, and negatively corelated with
module black and module grey. BMI was positively corelated with
module grey, module blue, module brown, and module black, and
negatively corelated with module pink and module yellow. These
results show that the WGCNA modules was associated with clinical
features of patients with DCM. Moreover, we performed GO
functional enrichment analysis based on the genes in different
WGCNA modules. Figure 6 shows the biological process terms
enriched in different modules. The abscissa represents the elder
brother module, and the ordinate represents the item of functional
enrichment analysis. A triangle means statistically significant. The
enriched terms in cellular component and molecular function are
shown in Supplementary Figures S1, S2. Detailed results of GO

FIGURE 2
Consensus clustering analysis based on gene expression profiles of DCM patients. (A). The barplots of consistency scores of each cluster; (B). The CDF
scores of the different categories; (C). The heatmap represents the consensus matrix with cluster count of 3, which was determined by the CDF scores and
consensus scores of subgroups. DCM, dilated cardiomyopathy; CDF, cumulative distribution function.

TABLE 2 Analysis of variance for classification of subgroups, age, and their interactions.

Df Sum square Mean square F value Pr (>F)

Subgroup 2 411.4 205.6 6.03 0.006pp

Age 1 0.5 0.53 0.016 0.902

Subgroup and age interaction 2 32.3 16.13 0.473 0.63

Residuals 34 1159.8 34.11

Df: degree of freedom. Significant codes: “ppp” 0.001, “pp” 0.01, “p” 0.05.
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enrichment analysis were shown in Supplementary Tables S1–S3. We
also conducted KEGG pathway analysis and identified pathways
enriched in different WGCNA modules (Figure 7). Detailed results
of KEGG enrichment analysis were shown in Supplementary Table S4.
Above all, these results of enrichment analysis demonstrated each
molecular subgroup had its specific functional gene modules that
could function in modulating DCM onset or progression.

Identification of biomarkers based on
machine learning algorithms

Considering the patients in subgroup 2 hadmore severe condition,
two machine learning algorithms of LASSO regression and SVM-RFE
algorithm were adopted to screen out biomarkers. According to the
specific differentially expressed genes in subgroup 2, we screened out
28 key gene significantly related to molecular classification using
LASSO algorithm (Figure 8A). In addition, 28 genes were identified

as biomarkers based on the SVM-RFE algorithm (Figure 8B). The
seven overlapping genes, including TCEAL4, ISG16, RWDD1, ALG5,
MRPL20, JTB and LITAF, were finally selected as biomarkers
(Figure 9A). All of the DEGs of subgroup 2 with detailed p-value
and adjust p-value was shown in Supplementary Table S5.

Diagnostic effectiveness of biomarkers

ROC curve was adopted to evaluate the diagnostic effectiveness of
biomarkers of subgroup 2. The results of ROC curve indicated that all
of the biomarkers have a favorable diagnostic effectiveness in
discriminating DCM cases in subgroup 2, with an AUC of 0.979
(95%CI 0.932–1.000) in TCEAL4, AUC of 0.869 (95%CI 0.750–0.968)
in ISG15, and AUC of 0.939 (95% CI 0.850–0.996) in RWDD1,AUC of
0.955 (95% CI 0.888–1.000) in ALG5, AUC of 0.874 (95% CI
0.701–1.000) in MRPL20, AUC of 0.966 (95% CI 0.917–0.998) in
JTB and AUC of 0.953 (95% CI 0.888–0.996) in LITAF (Figures

FIGURE 3
The comparison of clinical characteristics among the different molecular subgroups. (A). Box plot displays LVEF of each subgroup; (B). Box plot displays
age of each subgroup; (C). Box plot displays BMI of each subgroup; (D). Box plot displays LVIDD of each subgroup. BMI, bodymass index; LVEF, left ventricular
ejection fraction; LVIDD, left ventricular internal diameter at end-diastole.

TABLE 3 The number of differentially expressed genes by case-control and case-case comparisons and weighted gene co-expression analysis modules in each subgroup.

Subgroups The specific genes were compared with the
normal group

The specific genes were compared with each
subgroup

Modular

Subgroup 1 1236 605 Red and yellow

Subgroup 2 1388 697 Black, blue, green and
grey

Subgroup 3 2617 1557 Pink, turquoise and
brown
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9B–H). The expression levels of the biomarkers among different
molecular subgroups were shown in Figures 10A–G.

Discussion

In this study, three gene expression profiles of heart tissue samples
from patients with DCM and control individuals from GEO database
were analyzed in detail. For the first time, we merge the three datasets
as a metadata cohort and successfully clustered the DCM cases into
three molecular subgroups according to the gene expression profile of
DCM. The consensus clustering process based on CDF score and
cluster consensus score guaranteed that our molecular subgroup
classification was robust. Furthermore, significant correlation
between clinical conditions and molecular subgroups was observed.
Patients in subgroup 2 had lower LVEF comparing with the other two
subgroups. In addition, molecular subgroups-specific functional
modules and pathways were also analyzed through WGCNA
method. These results taken together showed that the molecular
classification of DCM was associated with clinical features of
patients with DCM and patients in different molecular subgroups
should receive personalized treatment.

Molecular subgroup classification based on gene expression
patterns has provided great help for clinical diagnosis and
treatment, especially in the field of cancer research. Zhang et al.
(2014) reported that the stem-like signatures were significantly
activated in patients with colon cancer from molecular subtype C.

In recent years, more and more researchers have focused on the
molecular classification among chronic diseases rather than tumors.
For example, IPF is one of the idiopathic interstitial pneumonias with
high mortality and morbidity. Zhang et al. (2021a) conducted a
molecular subgroups analysis for patients with IPF according to
gene expression profiles, and revealed the potential molecular
features of different types of IPF. CAD is a leading cause of death
in cardiovascular field. To investigate the molecular features of
patients with CAD in different molecular subgroups, Peng et al.
also performed molecular subgroups analysis and classified
352 patients with CAD into three molecular subgroups based on
datasets downloaded from GEO database. They found that patients in
different molecular subgroups of CAD not only showed different gene
expression patterns, but also different clinical characteristics (Ainali
et al., 2012). At present, the hepatitis B virus (HBV) infection is a
public health threat worldwide. Patients infected with HBV in
different molecular subgroups showed significantly differences in
clinical features, such as degree of liver fibrosis and liver index. Of
note, the immune cells infiltration in liver tissue samples from patients
with HBV of different are also different (Zhang et al., 2021b).
Understanding the gene expression patterns of diseases, especially
inherited diseases and studying the clinical characteristics of different
molecular subtypes are very important for the precise treatment of
each patient. Moreover, psoriasis, pre-eclampsia, Alzheimerʼs disease
and myelodysplastic syndrome were also found association between
the clinical variables and transcriptional differences or subtypes (Aibar
et al., 2016; Leavey et al., 2018). These studies provide a deeper

FIGURE 4
Sample clustering and network construction of the weighted co-expressed genes. (A) Clustering dendrogram heart tissue samples from patients with
DCM and control individuals. (B) the scale-free index and the mean connectivity for various soft-thresholding powers. (C) Dendrogram clustered based on a
dissimilarity measure. Gene expression similarity is assessed by a pair-wise weighted correlation metric and clustered based on a topological overlap metric
into modules. Each color below represents one co-expression module, and every branch stands for one gene. (D) Cluster dendrogram of modules.

Frontiers in Genetics frontiersin.org07

Ye et al. 10.3389/fgene.2023.1050696

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1050696


understanding of diseases and indicate the significance of precise
medicine. In the present study, we collected gene expression datasets
of DCM from GEO database and conducted an integrated
bioinformatics analysis, aiming to uncover the molecular subgroups
according to genes expression patterns.

In particular, patients in subgroup 2 tended to have a more serious
condition than patients from subgroup 1 and subgroup 3. The results
of age, BMI, and LVIDd statistics showed that there was no significant
difference among three groups. Therefore, DCM patients should be
distinguished by the molecular classification and receive more
personalized treatment.

Compared to previous studies, the functional modules and
pathways identified by WGCNA method were also connected with
specific molecular subgroup of DCM (Zhou et al., 2020; Huang et al.,
2021; Li et al., 2021). We found that the specific differential expression
genes in subgroup 2 were mostly in the black, blue, green and grey
WGCNA module. Considering the black module had a significant
negative correlation with LVEF, the enrichment analysis of black
module demonstrated that valine, leucine and isoleucine degradation
signaling pathway, nucleotide metabolism signaling pathway and
ubiquitin mediated proteolysis signaling pathway may contribute to
the negative correlation with cardiac function. The change of
metabolism is an important feature of DCM. Optimizing
myocardial energy metabolism is one of the important means to

treat DCM (Mak et al., 2021). Of note, branched chain amino
acids (BCAAs) are collectively referred to as leucine, valine and
isoleucine. BCAAs can be regarded as one of the most important
nutritional supplements and are the most characteristic energy source
for the oxidation and utilization of myocardial amino acids. Although
BCAAs accounts for only 2% of myocardial ATP production, it plays
an important role in regulating insulin pathway and mammalian
rapamycin like target protein (mTOR) signaling pathway (Jo et al.,
2022). In addition, BCAAs can continuously activate mTOR signal
and damage insulin signal transduction through insulin receptor
substrate, and abnormal BCAAs metabolism can cause the
accumulation of BCAAs metabolites and eventually lead to insulin
resistance (Cuomo et al., 2022). Studies have shown that eating a
mixture rich in BCAAs can prolong the average life span of mice and
increase mitochondrial biogenesis in mouse myocardium and skeletal
muscle (Valerio et al., 2011). However, the increase of plasma BCAAs
level in patients is considered to be an early predictor of the
development of DCM. The accumulated BCAAs can activate
mTOR signal and accelerate the occurrence and development of
myocardial hypertrophy (Caragnano et al., 2019). Protein
phosphatase PPC2m and branched-chain alpha-ketoacid
dehydrogenase (BCBDK) are important targets to improve BCAA
metabolism, which is crucial for BCAA oxidation and promote
BCAAs oxidation. The risk of heart failure in PPC2m knockout

FIGURE 5
Heatmap of the correlation between modules and clinical features of patients with DCM.
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mice was significantly increased. Enhancing BCAAs oxidation and or
reducing the level of BCAA in blood have cardioprotective effects in
heart failure. In addition, BCBDK inhibitor BT2 can improve the
oxidation capacity of BCAA in heart failure, reduce the accumulation
of BCAA, and reduce the infarct area of cardiac ischemia reperfusion
injury (Li et al., 2017). Nucleotide is the basic structural unit of genetic
material nucleic acid and has a variety of biological functions. In
addition to being the raw material for nucleic acid synthesis, it also

constitutes energy substances, such as ATP, GTP, CTP, etc., (Barvík
et al., 2017). Nucleotide is also involved in metabolism and
physiological regulation, for example, cAMP is an important
second messenger substance in the body and participates in signal
transduction (Mani, 2022). In view of the important physiological
significance of nucleotide, its abnormal situation in the process of
metabolism often causes serious consequences. In recent years, a series
of genetic diseases, including DCM, caused by abnormal nucleotide

FIGURE 6
Heatmap of the enriched biological processes in GO analysis for each WGCNA module.
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metabolism have been found (Pant et al., 2018). Ubiquitination refers
to the process in which ubiquitins (a class of low molecular weight
proteins) classify proteins in cells under the action of a series of special
enzymes, select target proteins from them, and modify the target
proteins specifically (Kolla et al., 2022). DCM are associated with
cardiac remodeling, where the ubiquitin-proteasome system (UPS)
holds a central role. Different levels of UPS components, E3 ligases,
and UPS activation markers were observed in myocardial tissue from
control individuals and patients affected by DCM, suggesting

differential involvement of the UPS in the underlying pathologies
(Shukla and Rafiq, 2019). Therefore, Attention to the role of metabolic
abnormalities in dilated cardiomyopathy is important to identify
therapeutic targets for patients with different molecular pressure
groups. We also screened out biomarkers of molecular subgroup 2,
including TCEAL4, ISG15, RWDD1, ALG5,MRPL20, JTB, and LITAF,
based on two machine learning methods of LASSO regression and
SVM-RFE algorithm. However, the accuracy of its predictions requires
further validation in a larger population and roles of the biomarkers in

FIGURE 7
Heatmap of the enriched pathways in KEGG analysis for each WGCNA module.
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DCM still need to further investigate. A limitation of this study should
be noted. The development of DCM is a complex process, although a
total of 56 participants were included, the input data might still be
insufficient to identify and validate biomarkers. In addition, the

56 participants included in the study came from various regions
with different genetic variation, diet, physical activity and so on.
Therefore, the conclusions in the present study still need more
external validations.

FIGURE 8
Identification of biomarkers of molecular subgroup 2 using machine learning algorithms. (A) Identification of biomarkers of molecular subgroup 2 via
LASSO algorithm; (B) Identification of biomarkers of molecular subgroup 2 via SVM-RFE algorithm.

FIGURE 9
Evaluation of the effectiveness of the biomarkers. (A) Venn plot of the overlapping genes identified by the LASSO algorithm and SVM-RFE algorithm.
(B–H) ROC curves of TCEAL4, ISG15, RWDD1, ALG5, MRPL20, JTB, and LITAF. ROC, receiver operating characteristic.
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Conclusion

In conclusion, our results showed that, through molecular
classification, more detailed disease characteristics and its relationship
with clinical features of patients withDCM should be noticed. In addition,
patients in different molecular subgroups should receive a more
personalized treatment. Similar to molecular classification in cancer,
more populations are needed to conduct further validation, moreover,
future research in DCM should also introduce multi-omics data to reveal
more precise molecular subgroups of DCM.
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