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Background: Randall’s plaque is regarded as the precursor lesion of lithiasis.
However, traditional bioinformatic analysis is limited and ignores the relationship
with immune response. To investigate the underlying calculi formation mechanism,
we introduced innovative algorithms to expand our understanding of kidney stone
disease.

Methods: We downloaded the GSE73680 series matrix from the Gene Expression
Omnibus (GEO) related to CaOx formation and excluded one patient, GSE116860. In
the RStudio (R version 4.1.1) platform, the differentially expressed genes (DEGs) were
identified with the limma package for GO/KEGG/GSEA analysis in the clusterProfiler
package. Furthermore, high-correlated gene co-expression modules were
confirmed by the WGCNA package to establish a protein–protein interaction (PPI)
network. Finally, the CaOx samples were processed by the CIBERSORT algorithm to
anchor the key immune cells group and verified in the validation series matrix
GSE117518.

Results: The study identified 840 upregulated and 1065 downregulated genes. The
GO/KEGG results revealed fiber-related or adhesion-related terms and several
pathways in addition to various diseases identified from the DO analysis.
Moreover, WGCNA selected highly correlated modules to construct a PPI
network. Finally, 16 types of immune cells are thought to participate in urolithiasis
pathology and are related to hub genes in the PPI network that are proven significant
in the validation series matrix GSE117518.

Conclusion: Randall’s plaque may relate to genes DCN, LUM, and P4HA2 and
M2 macrophages and resting mast immune cells. These findings could serve as
potential biomarkers and provide new research directions.
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1 Introduction

Kidney stone (KS), as a specific disease in adult and pediatric urology, is mainly caused by
abnormal renal deposition of crystals (CaOx, CaP, and uric acid) in the calyx, pelvis, and
ureteropelvic junction (UPJ). The prevalence of KS varies globally, ranging from 7%–13% in
North America, 5%–9% in Europe, and 1%–5% in Asia (Sorokin et al., 2017). Randall’s plaque, first
described byRandall in 1937 (Randall, 1937), is considered the precalculus lesion to renal calculi, and
most renal lithiases are calcium oxalate (CaOx). The precalculus lesions were classified into Randall’s
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plaque and Randall’s plugs, termed Randall’s plaque type I and II. The
former originates from the calcium phosphate (CaP) crystal cores
deposited in interstitium at the basement membrane of the Henle
loop through the fixed-particle mechanism, and the latter derives from
calcium phosphate plugs blocked in Bellini’s ducts by a free-particle
mechanism (Kok and Khan, 1994; Daudon et al., 2015; Khan et al., 2016).

Several molecular mechanisms involving osteogenic calcification (Gay
et al., 2020) or reactive oxygen species (ROS) (Liu and Yu, 2019) are
proposed to explain the transformation from Randall’s plaque to kidney
stone, which generally comprises nucleation, growth, and aggregation
(Khan, 2018). However, the critical pathogenic genes still have not yet
been fully explored.

FIGURE 1
Flow chart of immune infiltration, WG-CNA algorithm and core genes screening of the microarray analysis process.
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In addition, recent studies have drawn more public attention to
immune reactions and inflammation in nephrolithiasis (Khan et al.,
2021). Until now, M1/M2 macrophage polarization (Taguchi et al.,
2016) has been researched as a regulatory segment to engulf crystals,
while less attention has been given to other immune cells, like the
γδT cell (Zhu et al., 2019). Moreover, the correlation between gene
expression and active immune cells remains unknown.

To explore core genes and immune cells in Randall’s plaque
progression, weighted gene co-expression network analysis
(WGCNA) (Langfelder and Horvath, 2008), instead of traditional
microarray analysis, is applied to identify gene modules based on gene
expression levels highly correlated with samples. Combined with
CIBERSORT (Newman et al., 2015), an immune cell algorithm that
could estimate immune cell abundance in samples, potential immune
cells, and regulatory networks will be revealed for subsequent analysis
in correlation with key genes from the gene module.

In this study, the expression matrices of 24 CaOx Randall’s plaque
samples and six healthy samples are downloaded from GSE73680 in
the public GEO database for analysis. Then, the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways and gene ontology (GO) and
disease ontology (DO) terms are utilized to describe the overall gene
expression status. The core genes from the gene module and the
proportions of immune cells are respectively computed by WGCNA
and CIBERSORT, and correlation among calculated results is assessed.
Finally, we used samples fromGSE117518 to validate the expression of
the core genes.

2 Materials and methods

2.1 Microarray data

We downloaded the public GEO normalized series matrices
GSE73680 and GSE117518 from the NCBI database. Three relative
data sets series are anchored by retrieval strategy “(CaOx)” AND
“Homo sapiens” [porgn:__txid9606].” We excluded GSE116860 due to
its unique origin. GSE73680 contained six normal samples and 13 CaOx
plaque mucosa samples. Eleven CaOx>CaP plaque samples were also
attributed to the CaOx-RP group for predominant CaOx composition
according to the information described in the microarray provider’s
article (Taguchi et al., 2017). GSE117518 was composed of three
control and three CaOx-RP samples (Figure 1).

2.2 Filtering differentially expressed genes
(DEGs) and gene ontology (GO)/Kyoto
Encyclopedia of Genes andGenomes (KEGG)/
disease ontology (DO)/gene set enrichment
analysis (GSEA) analysis

The GSE73680 and GSE117518 expression matrices were
log2 transformed and normalized by the R function
“normalizeBetweenArrays.” Furthermore, the GPL17077 annotation
table was downloaded to convert gene probes to symbols in GSE73680,
whereas the validation data set GSE117518 gene conversion was
completed by the R package “idmap3” due to lack of a probe-ID
corresponding relationship in GPL21827. On the basis that the
p-value < 0.05 and the log2 fold change (logFC) cut-off absolute
value > 1, GSE73680 successfully adopted the LIMMA package to

select DEGs. Then, the DEG volcano picture produced by R packages
“ggplot2” and “ggrepel” was imported to GO/KEGG/DO for ranking
gene functions and pathways by applying the “clusterProfiler” (Yu
et al., 2012), “GOplot” (Walter et al., 2015), and “DOSE” R packages.

2.3 Weighted gene co-expression network
analysis (WGCNA) construction and
identification of trait-related modules and
hub genes in protein–protein interaction (PPI)
network

In the first step, all genes with 25% variance or more were selected,
and WGCNA analysis was performed. After removing outlier samples in
the cluster tree using the “flashclust” R package, we reserved residual
samples for subsequent processing. To balance themean connectivity and
relationship degree square (named “R̂2” and generally higher than 0.8), a
rational soft power threshold was recommended for the adjacency matrix
through the “pickSoftThreshold” function built into the “WGCNA”
package (Langfelder and Horvath, 2008) from 1 to 20.

The second step transformed the adjacency matrix into a
topological overlap matrix (TOM) and TOM-based dissimilarity
(1-TOM). The “hclust” (hierarchical clustering) R function
calculated the average linkage hierarchical clustering by a TOM-
based dissimilarity measure with a minimum gene volume of
50 for the gene dendrogram. Genes with similar expression profiles
could be attributed to various gene modules by employing the
“cutreeDynamic” (dynamic tree cut) function.

The third step sets the module’s correlation coefficient threshold
and merges homologous modules in a dynamic cluster tree. The
following procedure evaluates the expression–trait correlation
plotted in various random color modules. The highest correlated
module eigengene (ME) was identified as the key gene group with
gene significance (GS) p < 0.05. A scatter diagram with corresponding
colored modules identifying the gene points was created, and GSEA
analysis was executed using the “enrichplot” package.

2.4 PPI network construction and
identification of hub genes

In the online platform STRING (version 11.0; www.string-db.org)
(Szklarczyk et al., 2021), ME and DEG intersecting genes identified by
the “nVennR” package were imported to visualize the protein–protein
interaction (PPI) with a minimum interaction score ≥ 0.9. To reveal
hub gene locations in PPI network, STRING interaction results were
evaluated by Cytoscape software (version 3.9.0) to screen out gene
clusters. We sorted relative hub genes with the “Degree”method in the
plug-in unit cytoHubba. The top 10 hub genes were located in high-
expression sites using BioGPS (biogps.org/#goto=welcome) (Wu et al.,
2016) and visualized in Rawgraphs (version 2.0 beta; rawgraphs.io/).

2.5 CIBERSORT algorithm analysis of immune
cell infiltration in and correlation among
immune cells

To explore the mechanism of immune cells in the formation of
Randall’s plaque, we adopted the CIBERSORT algorithm (Newman
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et al., 2015) to calculate the percentage of 22 background immune cells
in samples. These background immune cells were as follows: memory
B cells, naive B cells, naive CD4+ T cells, CD8+ T cells, activated
memory CD4+ T cells, resting memory CD4+ T cells, Tfh, regulatory
T cells, gamma–delta T cells, plasma cells, resting natural killer (NK)
cells, activated NK cells, monocytes, M0 macrophages,
M1 macrophages, M2 macrophages, resting mast cells, activated
mast cells, resting dendritic cells, activated dendritic cells,
eosinophils, and neutrophils. We extracted the CIBERSORT
outcomes with p-value < 0.05 to estimate the correlation coefficient
among positive immune cells in the “corrplot” package, and |
coefficient| > 0.7 is considered highly correlated. We also used
CIBERSORT outcomes to compare immune cell content between
the control and RP using the “vioplot” package with p-values < 0.
05. Finally, principal component analysis (PCA) was introduced to
distinguish the RPs and normal samples by displaying corresponding
ovals.

2.6 The correlation between hub genes and
immune cells plus expression level in the
validation data set

We first assessed the relationship between hub genes and immune
cell groups through a lollipop plot. Then, the GSE117518 matrix was

used to extract the expression of the hub genes to create a heatmap plot
in the “pheatmap” R package, and the Shapiro–Wilk test was used to
confirm normal distribution in these samples, although normal
distribution is commonly recognized as such in log2-processed
microarray data. Subsequently, the significance of hub gene
expression levels in the GSE117518 samples was verified by the
t-test, and boxplots tagged with statistical differences were created
in R. Those with statistically significant differences were tagged with
an asterisk.

3 Results

3.1 Identification of DEGs and enrichment
analysis

In total, 1905 DEGs are screened with gene labels in the volcano
plot (Figure 2A), which contains 840 upregulated and
1065 downregulated genes in GSE73680 based on |logFC| > 1 and
p < 0.05.

The DOcircle plot, ordered by q-value, identifies the top
10 diseases that could be related to Randall’s plaque:
Ehlers−Danlos syndrome, bone cancer, congenital heart disease,
musculoskeletal system cancer, uterine benign neoplasm, uterine
fibroid, bone remodeling disease, female reproductive organ benign

FIGURE 2
(A) Baseline p1 with 1905 DEGs, including 840 upregulated and 1065 downregulated genes. (B) DO analysis involving the top 10 related diseases. (C) All
GO analyses for DEGs are divided into BP, CC, and MF parts. (D) KEGG bubble plot of Randall’s plaque pathways.
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neoplasm, reproductive organ benign neoplasm, and connective tissue
cancer (Figure 2B).

In GO analysis, DEGs mainly focus on external encapsulating
structure organization, collagen−containing extracellular matrix, and
extracellular matrix structural constituent. Other DEGs involve fiber-
related or adhesion-related terms in the biological process (BP),
cellular component (CC), and molecular function (MF) bubble plot
(Figure 2C).

The KEGG bubble plot exhibits concentrated olfactory
transduction, focal adhesion, PI3K-Akt, human papillomavirus
infection, and proteoglycans in cancer pathways by the gene ratios
in the DEG results (Figure 2D).

3.2 WGCNA analysis and module gene GSEA
analysis

At first, 8020 genes were reserved based on the upper 25%
variance, and there was no outliner sample in the cluster analysis.
The system recommended the soft power parameter of β is 12
(scale-free R2 = 0.94) (Figure 3A) for a scale-free network.
Moreover, the dynamic cut tree merged partial modules with a
module correlation coefficient larger than 0.8 (Figure 3B). In the

module-trait plot (Figure 3C), the yellow module shows a negative
correlation coefficient with Randall’s plaque (r = −0.47; p-value =
0.09) in all 13 modules. Subsequently, the yellow module was
regarded as the core module to Randall’s plaque formation, and
gene-module memberships (MMs)/gene significances (GSs) were
proved correlated (cor = 0.51 and P = 8e-30) in the scatter plot
(Figure 3D). Additionally, GSEA analysis for the yellow module
concluded that GO focuses on external encapsulating structure
organization, collagen-containing extracellular matrix,
endoplasmic reticulum, external encapsulating structure, and
extracellular matrix structural constituent. Only four pathways
are found in KEGG: ECM receptor interaction, focal adhesion,
pathways in cancer, and vascular smooth muscle contraction
(Figures 4A, B).

3.3 PPI network building and cluster genes in
Cytoscape

By filtering disconnected nodes, a PPI network with 210 nodes
and 97 edges was imported into the cytoHubba module to cluster
240 common genes (Figure 4C). The top 10 hub genes (COL1A2,
COL1A1, COL3A1, DCN, P4HA2, FN1, COL5A1, LUM, MYH11,

FIGURE 3
(A) Red line represents the reasonable soft power value in WGCNA analysis. (B) Randall’s plaque genes merged into various color modules in the
dendrogram, andmost genes are clustered in the blue module. (C) Various colored modules show the correlation values and p-values in brackets. (D) Scatter
plot shows the degree to which genes belong to the yellow module on the x-axis and the coefficient of gene correlated with Randall’s plaque on the y-axis.
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and FBN1) (Figure 4D) were all downregulated in Randall’s plaque
and distributed in a two-network radius with a minimum
connectivity degree of 7 (Supplementary Table S1). These genes
are attributed to the myosin gene and collagen function genes. The
collagen function genes include collagen-related genes (COL1A2,
COL1A1, COL3A1, and COL5A1), decorin (DCN), fibronectin
1(FN1), lumican (LUM), and prolyl 4-hydroxylase subunit alpha
2 (P4HA2), while the myosin gene is MYH11 (myosin heavy
chain 11).

3.4 Immune cell distribution and differences
by CIBERSORT algorithm

The barplot (Figure 5A) shows the percentages of the 22 types
of immune background cells calculated in the 30 samples. The
control group exhibits a longer purple strip than the RP group. A
comprehensive immune network that indicates the correlations
among 11 selected samples (p < 0.05) was calculated by
CIBERSORT11 (Figure 5B). The correlations are:
neutrophils–NK cells resting (r = 0.97), dendritic cells
resting–macrophages M1 (r = 0.92), macrophages M0–T cells
regulatory (T regs) (r = 0.9), mast cells resting–macrophages
M2 (r = 0.89), monocytes-T cells CD4 naïve (r = 0.88),
dendritic cells resting–T cells follicular helper (r = 0.87),

macrophages M1–T cells follicular helper (r = 0.77), mast cells
resting–B cells naïve (r = 0.74), T cells CD4 memory
resting–plasma cells (r = 0.74), T cells
CD4 naïve–macrophages M2 (r = 0.71), neutrophils–NK cells
activated (r = −0.75), T cells CD4 memory resting–T cells CD8
(r = −0.72), and mast cells activated–NK cells activated
(r = −0.72). The violin plot (Figure 5C) shows the statistical
difference (with p < 0.05) between the RP and control groups in
M2 macrophages and resting mast cells that may interact with the
aforementioned immune network to regulate Randall’s plaque
progression. Finally, PCA analysis reveals the differential
diagnosis among samples in the presence of specific immune
cells (Figure 5D).

3.5 Hub gene–immune cell correlation and
human tissue locations

A lollipop plot shows the correlations between 10 hub genes
(COL1A2, COL1A1, COL3A1, DCN, P4HA2, FN1, COL5A1, LUM,
MYH11, and FBN1) with 22 immune background cells (Figures
6Aa–j). All show various degrees of connection to immune cells
with p < 0.05, which could further intensify our understanding of
the relationship between immune cells and renal stones. BioGPS
analysis reveals these genes are highly expressed mainly in smooth

FIGURE 4
(A,B) GSEA analysis for the yellow module genes exported from the WGCNA method. (C) Intersected genes of the yellow module and DEGs. (D) Ten
colored modules indicate hub genes and two regulatory network clusters of intersected genes.
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muscle and the uterus in humans (Figure 6B; Supplementary
Table S2).

3.6 Expression level and hub gene statistical
results in GSE117518

Nine hub genes are confirmed to express in the GSE117518 gene
matrix (Supplementary Table S3). They are illustrated in a heatmap
(Figure 7A). It is noteworthy that the colors of DCN, FBN1, LUM, and
P4HA2 are different in the control and RP groups. A minimum simple
normalization Shapiro–Wilk test proves these nine hub genes of
GSE117518 expression are normally distributed. Independent-
sample t-test results found the difference is statistically significant
in DCN, LUM, and P4HA2 (Figure 7B).

4 Discussion

Previous research into Randall’s plaque has investigated multiple
fields, such as microscopic morphology (Evan et al., 2018) and
metabolic disturbance (Coe et al., 2016). Recent experiments
emphasized M1/M2 macrophage polarization and osteogenic
reaction, which was associated with osteopontin (OPN), runt-

related transcription factor 2 (Runx2), and bone osteocalcin (OCN)
(Cui et al., 2020) in Randall’s plaque formation. Compared with
former findings, our study concludes that DCN, LUM, and
P4HA2 are downregulated in Randall’s plaque in coordination with
the abnormal distribution of resting mast cells and M2 macrophages.

DCN, as the small leucine-rich proteoglycan (SLRP) family class I
member, always serves as the ligand of receptor tyrosine kinases to
restrict tumor proliferation (Santra et al., 2000) or modulate tumor
angiogenesis signals (Järveläinen et al., 2015). Notably, SLRP class II
member-LUM remains controversial in its anti-cancer effect and
prognosis evaluation (Appunni et al., 2021). However, both DCN
SLRP class II member-LUM display wound healing functions via
angiogenesis, inflammation, and fibroblast activities (Karamanou
et al., 2018; Pang et al., 2019). Unlike them, P4HA2 encodes a
component of prolyl 4-hydroxylase (Gupta and Wish, 2017) as one
member of the proline hydroxylases (PHDs) family, which catalyzes
the formation of (2S,4R)-4-hydroxyproline in collagen (Gorres and
Raines, 2010) and always mediates hypoxia-inducible factor-1
alpha (HIF-1α) degradation. As indicated by previous
summaries, the formation of Randall’s plaque is associated
with interstitial fibrosis (Evan et al., 2006; Marien and Miller,
2016). Additionally, Schaefer found that DCN exerts beneficial
effects on tubulointerstitial fibrosis (Schaefer et al., 2002). In
addition, as the substrate of hydroxylation modification by prolyl

FIGURE 5
(A) CIBERSORT algorithm estimation of the percentages of 22 immune background cells in GSE73680. (B) Heatmap displays immune cell correlation
among samples with p-values. (C) Violin plot shows immune cells infiltration statistical difference in normal and RP samples. (D) PCA analysis differentiates
normal with RP samples.
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4-hydroxylase, HIF-1α could promote tubular interstitial fibrosis
(Kimura et al., 2008). Conversely, few experiments explored the
LUM anti-fibrotic effect, although it is preferentially expressed in
tubulointerstitium (Hsieh et al., 2014). These studies suggested
that DCN and P4HA2 would ameliorate interstitial fibrosis and
may play an important role in the progression of Randall’s
plaque. Because BioGPS indicates these genes are highly
expressed in extra-renal sites, we may ignore their functions in
the kidney.

The formation of renal stones is divided into four stages: first,
supersaturation-induced CaP crystal deposition; second, the growth
and expansion of CaP permeate into the renal interstitium toward the
papillary surface; third, cumulative crystal deposition destroys the
papillary surface epithelium and directly protrudes into the urine in
renal calyx; and finally, urinary CaOx gradually adheres, replaces the
CaP, and becomes covered by urinary substance (Khan and Canales,
2015) (Supplementary Figure S1). Even though RP is thought to
originate from the ascending thin limb at the Henle loop (Evan
et al., 2018), the mechanism of its formation remains controversial.
Currently, crystal deposition is considered to be similar to bone
formation (Jia et al., 2014; Joshi et al., 2015). The proteomic
analysis reveals that DCN and LUM are associated with the
hydroxyapatite interaction proteins in bone (Zhou, 2007), and
DCN could inhibit the hydroxyapatite-induced crystal growth
(Sugars et al., 2003). Although the DCN level is low in the RP
group, the relatively low level of DCN presumably weakens the

competitive inhibit effect of other molecules, such as asporin, on
hydroxyapatite mineralization (Kalamajski et al., 2009). Additionally,
the deregulation of HIF-1α is associated with the activation of
M2 macrophage polarization in CaOx nephrocalcinosis (Yang
et al., 2020), which could be degraded via the proline hydroxylase
P4HA2 family. Therefore, the decreasing P4HA2 level in the RP group
may lift the restriction on HIF-1α expression.

In addition, renal stones are thought to be related to immune
regulation. In 1999, de Water et al. noticed that renal or peripheral
macrophages were recruited in kidney stone disease (de Water et al.,
1999). In subsequent experiments, M2 macrophages, also called anti-
inflammatory macrophages, were found to alleviate renal crystal
deposition through CSF-1 stimulation (Taguchi et al., 2014),
whereas M1 macrophages facilitated crystal development (Taguchi
et al., 2016). Dominguez-Gutierrez et al. (Dominguez-Gutierrez et al.,
2018) found that CaOx could induce monocytes intoM1macrophages
in macrophage polarization. Indeed, the activation degree of
macrophage phagocytosis ability varied among diverse substances
like M-CSF or GM-CSF (Kusmartsev et al., 2016).

Despite widespread macrophage studies, other immune cells have
not been investigated in Randall’s plaque in recent years. According to
the correlation heatmap results, a comprehensive immune regulatory
network illustrated underlying relationships among immune cells,
limited by sample sizes. Only mast cells and M2 macrophages are
pronounced in the violin plot. Indeed, the neutrophil–lymphocyte
ratio has been proposed as a diagnostic biomarker in a kidney stone

FIGURE 6
(A-a–A-j) Correlation between 10 hub genes and 22 background immune cells. (B) Ten hub genes located in the main expression sites.
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clinical survey (Mao et al., 2021). It is noteworthy that mast cells
(MCs) are contradictory in animal kidney fibrosis model research
(Madjene et al., 2015). Kim indirectly confirmed the MC protective
effect in kidney fibrosis in that MC-deficient animals exhibited more
severe tubular fibrosis than the MC-sufficient controls (Kim et al.,
2009). These results contrast with the detrimental effect in mouse
models (Summers et al., 2012). Therefore, in light of the potential
relationship between Randall’s plaque and fibrosis, it is essential to
extend the research into clinical studies and explore a therapeutic
target for Randall’s plaque by elucidating the fibrosis mechanism
with MC.

5 Conclusion

We assume DCN, LUM, and P4HA2 may play a role in Randall’s
plaque pathogenesis. Furthermore, M2 macrophages and resting mast
cells are involved in the immune regulatory network in the formation
of Randall’s plaque. These immune cell markers and hub genes could
serve as potential biomarkers and provide new research directions.
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