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Linkagemapping is an approach to ordermarkers based on recombination events.
Mapping algorithms cannot easily handle genotyping errors, which are common in
high-throughput genotyping data. To solve this issue, strategies have been
developed, aimed mostly at identifying and eliminating these errors. One such
strategy is SMOOTH, an iterative algorithm to detect genotyping errors. Unlike
other approaches, SMOOTH can also be used to impute the most probable
alternative genotypes, but its application is limited to diploid species and to
markers heterozygous in only one of the parents. In this study we adapted
SMOOTH to expand its use to any marker type and to autopolyploids with the
use of identity-by-descent probabilities, naming the updated algorithm Smooth
Descent (SD). We applied SD to real and simulated data, showing that in the
presence of genotyping errors this method produces better genetic maps in terms
of marker order and map length. SD is particularly useful for error rates between
5% and 20% and when error rates are not homogeneous among markers or
individuals.With a starting error rate of 10%, SD reduced it to ~5% in diploids, ~7% in
tetraploids and ~8.5% in hexaploids. Conversely, the correlation between true and
estimated genetic maps increased by 0.03 in tetraploids and by 0.2 in hexaploids,
while worsening slightly in diploids (~0.0011). We also show that the combination
of genotype curation and map re-estimation allowed us to obtain better genetic
maps while correcting wrong genotypes. We have implemented this algorithm in
the R package Smooth Descent.
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Introduction

Linkage mapping is the process by which a set of markers segregating in a population are
grouped and ordered. Each marker is placed within a linkage group, oftentimes
corresponding to a chromosome, and given a genetic position within that group. The
usefulness of genetic mapping has made it a consistent tool during the past century: starting
with the study of trait co-segregation in Drosophila (Sturtevant, 1913), continuing to the
proof of the linear structure of genes and chromosomes (Benzer, 1959), and the first QTL
analyses (Lander and Botstein, 1989). Its relevance has not diminished nowadays, as it
enables the study of genomic patterns of recombination, thereby highlighting the functional
and structural properties of a genome. Linkage maps are also an essential tool for studies in
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organisms without a reference genome (e.g., (Hu et al., 2021), in
plant and animal QTL studies and in the assembly and improvement
of genome sequences (Mascher and Stein, 2014; Fierst, 2015).

Genetic mapping algorithms have been greatly influenced by the
progress of genotyping. As newer technologies provided larger
marker sets, novel mapping algorithms had to be developed to
handle growing numbers of markers (Cheema and Dicks, 2009). The
most recent genotyping techniques, sequencing-based methods such
as genotyping by sequencing (Elshire et al., 2011) or whole genome
sequencing (Varshney et al., 2014), are able to identify and genotype
millions of variants in a single analysis but suffer from a common
drawback: an increased proportion of genotyping errors. That is
particularly problematic for the purpose of genetic mapping, since
the ordering algorithms on which many mapping approaches rely
are notoriously sensitive to errors (Hackett and Broadfoot, 2003; van
Os et al., 2005; Cartwright et al., 2007). Since most algorithms
depend on pairwise recombination estimates, wrong genotypes can
give the false estimate that a double recombination has occurred,
producing sub-optimal map orders and inflated map lengths
(i.e., >100 cM). The general strategy to deal with this problem
has been to detect and eliminate highly spurious markers
(Lincoln and Lander, 1992; van Os et al., 2005; Cartwright et al.,
2007; Wu et al., 2008; Cheema and Dicks, 2009; Liu et al., 2014;
Rastas et al., 2016), although the errors can also be explicitly
modelled, increasing the number of retained markers (Bilton
et al., 2018).

Polyploidy, the presence of more than two chromosome sets
in an organism, is a relatively common condition in crop species
(e.g., rose, potato, strawberry, sugarcane, wheat) that poses
special challenges in linkage mapping. In autopolyploids,
which usually originate from genome duplication within a
single species, polysomic segregation and double reduction
require specialized methods of linkage estimation (Bourke
et al., 2018a). In allopolyploids, arising from interspecific
hybrids, segregation usually follows a diploid pattern, but
genotyping can be more inaccurate due to the difficulty of
distinguishing between homoeologous sequences (Kaur et al.,
2012). Although these issues have been addressed with
specialized tools and approaches (Glover et al., 2016; Bourke
et al., 2018b), these tools were not designed with consideration of
the high error proportion in sequencing-based genotype data,
and due to the unique challenges of polyploids, diploid-oriented
tools cannot be used.

In this study, we aimed to develop a ploidy-aware approach that
would help in using high-throughput genotyping information for
genetic mapping, without discarding vast amounts of data due to an
increased error rate. Therefore, we adapted SMOOTH (van Os et al.,
2005), a simple and efficient method for error detection and
correction based on the identification of unlikely genotype scores.
The original algorithm was only applicable to diploids and to
markers heterozygous in only one of the parents. By using
identity-by-descent (IBD) probabilities, we extended this model
to any ploidy and marker segregation type. Additionally, we
changed the k-nearest neighbours approach used in SMOOTH to
an interval-based approach, which improves identification and
correction of errors in maps with a heterogeneous marker
distribution. We term this updated method Smooth Descent, the
IBD-based descendent of SMOOTH. Similar to the original

algorithm, Smooth Descent requires a preliminary map to be
applied, thus it should be thought of as part of an iterative
mapping approach, so that with each round of mapping and
smoothing a better map is obtained.

This algorithm has been implemented as an R package called
‘Smooth Descent’. The package also generates so-called “graphical
genotypes” that can be used as a quality assessment tool by
researchers, along with visualizations of the iterative correction
process and other diagnostic plots.

Materials and methods

Smooth descent approach

SMOOTH and Smooth Descent are both based on the same
principle: comparing an observation (error sensitive) and
expectation (error tolerant) matrix of genotypes and identifying
as errors the inconsistencies between both matrices. The difference
lies in the way genotypes are expressed in both approaches: as raw
genotype scores in SMOOTH, and as Identity-by-Descent (IBD)
probabilities in Smooth Descent. In Smooth Descent observed IBD
is obtained through the naive IBD algorithm described below, while
expected IBD can be obtained through two methods, weighted
average IBD or hidden Markov model IBD. The three methods
are described below.

Naive IBD probabilities

The algorithm begins with parental phasing and a preliminary
map that indicates the order and distances of markers. A number of
methods can be used, experimental and computational, to obtain
parental phasing (Browning and Browning, 2011; He et al., 2018; Al
Bkhetan et al., 2021) and a preliminary map (Rastas, 2017; Bilton
et al., 2018). In our software, mapping is performed by polymapR
(Bourke et al., 2018a) and parental phasing is expected to be
obtained by the researcher.

Phased parental genotypes are expressed using the homologue
matrix H, in which columns represent parental homologues and
rows are markers, ordered according to the preliminary map. The
number of columns p will be the sum of parental ploidies. Thus,
the matrixH is composed of columnsH1 toHp. In a diploid cross
p � 2 + 2 � 4, there would be 4 columns; in a tetraploid cross,
8 and in a cross between a diploid and a tetraploid, 6 columns
would be specified. The first set of columns correspond to the
homologues of the first parent, and the rest to the homologues of
the second parent. Each cell of theHmatrix contains a 0 when that
homologue holds the reference allele A at that marker, and 1 if it
holds the alternative allele B. Because of this, only biallelic markers
can be used in Smooth Descent. The choice of reference allele will
not influence IBD calculations, and thus it can be done at random.
For a diploid cross, an example of H would be:

H �
1 0 0 0
0 1 1 0
0 0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (1)

In a tetraploid:
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H �
0 1 0 1 0 0 0 0
1 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (2)

First, we will calculate the error-sensitive, observed IBD
probabilities or naïve IBD probabilities. For that we need to
obtain all possible homologue combinations that can be
inherited, which we denote as configurations with the symbol ci.
This will depend on the number of homologues that parent 1 and
parent 2 pass on to the offspring, which in turn depends on their
ploidy.

In the case of a diploid, parent 1 provides a single homologue,
either H1 or H2; while parent 2 can provide H3 or H4. Although
there can be recombinations along the inherited homologues (e.g.,
switching fromH1 toH2), this does not affect our analysis since it is
performed marker by marker. Thus, there are four configurations,
c1 � H1, H3{ }, c2 � H1, H4{ }, c3 � H2, H3{ }, c4 � H2, H4{ }. On the
other hand, in a tetraploid example, each parent will provide two
homologues. Thus, a single parent can provide any of six pairs of
homologues: (H1, H2), (H1, H3), (H1, H4), (H2, H3), (H2, H4) or
(H3, H4). Moreover, due to multivalent formation, double
reduction scenarios are possible, meaning that parent 1 could
also contribute (H1, H1), (H2, H2), (H3, H3) or (H4, H4). If
both parents are tetraploid, this amounts to 100 possible
configurations. However, since double reduction is relatively rare,
and for the sake of simplicity, it has not been considered in this
implementation of Smooth Descent. Thus, we will only consider the
36 configurations possible, i.e., we assume that no double
recombination occurs.

The next step is to determine themarker dosage,dj, (of the alternative
allele) of each configuration. This must be calculated independently for
each marker. For one marker, matrix H assigns either 0 or 1 to each
parental homologue. The inherited dosage of that configuration is simply
the sum of the associated parental homologues. For instance, for the first
marker (row) in the diploid example, c1 � H1,H3{ } thus d1 � 1 + 0 � 1

while c3 � H2,H3{ } thus d3 � 0 + 0 � 0. For the first marker of the

tetraploid example, c1 � H1,H2,H5,H6{ } thus d1 � 0 + 1 + 0 + 0 � 1 etc.

To obtain IBD probabilities for one individual, one must consider
the observed genotype of that individual. Since an individual must
hold one of the described configurations, only those configurations
whose dosage matches the observed genotype are possible
configurations. For each genotype g, we denote the set of possible
configurations asCg, where kg the number of possible configurations.
When no double reduction is considered, all configurations are
equally probable, thus the IBD probability of Hi is:

p Hi( |g) � ∑j∈Cg
f cj,Hi( )
kg

(3)

Where f(cj,Hi) is an indicator function that takes the value 1 if
Hi belongs to cj and 0 otherwise.

f cj,Hi( ): ifHi ∈ cj then 1
ifHi ∉ cj then 0

{ (4)

For example, let us consider an offspring for the two parents
represented in the homologue matrix in Eq. 1 with a genotype of 1, 0,
1. The possible inheritance configurations for a diploid parent are

c1 � H1, H3{ }, c2 � H1, H4{ }, c3 � H2, H3{ }, c4 � H2, H4{ }. For the
first marker H1 � 1;H2 � 0;H3 � 0;H4 � 0, meaning that each
configuration has the following values: c1 � 1, c2 � 1, c3 � 0 and
c4 � 0. Only two configurations, c1 and c2 are possible given that the
genotype is 1, meaning that kg � 2. Thus:

p H1|1( ) � f c1, H1( ) + f c2, H1( )
2

� 2
2
� 1

p H2|1( ) � f c1, H2( ) + f c2, H2( )
2

� 0
2
� 0

p H3|1( ) � f c1, H3( ) + f c2, H3( )
2

� 1
2
� 0.5

p H4|1( ) � f c1, H4( ) + f c2, H4( )
2

� 1
2
� 0.5

A similar process can be followed for the second marker. In that
caseH1 � 0;H2 � 1;H3 � 1;H4 � 0, meaning c1 � 1; c2 � 0; c3 � 2
and c4 � 1. Only one configuration is possible that the genotype is 0:
c2, thus kg � 1. Applying Eqs 3, 4 as done above yields the following
results:

p H1|1( ) � 1 p H2|1( ) � 0 p H3|1( ) � 0 p H4|1( ) � 1

Lastly, the third marker can be computed considering thatH1 �
0; H2 � 0;H3 � 0 and H4 � 1. Thus, c1 � 0; c2 � 1; c3 � 0 and
c4 � 1. In this case the genotype is also 1, meaning that kg � 2,
since only c2 and c4 are possible. This yields:

p H1|1( ) � 0.5 p H2|1( ) � 0.5 p H3|1( ) � 0 p H4|1( ) � 1

If we combine these results, we can obtain the IBD matrix I0
according to the naive model for this individual:

I0 �
1 0 0.5 0.5
1 0 0 1
0.5 0.5 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
This algorithm will be applied after each iteration of correction,

as described below, to obtain matrix I1, and subsequently to obtain
matrix I2, etc.

IBD prediction–Weighted average
One of the two methods implemented for IBD prediction in

Smooth Descent is based on a local weighted average of observed
IBD around a marker, inspired by SMOOTH’s proposal and similar
to the procedure suggested by (Wu et al., 2008). This requires two
steps: first, defining the set of local markers and second, estimating
the weights to be applied to each marker.

Let’s start with markermi. The set of local markers, Li, are those
markers closer than l frommi, where l is a chosen distance threshold
(we chose l � 10 cM, but a different threshold can be provided).
Additionally, low-informative markers will be excluded from the
local set. We defined these as markers for which the observed IBD
probability is within the 0.3–0.7 range (see Error Prediction section
for more information). Since the predicted IBD is calculated per
homologue, this means that Li will differ slightly per homologue.

The weight for the observed IBD probability at markermj will be
proportional to the chance that there is no recombination between
mi andmj. This no-recombination probability can be obtained from
the distance estimates:
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1 − ρij � 1 − f dij( ) (5)

Where 1 − ρij is the probability of no recombination and f(dij)
is a reversed mapping function of the distance between mi and mj.
Three functions have been implemented: Morgan’s, Haldane’s and
Kosambi’s. We can define the weights as:

wj �
1 − ρij∑k∈Li 1 − ρij( ) (6)

For each individual, the predicted IBD probability for markermi

will then be the weighted average of all the markers in Li, for which
dij < l and the observed IBD probability is informative. Applying this
along the I0 matrix will allow us to calculate the predicted IBD
matrix Î0.

IBD prediction–Hidden markov model
The second model for IBD prediction is based on a hidden

Markov model (HMM), a common approach to obtain error-
tolerant IBD estimates (Zheng et al., 2016; Mollinari and Garcia,
2019; Zheng et al., 2021). We have included in Smooth Descent the
HMM implemented within polyqtlR (Bourke et al., 2021), an
expanded version of the TetraOrigin model (Zheng et al., 2016).
This HMM uses a discrete-time Markov chain to model parental
origins of chromosomes along the markers of each offspring. To do
so, it models homologue pairing in the gamete’s meiosis, including
recombination probabilities and gamete fusion to constitute a
zygote, thus closely modelling the biological reality of
inheritance. By defining a series of likelihoods for the parental
haplotypes conditional on the offspring genotypes, it provides a
powerful tool for estimating IBD probabilities and recombination
points.

Error prediction
In SD error estimation is performed by comparing an error-

sensitive IBD matrix (naive IBD) with an error-tolerant matrix
(weighted average IBD, or HMM IBD). Therefore, using SD one
can obtain error estimates by comparing naïve probabilities to the
weighted average probabilities, or to the HMM-based IBD
probabilities.

Each IBD matrix, I0 or Î0 is composed of IBD probabilities for
each homologue and each marker, which we term i0 and î0
respectively. The principle of error prediction is to identify
markers for which their observed and predicted IBD probabilities
disagree strongly, meaning that the observed genotype clearly
indicates a homologue inheritance that does not match the
predicted IBD. More formally, an error can be identified if
|i0 − î0|> δ, where δ is an error threshold preferably above 0.7.

Due to this definition, low-informative markers (with observed
probabilities between 0.3 and 0.7) must be excluded from the
weighted-average IBD prediction step. The contrast |i0 − î0| will
not reach a high value if either i0 or î0 are close to 0.5. The observed
IBD i0 will be close to 0.5 if the observed inheritance is uncertain,
whichmeans we do not have enough information to discern whether
that genotype is an error. The predicted IBD î0, should be close to
0.5 if the set of local markers have both high and low IBD
probabilities, indicating that there is a local disagreement on
inheritance. If low-informative markers are kept, even if many
informative markers exist that clearly indicate homologue

inheritance, the presence of low-informative markers will
centralize the local weighted average and prevent identification of
putative errors. Thus, low-informative markers should be removed
from IBD prediction.

Genotype correction and iteration
When a marker is detected as erroneous, a new genotype can be

imputed by computing themost likely marker genotype according to
the predicted IBD. The new set of genotypes can be used to calculate
an improved map, and a corrected IBD matrix, I1. The previous
steps can then be repeated to obtain a new error matrix E1 and
further improved genotypes. Thus, an iterative approach emerges,
where in each iteration the genotypes are further corrected. As
iterations progress the genetic map is expected to change less, and
thus we are more certain of the achieved order. In view of caution
regarding the introduction of artefacts, the error threshold was set at
δ � 0.9 during the first iteration, and then slowly decreased to 0.7 as
iterations progress.

Best iteration selection
When using Smooth Descent, we must choose the best iteration

according to some criterion. We offer the R2 estimate of the second-
order polynomial relationship (i.e., d � a + br + cr2 + ε) between
inter-marker distance d, and the recombination frequency r (not to
be confused with distance-based recombination frequency ρ used for
IBD prediction). Unlike ρ, r is calculated during the mapping
process through a likelihood or Bayesian method and is the basis
of the final map order. In a good map, the relationship between rij
and dij should be mostly linear, where high recombination
frequencies lead to high distances. Thus, the iteration with the
highest R2 can be considered the best.

Simulated data

PedigreeSim (Voorrips and Maliepaard, 2012), a program that
simulates meiotic pairing and recombination for a range of
pedigrees and ploidies, was used to simulate genotype data. We
simulated diploids, tetraploids and hexaploids. For each ploidy, ten
F1 populations were simulated (30 in total) with 100 individuals
each. Every individual had one single chromosome containing
200 segregating markers distributed at variable densities along
the chromosome. Error rates were applied randomly by changing
the genotypes of 1%, 5%, 10%, 20% of the markers.

Additionally, two special cases were designed to test the effect of
variable error rates across individuals (special case A) and across
markers (special case B). Special case A contained 80 individuals
with an error rate of 0.02 and 20 individuals with an error rate of 0.3.
Special case B had the same error rate for all individuals, but variable
across markers, ranging in a continuous curve along the
chromosomes. The curve was defined as a smooth spline passing
through the error rates 0.02, 0.1, 0.3, 0.02 and 0.1 at approximately
25 cM intervals along the chromosome. Thus, high error rate
markers were located close to one another and at the centre of
the chromosome.

Each genotype dataset was mapped using Smooth Descent with
10 iterations and tested using the weighted average or HMMmethod
for computing error-tolerant IBD probabilities. To evaluate the
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effectiveness of SD, as well as the additional tools tested, three
parameters were used: genotyping error, the percentage of genotypes
different from the true genotypes; position correlation, the
correlation between the true map positions and estimated map
positions; and map length, the size of the estimated genetic map.

Real data

Data from strawberry (Fragaria x ananassa) data was obtained
from whole genome sequencing of 48 individuals from an
F1 population. Variant discovery was performed using bcftools
and genotyping with the R package “updog” (Gerard et al., 2018),

allowing to genotype ~10 M markers. After filtering markers based
on depth and genotyping quality, ~1.8 M markers were kept and
summarised into ~6,500 unique markers across all chromosomes.
Due to a skim sequencing strategy, many genotyping errors were
expected and observed, which proved this dataset useful for testing
our approach. Since strawberry is an allopolyploid with strict
chromosomal pairing behaviour, the data could be treated as that
of a diploid.

Data from sweet potato (Ipomoea batatas) was taken from
(Mollinari et al., 2020). Sequencing was performed using the
polyploidy-optimized method described in GBSpoly (Wadl et al.,
2018). The obtained read counts were passed to SuperMASSA
(Serang et al., 2012) and genotypes were filtered for quality. For
chromosome 15, a final count of 1,513 genotypes were obtained for
287 individuals. These genotypes were used with SD, creating a
preliminary map de novo and performing genotype correction on
the genotypes. A single iteration of SD was used since no more
improvements could be made subsequently.

Data from diploid potato was taken from (Clot et al., 2022). The
dataset consisted of 1,536 full-sibs from a cross between two
heterozygous clones C (USW5337.3) and E (77.2102.37). This
population was skim sequenced to an average coverage of ~1.5x.
Parent specific SNPs were called using bcftools v.1.13 and used to
impute haplotypes in bins of 0.1 Mbp resulting in 4,893 female and
4,735 male segregating markers. Smooth Decent was used based on
physical position with five rounds at prediction interval of 1 Mbp
and two final rounds with a prediction intervals of 5 and 10 Mbp
respectively.

Software comparison

SD is a unique tool since it is the only available tool that aims at
correcting polyploid (and diploid) linkage maps while
simultaneously correcting genotyping errors. However, other
tools exist that can perform one of the two functions. We have
compared SD to polymapR (Bourke et al., 2018a), a polyploid
linkage mapping approach that does not perform genotype
correction; and to MAPpoly (Mollinari and Garcia, 2019), a
HMM approach that is able to correct genotypes and re-estimate
marker positions but that does not re-compute linkage map orders.

Ten F1 populations equivalent to those described in the
Simulated Data section were used. Genotyping errors were added
at a rate of 1%, 5%, 10%, 15%, 20%, 25% and 30%. For each
population and error rate four approaches were tested:

polymapR, MAPpoly, SD using weighted average IBD prediction
and SD with HMM IBD prediction. For both MAPpoly and SD the
same preliminary map was provided. Additionally, the error prior
provided to MAPpoly was the actual simulated error rate. Lastly, SD
results were obtained with 5 iterations since previous results (see
Simulation results) showed that iterating more than 5 times did not
have a significant impact in the result.

After running each approach, position correlation (correlation
between true and estimated map positions), map length and
computational run-time were obtained. Genotyping error was
only calculated for SD and MAPpoly methods, since polymapR
does not perform genotype correction.

Results

Simulated data

A total of 10 populations per ploidy were tested with 6 different
levels of genotyping error and two IBD prediction methods, showing
the usefulness of Smooth Descent (SD) in correcting genotypes,
improving map orders and shortening map lengths (Figure 1). It can
be observed how the most impactful changes occur in the first few
iterations: the biggest change in genotype correctness (Figure 1 top),
the largest improvement in genetic map correctness (Figure 1
middle) and the biggest reduction in map length (Figure. 1
bottom). Note that map length was particularly short in
polyploids (~60 cM in tetraploids and ~45 cM in hexaploids), an
issue that seems to stem from preliminary map calculation.

Ploidy is an important factor in the behaviour of SD, moving
from a genotype corrector at lower ploidies to a map corrector in
higher ploidies. In diploid cases (Figure 1 left column) SD is able to
halve genotyping error (e.g. ~5% reduction in the 0.1 error rate
scenario, Figure 1 left top; Table 1) and to shorten map lengths,
especially in the highest error rate cases (e.g., ~30 cM shortening,
Figure 1 left bottom, Table 1). Nevertheless, in diploids, SD does not
significantly impact the correlation (there’s a small decrease)
between true and estimated map positions, since the preliminary
map is already highly correlated to the true map, although longer. In
contrast, in polyploid scenarios reduction of genotyping error is
smaller (Table 1; Figure 1 middle and right columns), but the
correlation between true and estimated maps improves
substantially, especially in the hexaploid case. Map size reduction
is of the same order, about 30 cM. Importantly, for lower error rate
cases, there was a slight increase in genotyping errors, although this
did not affect the correlation with the true map or map size. This can
be attributed to incorrect imputations by the SD algorithm. Wrong
imputations occur in all scenarios, but in most cases they represent a
small fraction of the imputed genotypes, finally yielding an overall
improved genotype correctness. Only when ploidy is high and
genotyping error is low the number of correct genotypes
decreases due to wrong imputations.

The two IBD prediction methods tested (weighted average and
HMM) performed similarly in diploids but had some differences as
ploidy increased. Genotyping error correction was better for the
HMM as ploidy and initial error rate increased (Table 1, error rate
10%). Consequently, estimated map positions and map sizes were
also better for the HMM in high ploidy and high error rate cases.
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However, at lower error rates the HMM method produced a larger
increase in genotyping errors (Table 1, error rate 1%).

Real data

Two real datasets were tested using Smooth Descent, a low-
depth dataset of garden strawberry (Fragaria x ananassa)
(Figure 2A), chromosome 15 of Ipomoea batatas (Figure 2B)
and a low-depth dataset of a diploid potato (Figure 2C). Each
strawberry chromosome was mapped using a relatively small
population genotyped at low depth. Smooth Descent corrected
up to 13% of genotypes, largely correlating with depth so that
samples sequenced at lower depth had more genotype corrections.
About 3.5% of studied chromosomes had a depth above 10x and

had more than 2% of genotypes corrected, an unexpected result
probably caused by errors during mapping leading to
overcorrection of some samples.

The dataset of autohexaploid I. batatas was used to test SD in a
scenario with better genotype accuracy. SD corrected 7.38% of
genotypes while maintaining an equivalent relationship between
the physical and genetic maps (Figure 2B). This highlights the ability
of SD to improve genotype accuracy even in situations where there
have not been major issues in defining linkage map.

Lastly, a diploid dataset of potato was genotyped using very low
sequencing coverage of ~1.5x, which suggested a low-quality
genotypic dataset (Clot et al., 2022). Separate parental maps were
generated and each group of markers was corrected using SD with
physical order as an input, since a high-quality potato genome
sequence was available. The results show a drastic improvement in

FIGURE 1
Results of 10 simulated populations across error rates and ploidies. Within each section, each column represents a ploidy and panel the top row
shows the results for the IBD estimation with the weighted average procedure (IBD = weight) and the bottom row for the IBD estimation with the HMM
(IBD = hmm). (A)Genotyping error, the rate of genotypes that are different from the true genotypes. (B) Position correlation, the correlation between true
genetic positions and estimated positions in a genetic map. (C) Map length, the size in cM of the estimated maps. In each plot, points represent
individual observations and lines are the average. Each colour represents one simulated error type, with special A being heterogeneous rate across
individuals and special B being heterogeneous rate along the map.
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the correlation between the physical and genetic maps before and
after applying Smooth Descent.

Software comparison

The performance of Smooth Descent was compared to two
similar software tools: polymapR (Bourke et al., 2018a) and
MAPpoly (Mollinari and Garcia, 2019). The former performs
linkage mapping in polyploids without considering genotyping
errors. The latter uses a pre-determined order and a HMM
method to obtain new map distances and new genotypes.

In Figure 3 we can see the improvements that SD brings. The
reconstructed maps have better position correlation and shorter
lengths with SD, particularly when the error rates increase.
Importantly, only SD changes the order as genotyping errors are
corrected, a feature that is clearly useful especially as the error rate
and ploidy increases (Figure 3 top left). As expected, higher error
rates lead to longer maps when using polymapR, but surprisingly, in
MAPpoly that is the case with both very low or very high error rates.
Note that polyploid map lengths are much shorter than expected, an
issue that is common to polymapR and SD. In terms of genotyping
error correction, MAPpoly is better than SD in diploids, but both
perform equivalently well in polyploids, except in higher error rates
where the HMM of SD is somewhat better. Lastly, the computation
time needed for 5 iterations of SD is around 400 s in diploids and
tetraploids, and around 1000 s or 2500 s in hexaploids for the
weighted average or HMM methods. In comparison, polymapR
was always faster, which is to be expected since SD is iteratively
running polymapR. MAPpoly time consumption was much higher
as ploidy and error rate increased, with very long waiting times in
hexaploids.

Overall, SD is better at recovering the correct order and
shortening maps regardless of the situation. MAPpoly was better

in the diploid scenario in terms of genotype correction and time
consumption but became equivalent or worse than SD in tetraploids
and hexaploids.

Discussion

In this study we have shown that Smooth Descent is able to
substantially reduce genotyping errors, particularly in diploids, and
to greatly improve marker order in polyploid linkage mapping,
especially using the HMM approach. Moreover, when compared to
related tools, SD computes better linkage maps with an equivalent or
better level of genotype correction. Our findings are supported by
analysis of real data: there was a clear correlation between
sequencing depth and estimated genotyping errors in a low-
depth strawberry dataset, and an accurate genetic map was
obtained after correcting around 7.4% of genotyping errors in
hexaploid sweet potato. Thus, we have shown that genotype
correction is a useful method to improve linkage mapping in the
presence of genotyping errors.

In contrast, the most popular strategy of error management in
current genetic mapping software is marker or genotype removal. In
JoinMap this is achieved through a Bayesian parameter (Liu et al.,
2014), while Lep-Map2 does so through a Hidden Markov Model
(HMM) (Broman et al., 2003; Rastas et al., 2016). GUSMap, on the
other hand, does not remove errors but compensates their impact in
map length, also within an HMMmodel (Bilton et al., 2018). Finally,
HighMap uses SD’s predecessor SMOOTH (van Os et al., 2005), and
thus could benefit from the developments presented here (Liu et al.,
2014).

The genotype correction approach presented in this article
depends on transmitting confident parental information to
uncertain offspring genotypes. Essentially, if most local markers
indicate that one chromosomal region of a parent has been

TABLE 1 Average change between preliminary map and last iteration of Smooth Descent.

Error rate (%) Ploidy IBD method Δ Error (%) Δ Correlation Δ Size (cM)

1 2 hmm −0.27 −0.0008 −3.10

1 2 weight 0.16 −0.0032 −8.27

1 4 hmm 1.58 −0.0034 −6.05

1 4 weight 0.69 −0.0013 −7.94

1 6 hmm 1.76 −0.0031 −7.12

1 6 weight 0.53 0.0014 −4.70

10 2 hmm −4.98 −0.0011 −29.41

10 2 weight −5.15 −0.0020 −35.01

10 4 hmm −2.94 0.0302 −29.00

10 4 weight −2.33 0.0298 −22.44

10 6 hmm −1.51 0.2354 −30.88

10 6 weight −0.95 0.2083 −24.64

Two error rate cases (0.01 and 0.1) are shown to illustrate the difference between the last iteration of SD and the preliminary error rate (Δ Error), correlation between the true map positions and

estimated map positions (Δ Correlation) and map size (Δ Size). All values were calculated as last iteration–preliminary value (positive means increase, negative means decrease). Values are

shown for all ploidies and IBD estimation methods (hmm is hidden Markov model and weight is weighted average method).
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inherited, the offspring genotypes should match parental
haplotypes. This rationale, and therefore the accuracy of SD,
depends on two important factors: marker order and parental
phasing.

Marker order

The set of local markers used to identify wrong genotypes is
clearly defined by marker order. It is not crucial that marker order is
exact, but the overall preliminary order should be correlated to the
true order. In instances where the provided preliminary order is very
far off from the true order, SD will not be able to impute genotypes
correctly and any map improvement will be spurious.

Marker order can be determined by a linkage mapping
procedure where a measure of linkage and an ordering algorithm
is used to obtain a genetic map. In our implementation of SD these
correspond to polymapR (Bourke et al., 2018a) and MDSMap

(Preedy and Hackett, 2016) respectively. Both processes are
sensitive to genotyping errors, meaning that as errors increase,
the accuracy of the estimated linkage map will decrease.
Consequently, there is a natural upper limit to the level of
genotyping error that SD can tolerate: once the error rate
impedes the calculation of a relatively good preliminary genetic
map, SD stops being useful. This also means that if different
methods were designed that could compute marker orders
independently of genotyping errors, SD applicability would be
expanded.

Linkage mapping is not the only way to determine marker
order. As reference genomes are built, it is increasingly common
to obtain physical positions for markers. If such information is
available, one could apply SD using physical, instead of genetic
positions. This opens the possibility of using SD to datasets that
are too large to be mapped using linkage techniques, but that
could benefit from an error-cleaning algorithm. Moreover, since
the order would not need to be re-calculated after genotype

FIGURE 2
Error detection and marker order in two real datasets after applying Smooth Descent. (A) Relationship between sequencing depth and the rate of
markers corrected by Smooth Descent for each chromosome of 52 individuals of strawberry (Fragaria x ananassa). (B) Relationship between physical and
genetic positions of 1,513markers in chromosome 15 of Ipomoea batatas, before and after correcting 7.38% of genotype calls using Smooth Descent. (C)
Relationship between physical and genetic positions of 1716 markers in chromosome 12 of Solanum tuberosum, before and after using Smooth
Descent to correct low depth genotypes based on a physical order.
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correction, only a single iteration of the algorithm would be
necessary. Nevertheless, particularly for the weighted-average
IBD estimation procedure, the usage of physical positions
rather than genetic positions could be problematic since
physical distances do not represent the same recombination
probabilities along the genome. In centromeres a distance of
100,000 bp will include less recombinations than 100,000 bp in
the chromosome arms. This should not be a major problem in the
application of SD though, since the recombination frequencies
are used relative to each other within small local intervals.
Furthermore, if the locations of the pericentromeric regions
are known (which they often are), then it would be possible to
generate pseudo-cM positions of markers to circumvent this
issue.

Parental phasing

To calculate identity-by-descent (IBD) probabilities, the
backbone of genotype error detection and correction in SD,
accurate parental phases or parental haplotypes are required. In
this study we have not aimed at characterizing the effects of parental

phasing in SD, as there has been much research dedicated to this
complex issue (Browning and Browning, 2011; He et al., 2018; Al
Bkhetan et al., 2021), both in diploids and in polyploids. Currently,
there are two types of approaches that can be used to establish
parental phasing: based on marker scores or on sequence reads.

Marker scores have been used within several Hidden Markov
Models (HMM) to obtain accurate phases. Recent studies in diploid
data showed that consensus haplotyping approaches are the most
accurate (Al Bkhetan et al., 2021), although individually tools like
SHAPEIT4 (Delaneau et al., 2019) and BEAGLE5 (Browning et al.,
2018) have the best performances in terms of time efficiency and
accuracy. Several HMM have also been developed focused on
polyploid data which can estimate phases: MAPpoly (Mollinari
and Garcia, 2019), polyOrigin (Zheng et al., 2021), and polyqtlR
(Bourke et al., 2021). Although many of these methods consider
genotyping error in their estimations, since phasing depends on
marker segregation, an increased genotyping error rate in the target
population can decrease phasing accuracy.

Alternatively, reads can be used to perform haplotype assembly:
by observing multiple polymorphisms in a single read one can infer
the most likely haplotype phases. Multiple tools have been developed
to produce long-range haplotypes using short reads, long reads or a

FIGURE 3
Software comparison with other tools. Average observations of 10 populations per ploidy with simulated genotyping errors. Top left, correlation
between true map position and estimated map position. Top right, map length in cM. Bottom left, time spent in seconds, note logarithmic y axis. Bottom
right, genotyping error of corrected genotypes. Grey dashed line indicates the starting error rate. Note that polymapR does not produce corrected
genotypes and thus is not included in this panel. Each color and shape corresponds to a different approach: red circle, polymapR, green triangle
MAPpoly, blue square (sd hmm) SD with HMM approach, purple cross (s _weight) SD with weighted average approach.
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combination of both (Garg, 2021). In diploids, WhatsHap
(Patterson et al., 2015) and HapCut2 (Edge et al., 2017) are the
most popular methods, being able to produce chromosome-level
haplotypes when combining short and long read data (Garg, 2021).
In polyploids, the assembly problem is more complex, which has
required the development of specific tools such as HapCompass
(Aguiar and Istrail, 2012), HapTree (Berger et al., 2014) and SDhaP
(Das and Vikalo, 2015). Although useful, the accuracy of these tools
is quite variable depending on depth and ploidy (Motazedi et al.,
2017), never reaching the performance of their diploid counterparts.
More recent developments like WhatsHap polyphase (Schrinner
et al., 2020), based on long-read sequencing or Hap10 (Majidian
et al., 2020), oriented to link-read data, are promising in closing the
gap between diploid and polyploid haplotype assembly.

Application of Smooth Descent

The original idea behind the development of SD was to create a
tool that would be able to utilize low-depth, inaccurate genotypes to
obtain accurate linkage maps. Intuitively, we expected that confident
parental phasing would be enough to create such an approach. We
have shown that indeed, if parental information is accurate and
marker order is well established, genotype correction can be
performed, and accurate linkage maps obtained. Thus, we can
imagine the following genotyping setup for an F1 population.
First, the two parents are sequenced at high depth using long-
read sequencing, in order to compute parental haplotype phases.
Secondly, the F1 population is genotyped using low-depth short
reads. If a marker order is not established yet, SD can be used
iteratively to improve genotypes and obtain an accurate linkage
map. Otherwise, a single iteration of SD is used to eliminate as many
genotyping errors as possible. If the marker number is relatively
small, the HMM method of SD is applied, if the dataset is larger the
more efficient, although less accurate, weighted average method is
used. Finally, a set of corrected genotypes is obtained. In this
manner, SD would reduce genotyping costs by allowing a lower
depth of sequencing in the F1 offspring.

Overall, SD is a simple and informative software tool. It
estimates IBDs, calculates error rates per marker and individual
and can impute corrected genotypes. Our implementation, together
with MDSmap (Preedy and Hackett, 2016) and polymapR (Bourke
et al., 2018a) allows SD to work in multiple ploidies and with large
datasets. We also provide many visualization tools which will help
uncover the hidden information within genotyping data and turn
Smooth Descent into SMOOTH’s descendent.
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