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Background: Pancreatic cancer (PC) is a malignant gastrointestinal tumor with a
terrible prognosis. Cuproptosis is a recently discovered form of cell death. This study
is intended to explore the relationship between cuproptosis-related lncRNAs
(CRLncs) signature with the prognosis and the tumormicroenvironment (TME) of PC.

Methods: Transcript sequencing data of PC samples with clinical information were
obtained from the Cancer Genome Atlas (TCGA). Univariate Cox regression analysis
and LASSO regression analysis were employed to construct the prognostic signature
based on CRLncs associated with PC survival. A nomogramwas created according to
this signature, and the signaling pathway enrichmentwas analyzed. Subsequently, we
explored the link between this prognostic signature with the mutational landscape
and TME. Eventually, drug sensitivity was predicted based on this signature.

Results: Forty-six of 159 CRLncs were most significantly relevant to the prognosis of
PC, and a 6-lncRNA prognostic signature was established. The expression level of
signature lncRNAswere detected in PC cell lines. The AUC value of the ROC curve for
this risk score predicting 5-year survival in PC was .944, which was an independent
prognostic factor for PC. The risk score was tightly related to the mutational pattern
of PC, especially the driver genes of PC. Single-sample gene set enrichment analysis
(ssGSEA) demonstrated a significant correlation between signature with the TME of
PC. Ultimately, compounds were measured for therapy in high-risk and low-risk PC
patients, respectively.

Conclusion: A prognostic signature of CRLncs for PC was established in the current
study, which may serve as a promising marker for the outcomes of PC patients and
has important forecasting roles for genemutations, immune cell infiltration, and drug
sensitivity in PC.
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1 Introduction

The number of newly diagnosed pancreatic cancer (PC) in the United States broke 60,000 in
2021, with the incidence increasing by over 1% annually. After numerous years of efforts
worldwide, the 5-year survival rate for PC has only just surpassed 10% (Rahib et al., 2014; Siegel
et al., 2021; Siegel et al., 2022). The risk elements for PC are not well-defined and the main ones
generally accepted are family history, tobacco, alcohol abuse, obesity, and type II diabetes
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(Mizrahi et al., 2020; Huang et al., 2021). Lacking effective early
screening measures, localized PC patients often are asymptomatic or
have minimal symptoms, and approximately half of newly diagnosed
PC cases are advanced diseases at diagnosis, with an average survival
time of less than 1 year (Mizrahi et al., 2020). The high heterogeneity
of PC contributes to the challenge of predicting its prognosis, and
satisfactory results are not achievable by traditional TNM staging
alone. Given the current dilemma in the prognostic prediction of PC,
new strategies for screening high-risk patients to detect PC at an early
stage are urgently necessary to provide practical clinical benefit
(Mizrahi et al., 2020). Hence, a prognostic model based on
molecular profiling to screen for high-risk patients is appreciated.

Tsvetkov et al. found that copper triggered the aggregation of
mitochondrial lipid acylated proteins to induce regulated cell death
(RCD) and named this unique form of death “cuproptosis” (Tang
et al., 2022; Tsvetkov et al., 2022). Studies have been proposed
before this to suggest a strong relationship between copper with
cancer. Yu et al. suggested that blocking SLC31A1-dependent
copper uptake increased PC cell autophagy to resist cell death
(Yu et al., 2019). Inhibition of copper transport induces apoptosis
and inhibits tumor angiogenesis in triple-negative breast cancer
cells (Karginova et al., 2019). Of course, the link between copper
with tumor is not only in the cuproptosis but also as a possible
therapeutic target for treatment (Safi et al., 2014). Disulfiram (DSF)
acts as a copper carrier to induce copper-dependent oxidative stress
and mediates antitumor efficacy in inflammatory breast cancer

(Allensworth et al., 2015). Thus, this form of death brings promise
for the therapy of PC.

Long non-coding RNAs (LncRNAs) are described as RNAs
consisting of over 200 nucleotides without the ability to encode
proteins (Gibb et al., 2011; Serghiou et al., 2016). LncRNAs exert a
central role in PC pathogenesis as regulators of cancer pathways,
regulating cellular processes including but not limited to cell cycle,
apoptosis, and epithelial-mesenchymal transition to influence
biological behaviors such as tumor growth, migration, and invasion
(Kornienko et al., 2013; Sharma et al., 2021). The critical role of
LncRNAs in cancer is what makes them proposed as important
biomarkers of cancer outcome and are emerging as promising
candidates for biomarker development in various cancers, including
PC (Esteller, 2011; Sharma et al., 2021; Toden et al., 2021). The
potential value of prognostic signature regarding cuproptosis-
associated lncRNAs as a prognostic predictor for PC is currently
uncertain.

The current study utilized CRLncs to create a signature for PC as
well as a nomogram to predict the prognosis of PC patients. The
intimate association of signature with mutational pattern in PC
samples and immune infiltration landscape in TME was revealed.
In this study, the high expression of signature lncRNAs in PC cell lines
was investigated by PCR experiment. This study identified a
prognostic signature of CRLncs as a potentially promising marker
that could be applied for forecasting the long-term survival time and
guiding the therapeutic regimen for PC patients.

TABLE 1 The distribution of clinical features in three cohorts.

Covariates Type Train cohort Test cohort Entire cohort

Age ≤65 43 (50%) 46 (53.49%) 89 (51.74%)

Age >65 43 (50%) 40 (46.51%) 83 (48.26%)

Gender FEMALE 40 (46.51%) 38 (44.19%) 78 (45.35%)

Gender MALE 46 (53.49%) 48 (55.81%) 94 (54.65%)

Stage Stage I 7 (8.14%) 13 (15.12%) 20 (11.63%)

Stage Stage II 74 (86.05%) 68 (79.07%) 142 (82.56%)

Stage Stage III 1 (1.16%) 2 (2.33%) 3 (1.74%)

Stage Stage IV 2 (2.33%) 2 (2.33%) 4 (2.33%)

Stage unknow 2 (2.33%) 1 (1.16%) 3 (1.74%)

T T1 2 (2.33%) 4 (4.65%) 6 (3.49%)

T T2 8 (9.3%) 15 (17.44%) 23 (13.37%)

T T3 74 (86.05%) 64 (74.42%) 138 (80.23%)

T T4 1 (1.16%) 2 (2.33%) 3 (1.74%)

T unknow 1 (1.16%) 1 (1.16%) 2 (1.16%)

N N0 26 (30.23%) 21 (24.42%) 47 (27.33%)

N N1 57 (66.28%) 64 (74.42%) 121 (70.35%)

N unknow 3 (3.49%) 1 (1.16%) 4 (2.33%)

M M0 38 (44.19%) 38 (44.19%) 76 (44.19%)

M M1 2 (2.33%) 2 (2.33%) 4 (2.33%)

M unknow 46 (53.49%) 46 (53.49%) 92 (53.49%)
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2 Materials and methods

2.1 Data source

Transcript sequencing data and clinical details of PC patients
were available in the latest version of TCGA (July 2022, https://
portal.gdc.cancer.gov/). The raw copy number variation (CNV)
data of PC was extracted from UCSC Xena (http://xena.ucsc.edu/).
Nineteen cuproptosis-related genes (CRGs) (Supplementary Table
S1) were searched from works of literature (Yu et al., 2019; Gao
et al., 2021; Tang et al., 2022).

2.2 To identify CRLncs

The “igraph” package was utilized to draw the correlations within
CRGs. The cuproptosis-related lncRNAs were identified via Pearson
correlation analysis with a correlation coefficient = .35 and p =
.05 considered relevant.

2.3 CRLncs prognostic signature

First, the prognostic value of CRLncs was assessed by univariate
Cox analysis, whereby a threshold of cox = .05 and p < .05 was
accepted. In the current study, The least absolute shrinkage and
selection operator (LASSO) Cox regression algorithm was
employed to remove overfitting between CRLncs and construct
CRLncs signature, which was run through the “glmnet” package
(Engebretsen and Bohlin, 2019). Risk score formula:

Risk score � ∑
n

i

(CoefCRLncs × ExpCRLncs)

The TCGA samples were randomly divided into train cohort and
test cohort initially. The risk of PC samples was scored and patients
were classified as high-risk and low-risk groups with a cut-off of
median risk. Kaplan-Meier (K-M) survival curves were plotted to
assess the progression-free survival (PFS) and overall survival (OS) of
PC patients. Time-dependent receiver operating characteristic (ROC)
curves were drawn via the “timeROC” package to determine the
performance of this signature. Principal Components Analysis
(PCA) was performed for each risk subtype by the “scatterplot3d”
package.

2.4 To construct a nomogram

Univariate combined with multivariate Cox regression analyses
to determine whether this risk score is a prognostic factor
independently of other clinical features. A nomogram was
constructed with the “rms” package to predict the survival rate
of individual patients, and calibration curves were employed to
measure the performance of the nomogram model. The
concordance index (C-index) curve was plotted to detect the
stability of the risk score and nomogram prediction power. The
decision curve analysis (DCA) was carried out to determine the
contribution of risk score and nomogram in clinical decision-
making.

2.5 Functional enrichment analysis

Initially, differences in active signaling pathways among different
risk PC samples were explored by Gene Set Enrichment Analysis
(GSEA). To understand the biological functions of risk-related
differential genes and the potential signaling enrichment pathways,
the gene ontology (GO) enrichment analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis were
conducted with the package of “clusterProfiler”, and presented as bar
graphs, bubble plots, and functional clustering circles, respectively.

2.6 Mutation landscape

Firstly, the “maftools” R package was employed to describe the
mutational patterns of CRGs. The “maftools” and “Rcircos” packages
were employed for CNV analysis. All mutation frequencies and
oncoplot waterfall maps of PC patients were drawn by the
“maftools” package. The association between risk score and the
frequency of mutations in the classical driver genes of PC (KRAS,
TP53, SMAD4, and CDKN2A) was further explored (Kanda et al.,
2012). The association between TMB and patient OS was analyzed in a
tumor mutation load analysis, and the “maftools” package was finally
utilized to compare the mutation frequency between different risk
groups.

2.7 Immune infiltration analysis

First, the CIBERSORT algorithm was used to reveal the immune
infiltration pattern of PC samples in TCGA, and the “corrplot”
package was utilized to explore the correlation among various
immune cells. Alternatively, the ssGSEA was employed to compare
differences in the level of immune cell infiltration and immune
function in different risk PC samples. Eventually, the expression
levels of HLA family genes and immune checkpoint genes were
compared between patients with different risks.

2.8 Compound sensitivity analysis

To investigate the potential of this risk score for PC therapy, we
explored the drug therapy data in the Cancer Therapeutics Response
Portal (CTRP) database with the “oncoPredict” package (Maeser et al.,
2021). This study focused on the differences in sensitivity of PC
patients with different risk profiles to compounds currently in clinical
use. Through literature review, we collected 24 compounds that are at
least in the clinical trial stage for PC clinical treatment (Sally et al.,
2022).

2.9 Cell culture

The pancreatic cancer cell lines of AsPC-1, Capan-2, CFPAC-1,
MIA PaCa-2, and SW1990 were used to detect the expression levels of
lncRNAs, and HPDE cell lines were employed as normal controls.
AsPC-1, Capan-2, and CFPAC-1 were cultured with 1,640 complete
medium, while MIA PaCa-2 and SW1990 were cultured with DMEM
complete medium.

Frontiers in Genetics frontiersin.org03

Chen et al. 10.3389/fgene.2023.1049454

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://xena.ucsc.edu/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1049454


2.10 Quantitative real-time PCR

Details of the full procedure of the PCR operation were carried out
in accordance with previous study (30333874). PCR primers for
FAM83A-AS1, PAN3-AS1, and SENCR were purchased from
SangonBiotech (Sangon, Shanghai, China). The primer sequences
were as follows: FAM83A-AS1: 5’ -AAG AGC ATG AAA GAC
TGA GGA AGC G-3’ (forward), 5’ -TCC AGG AGG TCG GTG
CCA TTG-3’ (reverse); PAN3-AS1: 5’ -CTT CCT CTC CCC GTT
TCC TTT CTT C-3’ (forward), 5’ -CAA GAG GTT AGC GTA ATC
GGT CCA G-3’ (reverse); SENCR: 5’ -GCT TTC AGG AGA ATG
CGG AGA GAC-3’ (forward), 5’ -TTC TGG CTG AAT GAG GAG
CAA TGT G-3’ (reverse); β-actin: 5’ -CCT GGC ACC CAG CAC
AAT-3’ (forward), 5’ -GGG CCG GAC TCG TCA TAC-3’ (reverse).
The expression of FAM83A-AS1, PAN3-AS1, and SENCR was
standardized by the internal control β-actin. In addition, fold
changes in FAM83A-AS1, PAN3-AS1, and SENCR were calculated
by 2−ΔΔCT.

3 Statistical analysis

All analysis processes were carried out with the R software (https://
www.r-project.org/, version 4.2.1) plus its application packages. The
Student’s t-test was employed to compare the statistical difference
between two groups. The log-rank test was performed for the Kaplan-
Meier survival analysis. Drug sensitivity differences were compared

with the Wilcoxon test. p-value <.05 is considered statistically
significant if not otherwise stated. *p < .05, **p < .01; ***p < .001;
ns, not significant.

4 Results

4.1 Genetic variation of CRGs in PC

This study progressed according to the flow chart (Figure 1). The
TCGA dataset of 179 PC was downloaded, accompanied by four
normal pancreatic tissue samples. The mutation waterfall plot of
the nineteen CRGs in PC samples indicated that the frequency of
CDKN2A mutation was the highest (17%), NLRP3, ATP7A, NFE2L2,
ATP7B, FDX1, LIAS, DLAT, PDHA1, GLS, and DBT were mutated at
1%, and the remaining were unmutated (Figure 2A). The genetic
instability of CRGs in PC samples is commonly visible (Figures 2B, C).
The interconnections among these CRGs are very obvious
(Figure 2D).

4.2 Establishing and validating a CRLncs
signature

In the TCGA dataset, altogether 159 CRLncs were identified
(Figure 2E). Initially, forty-six of the above CRLncs were identified
as prognostically associated with PC using univariate Cox regression

FIGURE 1
The flowchart for analyzing cuproptosis-related lncRNAs prognostic signature.
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analysis, of which four were risk factors and the rest were protective
factors (Figure 3A). The heatmap showed that all 46 CRLncs
mentioned above were differentially expressed in PC tissues
(Figure 3B). A strong positive regulatory relationship was observed

between these CRLncs and CRGs, with most CRLncs being closely
related to GLS, LIAS, and NLRP3 (Figure 3C). Subsequently, LASSO
Cox regression analysis was performed to obtain a CRLncs signature
with an optimal λ value (Figures 3D, E). The signature is the sum of the

FIGURE 2
Genetic variations of cuproptosis-related genes (CRGs). (A) The mutation waterfall plot of the CRGs in PC. (B) Copy number variation (CNV) frequencies
of CRGs. (C) The sites of CRGs with CNV on chromosomes. (D) The interconnections among CRGs. (E) Identification of cuproptosis-related lncRNAs
(CRLncs).
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product of the coefficient of the six CRLncs with their expression, as
follows:

Risk score � 0.2738*expression of FAM83A − AS1[ ]
+ −0.2123* expression of AL137186.1[ ]
+ −0.0024*expression of SENCR[ ]
+ −0.0193*expression of PAN3 − AS1[ ]
+ −0.5518*expression of Z97832.2[ ]
+ −0.2967*expression of AL139243.1[ ]

According to this model, the risk score was calculated for
individual patients in the training cohort, the validation cohort,
and the entire TCGA cohort. PC patients were divided into high-
and low-risk groups based on the median risk score. The correlation
between the six signature CRLncs with CRGs was next assessed,
with distinct positive relationships between AL137186.1,
AL139243.1, and SENCR with NLRP3. There was a significant
positive connection between FAM83A-AS1 with GCSH and
PAN3-AS1 with Z97832.2 (Figure 3F). PCA analysis
demonstrated that the high-risk samples in the three cohorts
were independent of the low-risk samples (Figures 3G–K). The
risk score and survival status map were plotted (Figures 4A, B). As
the K-M curves suggested, low-risk patients shared significantly
superior OS and PFS to high-risk patients (Figures 4C, D). The area
under the ROC curve (AUC) values for 1/3/5 years were 0.794/
0.796/0.944 in the training cohort, 0.573/0.653/0.615 in the
validation cohort, and 0.703/0.721/0.757 in the whole cohort,
respectively (Figure 4E). The expression of six signature CRLncs
was substantially different between the high- and low-risk groups,
with FAM83A-AS1 being more highly expressed in the high-risk
group and the remaining being expressed at higher levels in the
opposite risk group (Figure 4F). High expression of FAM83A-AS1,
PAN3-AS1, and SENCR in PC cell lines was demonstrated by PCR
(Figure 4G).

4.3 Building a nomogram

The results of univariate and multivariate Cox regression
analyses suggested that this risk score was an independent
prognostic factor for PC (Figures 5A, B). Alternatively, a
nomogram was generated to score patients and predict their OS
in 1, 3, and 5 years (Figure 5C), and the calibration curve showed
that the nomogram performed well (Figure 5D). The concordance
index curve demonstrated that risk score and nomogram
outperformed age, gender, and stage (Figure 5E). The DCA
curve demonstrated the contribution of risk and nomogram in
clinical decision-making (Figure 5F). Consistently, the AUC values
for risk score predicting 0.5/1/2/3/4/5-year overall survival were
.713, .707, .698, .740, .801, and .781, respectively, and the AUC
values for nomogram predicting .5/1/2/3/4/5-year OS were .637,
.591, .694, .721, .737, and .698, which were better than other clinical
characteristics (Figures 5G–L). Further, the interrelationship
between the signature CRLncs was assessed and a remarkable
positive correlation was found between PAN3-AS1 with
Z97832.2 (Figure 6A). The relationship between these signature
CRLncs and risk score with clinical features is intimate (Table 1).
AL137186.1 was highly expressed in patients with M0 or T3-4

(Figures 6B, C). PAN3-AS1 was more abundant in younger or
N0 patients (Figures 6D, E). PAN3-AS1, Z97832.2, and risk score
were expressed at higher levels in patients with high stage and
T-staging (Figures 6F–J). The heat map illustrates the distribution
of risk score with clinical characteristics (Figure 6K). The outcomes
of PC patients in the low-risk group were better than their
counterparts, across all clinical characteristic subgroups
(Figures 6L–W).

4.4 Functional enrichment

Initially, GSEA shows that high-risk patients are predominantly
enriched in the signaling pathways of calcium signaling pathway,
primary immunodeficiency, and type II diabetes mellitus (Figures
7A, B). Malignant activities such as cell proliferation are more
active in high-risk patients. To further explore the functional
enrichment of risk differentially expressed genes, a risk
difference analysis was performed with the threshold set at
logFC = 1, p < .05. Among them, the GO terms with the highest
enrichment were, biological process: regulation of cytosolic calcium
ion concentration; cellular component: T cell receptor complex;
and molecular function: metal ion transmembrane transporter
activity (Figures 7C, D). KEGG terms were mainly enriched in
the T cell receptor signaling pathway and the cAMP signaling
pathway (Figures 7E, F). The GO and KEGG enrichment circle
plots show the number of differential genes enriched in the top
eighteen items (Figures 7G, H).

4.5 Tumor mutation load analysis

The most common variant classification among all mutations was
missense mutation, and the most frequent variant type was SNP
(Figure 8A). Mutations occurred in 145 of 173 PC samples
(83.82%), with 62% of the samples harboring mutations in KRAS
and 58% of the samples harboring mutations in TP53 (Figure 8B). PC
patients carrying mutated KRAS, TP53, and CDKN2A had higher risk
score than wild-type patients, while SMAD4 mutation was not
associated with risk (Figures 8C–F). The TMB of the PC samples
in the TCGA database was scored and they were categorized into two
mutation groups. Mutations have a significant impact on survival
time, with patients in the low-mutation group enjoying a much longer
survival time than their counterparts (Figure 8G). Then, combining
signature risk and TMB, we found that patients with high TMB from
the high-risk group suffered the worst prognostic outcome
(Figure 8H). The mutation landscape maps were dramatically
diverse among patients with different risks, with a substantially
higher mutation frequency in high-risk patients than in low-risk
patients. The frequency of KRAS mutation was (80% vs. 47%) and
TP53 mutation was (73% vs. 44%) in patients with high and low risks
(Figures 8I, J).

4.6 Relationship between signature with
immune infiltration

The proportion of immune cells varied significantly among PC
samples in the TCGA (Figures 9A, B). Pearson’s correlation heatmap
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suggested that the correlation differed among immune cells. There was
a significantly positive correlation between B cells memory and CD4+

T cells naive, while CD8+ T cells were markedly negative related to

Macrophages M0 (Figure 9C). The stromal score, immune score, and
ESTIMATE score were all at a much lower level in the high-risk
sample (Figure 9D). The ssGSEA revealed that the infiltration levels of

FIGURE 3
Establishment of the CRLncs signature for PC. (A) Recognition of the prognostic CRLncs in PC via univariate Cox regression analysis. (B) Heatmap of the
expression of prognostic CRLncs. (C) The ggalluvial diagram of relationship between CRGs and prognostic CRLncs. (D,E) The LASSO Cox regression analysis
was performed depending on the optimal λ value. (F) The relationship between CRGs with signature CRLncs. (G–K) The PCA of PC patients in the TCGA-train,
test, and entire cohort. *p < .05, **p < .01; ***p < .001; ns, not significant.
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B cells, CD8+ T cells, iDCs, Mast cells, Neutrophils, pDCs, T helper
cells, Th1 cells, TIL, and Treg were remarkably lower in high-risk
patients (Figure 9E). In high-risk samples, immune functions of CCR,
checkpoint, cytolytic activity, HLA, inflammation promoting, T cell

coinhibition, T cell costimulation, and type II IFN reponse were less
active in high-risk patients (Figure 9F). The ssGSEA results are
consistent with the trend of lower a immune score. Given that
checkpoint and HLA levels were lower in high-risk patients,

FIGURE 4
Construction of the CRLncs prognostic signature. (A–F) The risk score, survival status, Kaplan-Meier plot survival cure of OS and PFS, ROC curve
predicted the 1/3/5-year OS, and heatmap of 6 signature CRLncs in different risk PC patients in the TCGA-train, test, and entire cohort. (G) The PCR of
signature lncRNAs expression levels. *p < .05, **p < .01; ***p < .001; ns, not significant.
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checkpoint and HLA gene expression levels were then assessed.
Overall, most of the immune checkpoints were substantially lower
in the high-risk group, including CTLA4, PD-1 (also known as

PDCD1, or CD279), and others (Figure 9G). Similarly, the vast
majority of HLA genes were at low levels in high-risk patients
(Figure 9H).

FIGURE 5
A nomogram for PC patients in TCGA dataset. (A,B) Independent prognostic value of risk score by univariate andmultivariate analysis. (C) A nomogramof
the risk score for predicting the 1-, 3-, and 5-year OS of PC patients. (D)Calibration curves of this nomogram for the prediction of 1/3/5-yearOS of PC patients.
(E) The concordance index curve of risk score and nomogram. (F) The DCA curve of risk score and nomogram. (G–L) The AUC values for risk score and
nomogram predict 0.5/1/2/3/4/5-year OS. *p < .05, **p < .01; ***p < .001; ns, not significant.
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4.7 Drug susceptibility analysis

Initially, we identified six clinically used drugs (Gemcitabine,
Paclitaxel, Oxaliplatin, Olaparib, Fluorouracil, and Erlotinib) from
the candidate drugs for PC in the CTRP database (Figure 10A). High-
risk patients were more sensitive to Erlotinib and Fluorouracil, while
the sensitivity to Olaparib and Oxaliplatin was higher in low-risk
patients (Figures 10B–G).

5 Discussion

PC is expected to be the second major cause of cancer mortality by
the third decade of the 20th century, imposing a huge burden on social
development and the physical and mental health of the population
(Rahib et al., 2014; Siegel et al., 2021) (33433946, 24840647). The
strong relationship between lncRNAs with cancer speaks for itself, and
the potential of lncRNAs as accurate diagnostic, therapeutic, and
prognostic biomarkers for malignancy is enormous (Ponting et al.,
2009; Hauptman and Glavac, 2013) (23443164, 19239885).
Consequently, we worked to establish a CRLncs prognostic
signature for prognostic prediction of PC to guide personalized
clinical management of patients.

In the current study, univariate Cox regression analysis identified
46 CRLncs associated with PC prognosis and developed a 6-CRLnc
signature for PC. The model classified patients into two levels of high-
and low-risk, with low-risk patients enjoying better clinical outcomes
and this risk score being an independent prognostic factor for PC. In
this study, six promising lncRNAs were identified, namely FAM83A-
AS1, AL137186.1, SENCR, PAN3-AS1, Z97832.2, and AL139243.1.
Recent studies reported that lncRNA FAM83A-AS1 exerted an
important role in the proliferation, migration, invasion, autophagy,
and progression of epithelial-mesenchymal transition (EMT) in lung
adenocarcinoma (Chen et al., 2022; Huang et al., 2022; Zhao et al.,
2022) (35002507, 35164653, 35635086). The biological roles of
lncRNA SENCR are mainly in stabilizing vascular endothelial cell
adhesion junctions and attenuating the proliferation and migration of
vascular smooth muscle cells (Zou et al., 2015; Lyu et al., 2019; Song
et al., 2022) (30584103, 35351345, 26349960). Ping et al. found that
PAN3-AS1 was negatively associated with the prognosis of PC (Ping
et al., 2022) (35330729). Nevertheless, no relevant reports on
AL137186.1, Z97832.2, and AL139243.1 have been reported in
cancer. The current study did not explore the potential functions
andmolecular mechanisms of these lncRNAs, but to a certain extent, it
provided a theoretical basis for the link between lncRNAs with PC.

Replication immortality and cell cycle dysregulation are vital
hallmarks of cancer cells, and DNA replication is a central process
in cell proliferation (Hanahan and Weinberg, 2011; Qu et al., 2017)
(21376230, 28182015). In the present study, GSEA results suggested
that cell cycle and DNA replication related signaling pathways were
more active in high-risk patients. Hence, high-risk patients exhibited
more active tumor proliferative activity and faster tumor growth and
progression, which is consistent with their higher malignancy. GSVA
indicates that the Notch signaling pathway is more active in PC
patients of the C2 subtype. The Notch signaling pathway has a
vital role in cell development and contributes to cancer
development and progression by fundamentally affecting cellular
processes such as differentiation, proliferation, or migration
(Reicher et al., 2018) (29409809). In Mullendore’s work, the Notch

signaling pathway was identified to be involved in tumor initiation and
maintenance of PC (Mullendore et al., 2009) (19258443).
Downregulation of the Notch signaling pathway in PC facilitates
inhibition of PC cell growth and invasion (Wang et al., 2006)
(16510599). This implies that PC patients with the C2 subtype
show a greater propensity for tumor progression and is consistent
with a worse prognostic outcome.

Naturally, this study assessed whether the risk score was associated
with PC gene mutation. The current study revealed that KRAS,
CDKN2A, and TP53 mutations occurred at a considerably higher
frequency in high-risk patients than in the corresponding groups.
Among them, KRAS mutations and CDKN2A alterations were early
events in the occurrence of PC (Kamisawa et al., 2016) (26830752).
Mutations in the KRAS gene will permanently activate KRAS proteins
that induce cell proliferation, migration, transformation, and survival
by triggering various intracellular signaling pathways and
transcription factors (Buscail et al., 2020) (32005945). The presence
of KRAS mutation was related to an inferior prognosis for PC patients
regardless of whether they underwent radical surgery (Buscail et al.,
2020) (32005945). Whereas, mutation of CDKN2A increases the risk
of PC (Goldstein et al., 1995) (7666916). In human cancers, TP53 is
the most prevalently mutated gene, and wild-type TP53 is a pivotal
tumor suppressor gene in cancer. Nevertheless, about half of human
cancers harbor TP53 mutations (Harris and Hollstein, 1993; Muller
and Vousden, 2014; Yue et al., 2017) (24651012, 8413413, 28390900).
Numerous experiments have confirmed that mutated TP53 will
acquire malignant biological functions in tumorigenesis, including
promoting tumor cell survival, proliferation, migration, and invasion,
enhancing chemoresistance, and promoting cancer metabolism
(Dittmer et al., 1993; Brosh and Rotter, 2009; Muller and Vousden,
2013; Zhang et al., 2013) (23263379, 19693097, 8099841, 24343302).
Thereby, high-risk PC patients are expected to develop disease
progression.

A considerable amount of studies have covered that the infiltration
of immune cells in the TME is intimately related to the prognosis of
various cancers (e.g., ovarian, pancreatic, liver, breast, and colorectal
cancers) (Zhang et al., 2003; Ino et al., 2013) (12529460, 23385730).
B cells play an influential and complex role in the host’s immune
response to malignancy but are often underappreciated. Given the
reports, B cells can act both as antigen-presenting cells to activate
T cell responses to tumor cells and also produce tumor-specific
antibodies to bolster anti-tumor immunity (Fremd et al., 2013; Ko
et al., 2020) (32730744, 24073382). Dendritic cells (DCs) are the most
potent antigen-presenting cells in the body and play a pivotal role in
the immune response, but are often suppressed in TME (Kranz et al.,
2016; Chen et al., 2018) (27281205, 29290766). Interstitial dendritic
cells (iDC) could bind antigens and stimulate T lymphocyte responses,
posing a significant threat to organ graft survival after organ
transplantation (Hart and McKenzie, 1990) (2152498). The
impaired activity of plasmacytoid dendritic cells (pDC) is
associated with immunodeficiency status or inefficient immune
response to tumors (Reizis, 2019) (30650380). Regulatory T cells
(Treg) exhibit a strong suppressive capacity and are critical
mediators of tumor-associated immunosuppression (Liu et al.,
2016; Plitas and Rudensky, 2016) (27590281, 26787424). Yet other
studies pointed to the opposite function of Treg, that of tumor
restriction. Studies suggested that Treg may promote tumor
development by limiting anti-tumor immunity and also limit
tumor development by restricting the mesenchymal environment
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required for its growth and metastasis (Tzankov et al., 2008; Liu et al.,
2016) (26787424, 18223287). The exact role of Treg in the PC
microenvironment is not yet fully understood, and the current
study found higher levels of Treg infiltration in PC patients with

low risk, which may be explained by the potential for Treg to limit PC
cell growth and metastasis hence limiting tumor progression. The
cytotoxic potential of CD8+ T cells is the backbone of current
immunotherapy, and their high infiltration levels are associated

FIGURE 6
Relationship between risk score and clinical characteristics. (A) Chord diagram of the relationship between the six signature CRLncs. (B–J) The
relationship between these signature CRLncs and risk score with clinical features. (K) The clinical characteristics heatmap. (L–W) The survival of PC patients in
different risk group across clinical characteristic subgroups.
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with improved OS in cancer (Manzo et al., 2020; Orhan et al., 2020)
(32491160, 32334338). High infiltration of tumor-infiltrating
lymphocytes (TIL) could provide a rationale for differentiating
immunogenic hot tumors from degenerative or cold tumors

(Orhan et al., 2020) (32334338). The presence of TIL and high
infiltration of CD8+ T cells often predicts response to
immunotherapy and prognosis (Galon and Bruni, 2019; Orhan
et al., 2020) (30610226, 32334338). The present study observed

FIGURE 7
Enrichment Analysis of GSEA. (A,B)GSEA of the top 5 up-regulated and down-regulated KEGG signaling pathways enriched in high and low-risk groups.
Enrichment Analysis of risk differentially expressed genes. (C,D) The bar and bubble plots of GO terms. (E,F) The bar and bubble charts of KEGG terms. (G,H)
The GO and KEGG enrichment circle plots.
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markedly higher levels of both CD8+ T cells and TIL in low-risk PC
patients, with additional higher levels of expression of immune
checkpoints like CTLA4 and PD-1, which seems to imply that
patients with low-risk could benefit more from receiving
immunotherapy. Of course, the currently accepted view is that high

levels of CD8+ T cells and TIL infiltration do not represent an absolute
enhancement of the efficacy of immunotherapy for PC and that the
activity and depletion of immune cells, as well as the nature of TME,
profoundly influence the response to immunotherapy (Galon and
Bruni, 2020) (31940273). This could also explain, to some extent, the

FIGURE 8
Mutation analysis of samples. (A,B) Waterfall plot for the PC patients in TCGA database. (C–F) The relationship between CDKN2A, KRAS, TP53, and
SMAD4 gene mutation with risk score. (G,H) The relationship between TMB and PC survival. (I,J) Waterfall plots in different risk groups.
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failure of patients with different risk PC to show significantly different
responses to immunotherapy in the current study. Overall, the road to
tangible benefits from immunotherapy for PC patients is difficult and
urgently awaits further exploration.

Indeed, the current study has some limitations. The reliability and
stability of this prognostic signature should be further validated in a
prospective study at a large PC research center. All these concerns
should be refined in future studies.

FIGURE 9
Immune infiltration analysis. (A,B) The bar chart and heatmap revealed the percentage of 22 infiltrating immune cells in the TCGA. (C) The correlation
between infiltrating immune cells. (D) Comparison of the Stromal, Immune, and ESTIMATE scores between different risk groups. (E,F) The ssGSEA of the
proportion of immune cells infiltration and immune function in different risk groups. (G) The differential expression of immune checkpoints between low- and
high-risk groups. (H) The differential expression of HLA genes between different risk groups. *p < .05, **p < .01; ***p < .001; ns, not significant.
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6 Conclusion

Novel lncRNA signature and nomogram for cuproptosis were
constructed to predict the prognosis of PC patients. Molecular
characterization based on this model provides a new perspective on
the progression and subtype of PC. Differences in immune cell
infiltration and immune checkpoint expression may be an
important indication for the prognosis and treatment of PC
patients. The differences in drug sensitivity might be a

promising opportunity for the treatment of different risk PC
patients.
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FIGURE 10
Drug sensitivity analysis. (A) Venn diagram of the clinical use of the drugs for PC. (B–G) The sensitivity to six drugs (Erlotinib, Fluorouracil, Gemcitabine,
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Nomenclature

PC pancreatic cancer

LncRNAs long non-coding RNAs

CRGs cuproptosis-related genes

CRLncs cuproptosis-related lncRNAs

TCGA the Cancer Genome Atlas

OS overall survival

ssGSEA single-sample gene set enrichment analysis

LASSO least absolute shrinkage and selection operator

ROC receiver operating characteristic

AUC area under the curve

RCD regulated Cell Death

PFS progression-free survival

DCA decision curve analysis

GSEA gene set enrichment analysis

GO gene Ontology

KEGG kyoto Encyclopedia of Genes and Genomes

TMB tumor mutation burden

GSVA gene set variation analysis

FDR false discovery rate

PCA principal component analysis

t-SNE t-distributed stochastic neighbor embedding

HR hazard ratio

CI confidence interval.
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