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Tuberculosis (TB) is a common infectious disease linked to host genetics and the
innate immune response. It is vital to investigate new molecular mechanisms and
efficient biomarkers for Tuberculosis because the pathophysiology of the disease is
still unclear, and there aren’t any precise diagnostic tools. This study downloaded
three blood datasets from the GEO database, two of which (GSE19435 and 83456)
were used to build a weighted gene co-expression network for searching hub genes
associated with macrophage M1 by the CIBERSORT and WGCNA algorithms.
Furthermore, 994 differentially expressed genes (DEGs) were extracted from
healthy and TB samples, four of which were associated with macrophage M1,
naming RTP4, CXCL10, CD38, and IFI44. They were confirmed as upregulation in
TB samples by external dataset validation (GSE34608) and quantitative real-time PCR
analysis (qRT-PCR). CMap was used to predict potential therapeutic compounds for
tuberculosis using 300 differentially expressed genes (150 downregulated and 150
upregulated genes), and six small molecules (RWJ-21757, phenamil, benzanthrone,
TG-101348, metyrapone, and WT-161) with a higher confidence value were
extracted. We used in-depth bioinformatics analysis to investigate significant
macrophage M1-related genes and promising anti-Tuberculosis therapeutic
compounds. However, more clinical trials were necessary to determine their
effect on Tuberculosis.
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Introduction

Tuberculosis (TB) is still a chronic, airborne infectious disease that is the leading cause
of death in adults worldwide (Churchyard et al., 2017; Natarajan et al., 2020). It is
characterized by continuing inflammation of the lung tissue caused by Mycobacterium
tuberculosis (Mtb) (Muefong and Sutherland 2020). Recent WHO surveys found that one-
third of the world’s population was latently affected by tuberculosis, and over 1.5 million
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patients die annually. Clinical symptoms, radiography, the
tuberculin skin test (TST), and the interferon-gamma release
assay (IGRA) are the most critical components of a patient’s
diagnosis (Shimizu and Mori 2017). Pharmacotherapy is
recommended as the initial treatment for tuberculosis patients
(Suarez et al., 2019). Simultaneously, public health approaches
have effectively mitigated the rapid rise in TB patients and saved
millions of lives worldwide (Guinn and Rubin 2017). Mtb
persistent spread, however, contributes to the emergence and
evolution of drug-resistant strains, which include multidrug-
resistant tuberculosis (MDR-TB) and extensively drug-resistant
tuberculosis (XDR-TB) (Migliori et al., 2020). It is implied that
distinct steps must be taken to discover the potential molecular
mechanism of the host’s immune defense against Mtb. In the
meantime, effective diagnostic biomarkers and promising
therapeutic compounds should be retrieved to aid in the early
diagnosis and treatment of tuberculosis (TB). According to
statistics, only 10% of latent Mtb infections develop into active
diseases (Bloom et al., 2017). The individual immune response
plays a crucial role in determining the progression and outcome of
infection (Chai et al., 2020).

Shim et al. (2020) discovered that Mtb induced the early stage of the
inflammatory response, resulting in granuloma formation, which
increased the recruitment of immune cells, such as macrophages,
neutrophils, natural killer (NK) cells, dendritic cells (DCs), B cells,
T cells, etc (Korb et al., 2016). Additionally, macrophages are
recognized as Mtb host cells, and their polarization is crucial to their
role in immune surveillance (Zhou et al., 2019). Macrophages were often
divided into the M0, M1, and M2 subtypes. The polarized macrophages
are often preceded by the resting-state macrophage (M0). Macrophage
M1 is activated during bacterial infection, and M2 is associated with the
anti-inflammatory response (Wang et al., 2021; Zhang et al., 2022).
According to a previous study, macrophage M1 is more effective than
M2 in suppressing intracellular Mtb and protecting cells (Mills 2012).
Mycobacteria escape, however, is often accomplished via dysregulating
macrophage polarization (Le Y et al., 2020; Mily et al., 2020). Overall, it is
crucial to identify macrophage M1-related biomarkers that might
facilitate the discovery of their influence on the immunological
pathogenesis of Mtb.

Bioinformatics tools have improved dramatically over the last
several decades, allowing researchers to quickly and easily validate
new biomarkers and develop major signal pathways after Mtb
infection. A comprehensive bioinformatics study has validated
associations between TB and genes, including IFIT1, CCR7, and
GPR84 (Li et al., 2020; Deng et al., 2021). To mine the association
between hub gene modules and clinical characteristics, we adopt
weighted gene co-expression network analysis (WGCNA) to
construct co-expression modules (Nangraj et al., 2020). It is
often used to discover new biomarkers at the transcriptional
level (Zhang et al., 2021).

In our study, we combined two datasets with 46 TB and 73 healthy
blood samples to look for a novel biomarker in TB via WGCNA.
Estimating Relative Subsets of RNA Transcripts (CIBERSORT) was
also used to determine immune cell type and calculate the level of
infiltration of different immune cells (Chen et al., 2018). Thus, the best
significant macrophage M1-related modules were selected, and key
genes in hub modules were validated and tested externally.
Additionally, we used the Connectivity Map (CMap) online
database to predict target chemicals that have a beneficial impact

on TB. The above analysis overcame conventional analysis’s
limitations and offered a fresh perspective on the molecular
diagnosis of TB.

Materials and methods

Gene expression data

GSE19435, GSE83456, and GSE34608 tuberculosis blood mRNA
expression profiles were downloaded from NCBI-GEO (https://www.
ncbi.nlm.nih.gov/geo/) in turn. The GPL6947 platform was used to
extract the data from the GSE19435 microarray profiles, which
included 21 TB and 12 health samples (Berry et al., 2010). The
GSE83456 microarray profiles were generated using the
GPL10558 platform and included 45 TB and 61 matched control
samples (Blankley et al., 2016). GSE34608 was produced using the
GPL6480 platform and included 18 healthy and 8 TB samples.
GSE34608 was normalized using the R software package “limma”
(Maertzdorf et al., 2012). In addition, we combined GSE19435 and
GSE83456 microarray profiles, and the “sva” and “limma” packages
were used to batch an integratedmicroarray profile normalization (Liu
et al., 2021). GSE34608 was used as an external dataset, while
GSE19435 and GSE83456 were used as training datasets.

Identification the level of immune cell
infiltration and construction co-expression
networks

Using mRNA expression data, the CIBERSORT algorithm
calculated the proportion of each sample’s 22 types of immune cells
(Sui et al., 2020). In the current study, GSE19435 and GSE83456 were
subjected to the CIBERSORT algorithm using the R package to pool
distinct immune cells of tissue into corresponding subsets. Then, in
66 TB samples with coefficients of variation greater than 0.07, we chose
the significant variant gene. The R package “WGCNA” produced a
weighted gene co-expression network from 2,413 genes (Wang et al.,
2020). Furthermore, Pearson’s correlation matrices were identified by
converting the expression of study object transcripts into a similarity
matrix. And then, transferring an adjacency matrix from the similarity
matrix, as quantified by amn= |cmn|β (anm= adjacency between paired
genes; cmn = correlation Pearson’s coefficient between paired genes; β =
soft-power threshold) (Cui et al., 2021). We can suppress weak
correlation and increase strong correlation of genes by changing the
parameter β (Lin et al., 2020). The adjacency matrix was converted into
a topological overlap matrix after a cutoff point (power of β= 4) was
determined. We used dynamic hybrid cutting to group genes with
similar expressions into distinctmodules. The bottom-up algorithmwas
run with a cutoff point of 30 for module minimum size. The identical
modules were then merged using shear height = 0.25.

Determination macrophage M1-related hub
module and genes

Individual modules were subjected to constituent analysis using
module eigengenes (Wang et al., 2008). To identify the hub
modules, the Pearson test was used to assess macrophage
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infiltration and the relevance of gene modules. p < 0.05 was used to
identify a significant module associated with macrophage-M1. The
macrophage M1-related subtype and module with the highest
correlation coefficient were designated as the hub module for
further study. After hub gene removal, it is critical to evaluate
module connectivity and phenotype (clinical traits) (Zhang et al.,
2022). The absolute value of the correlation between a gene’s
expression profile and clinical traits is referred to as gene
significance (GS). Module membership is defined as the
correlation between a module’s eigengene and the expression
profile of a gene (Wan et al., 2018). The hub genes in the hub
module were extracted using an exact cutoff value (gene
significance value > 0.5 and model membership value > 0.8)
(Cui et al., 2021).

GO and KEGG pathway analysis and PPI
network construction of hub genes

We performed KEGG and Gene Ontology (GO) enrichment
analyses after compiling the list of hub genes, and the PPI network
was then generated. R software “org.Hs.eg.db” was utilized to convert
gene symbols into gene IDs, and then “clusterProfiler” was employed
to determine significant items with a cutoff criterion (p < 0.05 and false
discovery rate–adjusted p values (FDR) < 0.05) (Deng et al., 2021). We
sorted the GO and KEGG pathways by the maximum number of genes
and then screened the top ten corresponding items. The identified GO,
and KEGG items were uploaded to “ggplot2” for visualization and
merging hub gene enrichment analysis. STRING’s online website
(https://cn.string-db.org/) was used to determine the encoded

FIGURE 1
The study workflow. TB: tuberculosis; GEO: Gene expression omnibus; GO: genes ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI:
protein-protein interaction network; CMap: connectivity Map; CIBERSORT: Estimating Relative Subsets ff RNA Transcripts; WGCNA: weighted gene co-
expression network analysis; DEGs: Differentially expressed genes; qRT-PCR; quantitative real-time PCR analysis; ROC curve: receiver operating
characteristic curve.
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protein interaction of hub genes using the cutoff value (interaction
score >0.4) (Han et al., 2020). These protein interaction data were
submitted to Cytoscape to build and modify the PPI network.

Prediction of key diagnostic markers for
tuberculosis

To screen DEGs in training datasets, the expression data of
normalized datasets were submitted to R software “limma” with a
cutoff point (FDR< 0.05 and |log fold change (FC)|≥0.5) (Huang et al.,
2021). Identified DEGs were used to reveal the underlying molecular
mechanism by GO and KEGG analysis following the instructions
mentioned earlier, and the top 10 GO and KEGG terms were to be
visualized directly by R package “ggplot2” and “GOplot.” And then,
“ggplot2” and “pheatmap” were orderly employed to visualize the
DEGs in the TB group. Moreover, DEGs were imported into the
STRING online tool to obtain the protein interaction information. The

Cytoscape software MCODE plug-in was utilized to identify the top
module with an exact cutoff condition (degree cutoff = 2, node score
cutoff = 0.2, k-core = 2, and max depth = 100) (Deng et al., 2021). The
overlapping genes of DEGs and hub genes were defined as candidate
key genes, determined by the R package “VennDiagram.” In addition,
GSE34608 is an external dataset for further expression profile analysis.
ROC analysis was executed by “pROC” to estimate the diagnostic
value of key genes between TB and the control group.

Total RNA extraction and quantitative real-
time PCR analysis

The TRIzol reagent (Invitrogen, United States) was used to extract
total RNA according to the manufacturer’s instructions. Then, using a
PrimeScript RT Reagent Kit, RNA was reverse-transcribed into cDNA
(TransGen Biotech, China). The cDNA amplification was conducted
by QuantStudio Real-Time PCR Systems (Thermo Fisher Scientific,

FIGURE 2
Determination of hub modules in TB. (A) Identification of the scale independence index of the 1–20 soft threshold power (β = 4). (B) Verification of the
mean connectivity of 1–20 soft threshold power. (C) Hierarchical clustering divided genes into distinct modules that presented as different colors. (D)
Heatmap presents relation of module eigengenes with macrophages M1 infiltration.
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United States). The primer sequences of RTP4, CXCL10, CD38, and
IFI44 were:

RTP4-F:5′- ACATGGACGCTGAAGTTGGAT-3′,
RTP4-R: 5′-TACGTGTGGCACAGAATCTGC-3′;
CXCL10-F: 5′- AGTGGCATTCAAGGAGTACC -3′,

CXCL10-R: 5′- GCAATGATCTCAACACGTG -3′;
CD38-F: 5′-CAACTCTGTCTTGGCGTCAGT-3′,
CD38-R: 5′-CCCATACACTTTGGCAGTCTACA-3′;
IFI44-F: 5′-ATGGCAGTGACAACTCGTTTG-3′;
IFI44-R: 5′-GCAACTGGACCCTGTCGTT-3′.

FIGURE 3
PPI network establishment and enrichment analysis of hub genes. (A) A scatter diagram of genes in red modules. Each red dot stood for a gene, spot
inside the yellow box implied genes of Module Membership >0.8 and Gene Significance >0.5. (B) PPI network were construction and circular nodes stood for
hub genes. (C)Bar graph shown the number of protein interactions in PPI network. (D) The GO items of hub genes. (E)The KEGG pathway of hub genes.
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Small molecular therapeutic chemicals
detection in CMap

It has been shown that the Broad Institutes Connectivity Map
(CMap) (https://clue.io/) is a valuable open database for identifying
potential new tuberculosis small-molecule therapeutic agents and
examining the underlying mechanisms of physiological processes
and action (Kapoor et al., 2016; Vanderstocken et al., 2018).
Significant DEGs were submitted to the CMap database in the
current study to conduct enrichment analysis using the cutoff
criteria (0.80<|connectivity score|<1 and p < 0.05). The compounds
with substantial enrichment value likely had an underlying therapeutic
impact on TB. Finally, PubChem (https://pubchem.ncbi.nml.gov) was
used to export the 3D structures of small molecule compounds (Kim
et al., 2016).

M. tuberculosis culture

M. tuberculosis-BCG was obtained from Shihezi University
(Shihezi, China). BCG was grown in Middlebrook 7H9 medium

(Sigma-Aldrich, United States) containing 5% glycerol and 10%
oleic albumin dextrose (ADC). Rapidly growing BCG was
harvested and suspended in a bacterial culture medium after
centrifugation at 3,200 rpm for 10 min.

Cell culture and M. tuberculosis infection

The monocytic THP-1 cell line was purchased from Procell
(Wuhan, China). Before use, cells were seeded in a 6-well plate
with a concentration of 2 × 106 cells/well in RPMI 1640 medium
(Gibco, United States) supplemented with 10% FBS (Gibco,
United States) and 100 ng/mL phorbol 12-myristate 13-acetate
(PMA) for 48 h at 37°C with 5% CO2 to induce adherent and
differentiated macrophages. Images were acquired using a NIS
system under a light microscope (Nikon, ECLIPSE Ti, Japan).
Differentiated THP-1 was considered the best condition when
infected for 4 h with a multiplicity of infection (MOI) of 10. The
extracellular bacteria were washed with phosphate buffer saline
(PBS, Solarbio, China). THP-1 infected cells were cultured
for 24 h.

TABLE 1 Gene ontology analysis of Hub genes.

Category Term Count Gene symbol

BP GO:0009615~response to virus 6 RTP4/RSAD2/OAS3/IFI44L/IFI44/CXCL10

BP GO:0051607~defense response to virus 5 RTP4/RSAD2/OAS3/IFI44L/CXCL10

BP GO:0140546~defense response to symbiont 5 RTP4/RSAD2/OAS3/IFI44L/CXCL10

BP GO:0002764~immune response-regulating signaling pathway 3 RSAD2/OAS3/CD38

BP GO:0045071~negative regulation of viral genome replication 2 RSAD2/OAS3

BP GO:0098586~cellular response to virus 2 OAS3/CXCL10

BP GO:0045069~regulation of viral genome replication 2 RSAD2/OAS3

BP GO:0048525~negative regulation of viral process 2 RSAD2/OAS3

MF GO:0016829~lyase activity 2 RSAD2/CD38

MF GO:0001664~G protein-coupled receptor binding 2 RTP4/CXCL10

MF GO:0008603~cAMP-dependent protein kinase regulator activity 1 CXCL10

MF GO:0050135~NAD(P)+ nucleosidase activity 1 CD38

MF GO:0061809~NAD + nucleotidase, cyclic ADP-ribose generating 1 CD38

MF GO:0045236~CXCR chemokine receptor binding 1 CXCL10

TABLE 2 KEGG pathway analysis of hub genes.

Pythway Count Fold enrichment p-Value Gene symbol

Hepatitis C 3 38.904 2.77E-05 RSAD2/OAS3/CXCL10

Influenza A 3 35.719 3.58E-05 RSAD2/OAS3/CXCL10

Epstein-Barr virus infection 2 20.158 0.00355 OAS3/CXCL10

Coronavirus disease - COVID-19 2 17.552 0.00467 OAS3/CXCL10
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FIGURE 4
Differentially expressed genes (DEGs) screening and analysis in TB cases (A) Volcano plot presenting DEGs between TB patients and healthy individual.
Red spot stood for 666 significant upregulated genes and green stood for 328 downregulated genes [FDR< 0.05 and |log FC|≥0.5]. (B)Heatmap of 994 DEGs
filtered out via “limma” R package. In two dataset (GSE19435 and GSE83456), samples and genes were respectively sorted by columns and rows. Blue and
purple squares comprised healthy and TB group, respectively. (C–E) Top 10 GO-BP, CC, MF items of DEGs. (F) Top 10 KEGG pathway of DEGs. (G) The
top module extracted from PPI, red nodes stood for upregulated DEGs. (H) VENN diagram selected common genes between hub genes and DEGs that were
described as candidate key genes.
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Statistical analysis

R 4.2.1 software was used for statistical analysis. All experiment
results were presented as mean ± SD and analyzed using an unpaired

two-tailed Student’s t-test. And p-value < 0.05 was used to denote
statistical significance. The Mann-Whitney U test was used to
compare the expression of key genes between the healthy and TB
groups.

FIGURE 5
External validation. (A) Expression level of 9 candidate key genes between normal and TB samples were verified using external dataset (GSE34608). (B)
ROC curve analyses for SPATS2L, RTP4, RSAD2, OAS3, IFI44L, IFI44, CXCL10, and CD38.
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Result

mRNA expression data

Figure 1 depicts the study design utilized in this research study.
Two mRNA expression profiles (GSE19435 and GSE83456) were
extracted from the NCBI GEO database for bioinformatics analysis.
GSE19435 and GSE83456 contain 66 TB samples and 73 normal
samples. All sample data from gene profile datasets were combined
and bath-normalized before bioinformatics analysis (Supplementary
Figures S1A, B).

Immune-infiltration level analysis and
establishment of the co-expression network

CIBERSORT is a well-known online tool that uses gene expression
arithmetic to estimate the constituents of immune cells in pathological
tissue (Guan et al., 2022). The CIBERSORT algorithm differs from
traditional deconvolution, because it is based on a precise analysis of
unspecified data and noise in infiltrating immunity (Kawada et al.,
2021). The immune cell composition of tuberculosis patients is
unknown. For each sample, we used the analytical algorithm
CIBERSORT to estimate the abundance of 22 cell subpopulations.
Three macrophage subtypes in TB tissues were selected as trait data for
WGCNA analysis (Supplementary Table S1).

The gene co-expression network is increasingly used to study gene
system-level function (Zhang and Horvath 2005). The weighted gene
co-expression network (WGCNA) is commonly used to discover
latent correlations between gene expression data and phenotypic
traits. It is distinguished by increasing the computation network’s
dimension and maintaining a topological network with a free scale
(Toubiana et al., 2019). To establish the co-expression network,
2,413 genes with correlation coefficients greater than 0.07 were
identified as variant genes (Supplementary Figure S1C;
Supplementary Table S2). We developed a scale-independent
topological network with R2 = 0.85 (β = 4) soft thresholding power
(Figures 2A, B.

The dynamic hybrid cutting method was then used to generate a
hierarchical clustering tree. Prior research has shown that a single gene
is a leaf on the tree, and the branches of the hierarchical clustering
dendrogram correspond to a group of genes with similar biological
significance (Dong and Horvath 2007; Hou et al., 2021). As for
macrophage-related modules, 11 gene modules were identified
(Figure 2C).

The red and brown modules closely related to Mϕ1 had R2 =
0.57 and R2 = 0.51, respectively. With Mϕ0 R2 = 0.56, the yellow
module demonstrated high relevance. Other modules with R2 values
less than 0.5 were found to be insignificant. The red module was
chosen as the hub module with the best connectivity (R2 = 0.57, p =
7e−07) (Figure 2D). With precise cutoff criteria (module membership
values >0.8 and gene significance values >0.5), 9 of 120 genes from the

FIGURE 6
Effect of M. tuberculosis-BCG on THP-1 cells. The microscope images of (A) THP-1 cells, and (B) PMA successfully induced THP-1 cells adhered and
differentiation. White scale bar, 100 μm. (C–F) THP-1 cells were infected with BCG for 24 h. Expression level of RTP4, CXCL10, CD38, and IFI44 were tested by
qRT-PCR (Data are mean ± SD of 3 separate experiments, *p < 0.05, **p < 0.01, ***p < 0.001).
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hub module were identified as hub genes (Figure 3A; Supplementary
Table S3).

GO and KEGG enrichment analysis of hub
module

The main feature of GO analysis is mining the correlation between
genes by annotating and categorizing gene sets based on biological
process (BP), molecular function (MF), and cellular component (CC)
(Dalmer and Clugston 2019). KEGG is an extensive database that
integrates genomic, chemical, and system function data (Kanehisa
et al., 2017). The enrichment analysis results revealed that GO and
KEGG terms were chosen as significant terms using an exact criterion
(p < 0.05 and FDR<0.05). Hub genes were primarily associated with
“response to virus,” “defense response to virus,” “defense response to
symbiont,” “immune response-regulating signaling pathway,”
“cellular response to virus,” “regulation of viral genome
replication,” “negative regulation of viral genome replication,” and
“negative regulation of viral process,” according to the GO-BP terms.
Significant GO-MF terms showed that hub genes were primarily
involved in “lyase activity,” “cAMP-dependent protein kinase
regulator activity,” “NAD(P)+ nucleosidase activity,” “NAD +

nucleotidase, cyclic ADP-ribose generating,” “G protein-coupled
receptor binding” and “CXCR chemokine receptor binding”
(Figure 3D; Table 1).

Meanwhile, KEGG analysis showed that hub genes were associated
with immune-related pathways, containing Hepatitis C, Influenza A,
Epstein-Barr virus infection, and Coronavirus disease - COVID-19
(Figure 3E; Table 2). For the construction of a PPI network, 9 hub gens
associated with macrophage M1 were updated in the STRING online
tool. In-depth visualization was performed using Cytoscape software.
The PPI network contained 9 genes, 9 nodes, and 21 edges
(Figures 3B, C).

Identification of DEGs

Exact cutoff values (FDR <0.05 and |log FC|≥0.5) were used to
investigate novel and reliable diagnostic biomarkers in TB patients.
GSE19435 and GSE83456 yielded 994 DEGs (666 upregulated and
328 downregulated genes) (Supplementary Table S4). Two genes’
expression profiles’ heat maps and volcano plots revealed a
consistent difference between normal and TB (Figures 4A, B).
994 DEGs were submitted for GO and KEGG analysis to
investigate the biological mechanisms and cellular processes in TB

TABLE 3 The result of CMap.

Name Score Description Target

RWJ-21757 91.71 TLR agonist TLR7

phenamil 89.36 TRPV antagonist PKD2L1

benzanthrone 86.87 Aromatic hydrocarbon derivative

TG-101348 −88.24 FLT3 inhibitor JAK2, FLT3, BRD4, JAK1, JAK3, RET, TYK2

metyrapone −88.81 Cytochrome P450 inhibitor CYP11B1, HSD11B1, NR3C2

WT-161 −92.36 HDAC inhibitor HDAC6

FIGURE 7
3D structures of small molecular compounds. To reveal the promising compounds, 300 DEGs were submitted to Connectivity Map (CMap) (https://clue.
io/), and the cutoff criterion (0.8<|connectivity score|<1 and p < 0.05) was used. Top 6 small molecular compounds with highest enrichment score were
identified as promising drugs that may have potential therapeutic effects against TB.
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patients. According to the top 10 GO terms, DEGs are primarily
involved in immune signaling pathway regulation, cytokine
production, T cell activation, secretory anti-inflammatory protein,
immune receptor activity, and so on (Figures 4C–E). The KEGG term
suggested that DEGs participate in the tuberculosis process via the
NF- κB, TNF, T cell receptor, toll-like receptor, C-type lectin receptor
signaling pathways, and so on (Figure 4F).

Furthermore, the STRING program was updated with DEGs,
958 of which were defined as significant DEGs in protein
interaction. The Cytoscape software MCODE plug-in extracted the
top modules of DEGs with 52 nodes and 1,097 edges based on degree
value (Figure 4G). Due to the inability to identify key genes using
different methods, we submitted the macrophage-related hub genes
and DEGs to “VennDiagram” for consistent gene identification.
SPATS2L, RTP4, RSAD2, OAS3, LGALS3BP, IFI44L, IFI44,
CXCL10, and CD38 were all extracted (Figure 4H). Both were
significantly upregulated in TB patients, with a p-value of <0.01
(Figure S1 D).

Determination of key genes

To ensure the stability and reliability of the above results, an
external dataset (GSE34608) was used to test the expression of
candidate key genes, revealing that SPATS2L, RTP4, RSAD2,
OAS3, IFI44L, IFI44, CXCL10, and CD38 were upregulated in TB
patients compared to healthy controls.

Only the level of LGALS3BP was reduced in the TB group
(Figure 5A). ROC analysis has been commonly used to evaluate
the accuracy of medical diagnostic tests (Zou et al., 2007). Except
for LGALS3BP, candidate key genes were submitted for ROC analysis
on an external database (GSE34608). Finally, the four genes with the
highest performance in distinguishing between TB and normal
samples were extracted, indicating that they can serve as key genes
for further experimental verification. They were as follows: CD38
(AUC value = 0.938), CXCL10 (AUC value = 0.924), IFI44 (AUC
value = 0.910), and RTP4 (AUC value = 0.903) (Figure 5B).

Validation of key genes in M. tuberculosis-
BCG infected macrophage

THP-1 is a human monocytic leukemia cell line that is commonly
used to study macrophage response and mechanisms (Beckwith et al.,
2020; Wu et al., 2022). PMA successfully induced THP-1 cell
differentiation, resulting in mature macrophage-liking cells (Figures
6A, B). To validate the transcriptome information, we used qRT-PCR
to investigate key gene activation in M. tuberculosis-BCG infected
differentiated THP-1 cells. Notably, all key genes are upregulated in
the TB group, implying that they have the potential to be effective
diagnostic biomarkers for TB (Figures 6C–F).

Novel small molecule therapeutic agents
targeting the biological function in TB

We submitted DEGs to the CMap database to find the underlying
small-molecule therapeutic agents for tuberculosis. Based on
significant enrichment value, 10 small molecules capable of

suppressing DEGs expression of TB were identified, 6 of which
were considered potential therapeutic compounds (RWJ-21757,
WT-161, phenamil, metyrapone, benzanthrone, and TG-101348)
(Table 3). Both may be involved in regulating target gene
expression and have a therapeutic impact on TB. Figure 7 depicts
the 3D structure of a small molecule.

Discussion

TB is a contagious chronic disease caused by Mtb that primarily
affects the lungs, resulting in severe hemoptysis and fever (Fogel 2015;
Orazulike et al., 2021). Recent research has shown that macrophage
dysregulation is crucial in determining the occurrence, development,
and prognosis of tuberculosis (TB) (Pal et al., 2021). Investigation of
immune response-related genes remains a potent tool for identifying
the TB susceptibility mechanism (Gopalaswamy et al., 2020). In this
pilot study, we extracted gene expression data from two mRNA
profiles obtained from TB and normal blood samples. The
M1 macrophage infiltration model revealed 9 hub genes. Further
investigation revealed 4 of the 9 hub genes were identified as reliable
candidate biomarkers with significantly higher detection levels in TB
samples. Meanwhile, 6 small molecules were predicted to be potential
drugs targeting tuberculosis’s biological function. WGCNA was used
to establish diverse models by selecting 2,413 variant genes and
macrophage infiltration levels in TB samples. Correlation
coefficients were used to identify the most important macrophage
M1-related modules. With a cutoff value of (MM > 0.8 and GS > 0.5),
9 of 120 genes in hub models were chosen as hub genes.

The enrichment analysis results suggested that hub genes are
strongly linked to the tuberculosis immune response. SPATS2L,
RTP4, RSAD2, OAS3, LGALS3BP, IFI44L, IFI44, CXCL10, and
CD38 were identified as consistent genes between DEGs and hub
genes that act as candidate key genes. In TB samples from
GSE19435 and GSE83456, 9 candidate key genes showed
significantly increased expression. An external mRNA profile
(GSE34608) was used to perform expression analysis, which
revealed that only LGALS3BP was downregulated, while other
candidate key genes were significantly upregulated in TB patients.

ROC analysis was performed, and the AUC area was evaluated in
turn. The top four genes with the highest AUC value were identified as
hub genes for additional experimental validation. Finally, qRT-PCR
was used to examine the relative transcription levels of key genes in
normal and TB-infected THP-1 cells, and the mRNA expression
trends of key genes were consistent with bioinformatics data. These
findings suggest that the 4 key genes are linked to the progression and
diagnosis of tuberculosis.

Recent documents have revealed 4 key genes as guardians who
actively participate in the protective immunity of various
inflammatory diseases and cancer (Li et al., 2021a). IFI44 is found
on human chromosome 1p31.1 ad belongs to the interferon-
stimulated gene (ISG), which plays a significant role in
immunoregulation and tumor cell recognition (Lukhele et al., 2019;
Wang et al., 2020; Li et al., 2021b).

Its homologous gene, IFI44L, has been shown to promote
macrophage differentiation and inflammatory cytokine secretion
during Mtb infection (Jiang et al., 2021). In contrast, the precise
role of IFI44 in tuberculosis has yet to be revealed. CXCL10 (C-X-C
motif chemokine ligand 10) belongs to the CXC chemokine family. It
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can bind to CXCR3, triggering innate immune cell migration and
regulating adhesion molecule expression, implying a significant role in
immune cell development (Smit et al., 2003; Gao et al., 2009). In the
meantime, CXCL10 overexpression has been repeatedly observed in
tuberculosis patients (Bhattacharyya et al., 2018).

CD38 is a protein-coding gene that encodes a multifunctional
glycoprotein found on the surface of immune cells (Mehta et al., 1996).
It is also an effective diagnostic marker in various immune-related
diseases such as tuberculosis and leukemias (Malavasi et al., 2008;
Acharya et al., 2021). RTP4 (Receptor Transporter Protein 4) is a
member of the RTPs family that is directly involved in modulating the
expression of cell-surface G-coupled protein receptors (Saito et al.,
2004; Boys et al., 2020). Several studies have found that RTP4 is
strongly linked to a virus defense response and cancer prognosis (Li
et al., 2021a). Following Lipinski’s rule-of-five for drug likeliness, a
protein’s druggability is solely determined by its affinity and specificity
for small molecules (Abi et al., 2017). Several bioinformatic tools that
can prescreen candidate drugs in less time than traditional approaches
have emerged (Xia 2017).

Using CMap, we discovered latent therapeutic small molecular
compounds in tuberculosis. CMap yielded 6 compounds with higher
enrichment scores: RWJ-21757, WT-161, phenamil, metyrapone, TG-
101348, and benzanthrone. RWJ-21757 is a toll-like receptor (TLR)
7 selective agonist with diverse immunobiological activities (Yu et al.,
2022). It significantly improves innate immune responses by activating
specific immune cells such as macrophages, T cells, and B cells
(Goodman 1995). WT-161 is a potent histone deacetylase 6
(HDAC6) inhibitor widely used in cancer treatment by targeting
the expression of CD38 (Garcia-Guerrero et al., 2021; Yu et al.,
2022). Phenamil is an amiloride derivative involved in cell
differentiation and primarily acts as a sodium channel blocker in
various diseases (Garvin et al., 1985; Price et al., 2017). Metyrapone, a
bipyridyl compound, is a reversible inhibitor of cytochrome P450. It
contributes to inflammatory responses by suppressing endogenous
adrenal corticosteroid synthesis and lowering glucocorticoid levels
(Fantuzzi et al., 1993). TG-101348 is an ATP-competitive Janus kinase
2 (JAK2) inhibitor with antitumor activity by inducing cancer cell
apoptosis (Wernig et al., 2008; Verstovsek 2009). Benzanthrone is an
aromatic hydrocarbon derivative immunotoxic and can cause an
inflammatory response. It is widely used in antimicrobial research
(Tewari et al., 2015; Tsanova et al., 2020).

Conclusion

To explore M1 macrophage-related tuberculosis biomarkers, we first
try using WGCNA and CIBERSORT algorithms in the current study.
RTP4, CXCL10, CD38, and IFI44 were the 4 key genes that were
confirmed by validating integrated information and experiments.
Those of them were upregulated genes, that could act effective
biomarkers and key therapeutic target genes. Additionally, RWJ-21757,
WT-161, phenamil, metyrapone, TG-101348, and benzanthrone were
potential small-molecule drugs for treating tuberculosis. Our research
provides a novel viewpoint on immune and molecular TB diagnosis. Our
research data has limitations. More clinical sample data and additional
research are required to confirm the underlying mechanism of key genes
and targeted drugs in tuberculosis.
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