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Clear cell renal cell carcinoma (ccRCC) belongs to one of the 10 most frequently
diagnosed cancers worldwide and has a poor prognosis at the advanced stage.
Although multiple therapeutic agents have been proven to be curative in ccRCC,
their clinical application was limited due to the lack of reliable biomarkers.
Considering the important role of basement membrane (BM) in tumor metastasis
and TME regulation, we investigated the expression of BM-related genes in ccRCC
and identified prognostic BM genes through differentially expression analysis and
univariate cox regression analysis. Then, BM-related ccRCC subtypes were
recognized through consensus non-negative matrix factorization based on the
prognostic BM genes and evaluated with regard to clinical and TME features.
Next, utilizing the differentially expressed genes between the BM-related
subtypes, a risk scoring system BMRS was established after serial analysis of
univariate cox regression analysis, lasso regression analysis, and multivariate cox
regression analysis. Time-dependent ROC curve revealed the satisfactory prognosis
predictive capacity of BMRS with internal, and external validation. Multivariate
analysis proved the independent predictive ability of BMRS and a BMRS-based
nomogram was constructed for clinical application. Some featured mutants were
discovered through genomic analysis of the BMRS risk groups. Meanwhile, the BMRS
groups were found to have distinct immune scores, immune cell infiltration levels,
and immune-related functions. Moreover, with the help of data from The Cancer
Immunome Atlas (TCIA) and Genomics of Drug Sensitivity in Cancer (GDSC), the
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potential of BMRS in predicting therapeutic response was evaluated and some possible
therapeutic compounds were proposed through ConnectivityMap (CMap). For the
practicability of BMRS, we validated the expression of BMRS-related genes in clinical
samples. After all, we identified BM-related ccRCC subtypes with distinct clinical and
TME features and constructed a risk scoring system for the prediction of prognosis,
therapeutic responses, and potential therapeutic agents of ccRCC. As ccRCC systemic
therapy continues to evolve, the risk scoring system BMRS we reported may assist in
individualized medication administration.

KEYWORDS

clear cell renal cell carcinoma, basement membrane, gene expression, tumor
microenvironment, individualized therapy

1 Introduction

Globally, more than 430,000 individuals suffering from kidney
cancers were newly diagnosed in 2020 and approximately
180,000 people died from this type of cancer (Sung et al., 2021). As
one of the major subtypes, clear cell renal cell carcinoma (ccRCC)
could earn a good prognosis when treated at an early stage. However,
around one-third of ccRCC patients were found to be in the metastatic
stage, requiring systemic therapy other than radical surgery (Jonasch
et al., 2014). Although novel treatments including immunotherapies
and targeted therapies were demonstrated to be curative in this
chemoresistant cancer type, their clinical effects were
uncontrollable due to the lack of predictive biomarkers for the
therapeutic response and adverse events (Jhaveri and Perazella,
2018; Motzer et al., 2020a). Besides, it was demonstrated that
combined therapy of immune checkpoint inhibitors (ICIs) and
vascular endothelial growth factor (VEGF) tyrosine kinase
inhibitors (TKIs) could exert better curative effects than
monotherapy, leading to a requirement for more individualized
markers for treatment selection (Amin and Hammers, 2018).
Therefore, reliable predictive biomarkers ought to be developed for
the prognosis and therapeutic response of ccRCC.

The tumor microenvironment (TME) is a complex ecosystem
including immune cells, stromal cells, and extracellular matrix,
surrounding and interacting with tumor cells (Blankenstein et al.,
2012). As a highly immune-infiltrated cancer type, ccRCC cells were
able to modulate the TME including immune cells for evasion of anti-
cancer immunity through multiple mechanisms (Díaz-Montero et al.,
2020). The understanding of these mechanisms could facilitate the
application of cancer-specific therapies, such as ICIs, which restored
anti-cancer immunity through interrupting the suppressive signals
from the ccRCC cells (Motzer et al., 2015). Besides, accumulating
evidence indicated that molecular classification of ccRCC into groups
with distinct TME features could distinguish their prognosis and
therapeutic response (de Velasco et al., 2017). Thus, it would be
valuable to investigate the TME in ccRCC for the discovery of novel
predictive biomarkers.

Basement membrane (BM) is a thin sheet of extracellular matrix
(ECM) lining beneath endothelial and epithelial tissues, mainly
composed of collagen IV and laminin (Yurchenco, 2011). It serves
as one of the barriers preventing cancer cells from invasion, but its
remodeling and stiffness would contribute to the metastasis of tumor
(Chang and Chaudhuri, 2019). Some BM-related genes were revealed
to be associated with the prognosis of RCC. Wragg et al. (2016)
demonstrated that the high expression of LAMA4, a laminin

component, was correlated with the poor prognosis of RCC
(Wragg et al., 2016; Ho et al., 2017). Moreover, BM could mediate
the signal transduction between the microenvironment and cells. As a
major component of BM, laminin was revealed to have the ability to
modulate the migration, activation and functionality of T lymphocytes
within tumors (Liu et al., 2022). With these concerns, investigating the
BM-related genes in ccRCC may assist in understanding the
relationship between ccRCC and TME and developing predictive
biomarkers.

In the current study (Figure 1), we investigated the expression of
BM-related genes in ccRCC and used them to classify ccRCC patients
into distinct subtypes, based on which a risk scoring system, BMRS,
was established. Comprehensive analyses were conducted to evaluate
the capacity of BMRS in distinguishing the prognosis, TME features,
and therapeutic response of ccRCC. In this way, we constructed a
gene-based BMRS for prognosis and treatment prediction of ccRCC
and provided molecular candidates as novel therapeutic targets.

2 Materials and methods

2.1 Data acquisition

A ccRCC cohort including 539 tumor samples and 72 normal
samples from the KIRC project of The Cancer Genome Atlas (TCGA)
was selected and its RNA expression data, somatic mutation data, and
the corresponding clinical data were extracted from the Genomic Data
Commons Data Portal (https://portal.gdc.cancer.gov). ArrayExpress
(https://www.ebi.ac.uk/arrayexpress) is another public database
containing high-throughput genomic data from more than
75,000 experiments. Gene expression data of a ccRCC cohort,
E-MTAB-1980, with 101 tumor samples were acquired from
ArrayExpress and the survival information was obtained from
previous research (Li et al., 2018). The expression data of both
cohorts were transformed into a data format of transcripts per
million (TPM) for better analysis. All the data were publicly
available and no ethical consent was required.

2.2 Investigation of the basement membrane
genes in ccRCC

Jayadev et al. discovered 222 protein-coding genes that were
related to BM and human health (Jayadev et al., 2022). The
expression of these genes was extracted from the TCGA cohort
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and differentially analyzed between tumor and normal samples with
the help of the R package “limma” to identify the differentially
expressed BM genes (Ritchie et al., 2015). Thereafter, univariate
cox regression analysis facilitated the selection of the prognostic
BM genes from those differentially expressed genes. For a better
understanding of the expression of the prognostic BM genes in
ccRCC, correlation analyses were performed to reveal their
interrelationship. Besides, utilizing the R package “maftool”
(Mayakonda et al., 2018), the variation in these genes was depicted
including both somatic mutation status and copy number
variations (CNV).

2.3 Discovery and investigation of basement
membrane-related clusters in ccRCC

Consensus non-negative matrix factorization (CNMF) is a
powerful method for the dimension reduction of genomic data to
discover distinguished molecular patterns. Through the R package
‘CancerSubtypes’ (Xu et al., 2017), the expression data of the
prognostic BM genes were used to classify the ccRCC samples in
the TCGA cohort into 2, 3, and 4 clusters. Silhouette width is a
measurement for the evaluation of the classifications and a larger
average silhouette width means more valuable subtypes. Clusters with
the highest average silhouette width were selected for the following
analyses. To further investigate the value of these BM-related clusters,
Kaplan-Meier survival analysis and chi-square test were conducted to
visualize the clinical difference between them. Meanwhile, though
GSEA 4.1.0, gene sets enrichment analysis (GSEA) together with gene
ontology (GO) gene sets assisted the understanding of the molecular
functions enriched in each cluster. Furthermore, Estimation of
STromal and Immune cells in MAlignant Tumor tissues using
Expression data (ESTIMATE) (Yoshihara et al., 2013) was utilized
to quantify the immune and stromal status of ccRCC samples and the
resulting scores were compared between each cluster to discover
whether there were differences in their TME. Besides, we calculated
the infiltrating levels of 23 tumor infiltrating immune cells (TIIC)
through single sample GSEA (ssGSEA) and 14 stoma cells by xCell

(https://xcell.ucsf.edu/). By comparing the infiltrating level of these
cells between different clusters, their TME differences could be better
understood.

2.4 Construction of a gene expression-based
risk score system

After discovering the distinct features between the BM-related
subtypes, we tended to construct a risk score system based on these
clusters. First, the differentially expressed genes between the clusters
were identified. Then, the TCGA cohort was randomly divided into a
training cohort and a testing cohort in a ratio of 7 to 3. In the training
cohort, expression of the differentially expressed genes was extracted
and used for univariate cox regression analysis to select the prognostic
genes. Through R package ‘glmnet’ (Friedman et al., 2010), Least
Absolute Selection and Shrinkage Operator (LASSO) regression
analysis facilitated identifying those genes with higher association
with ccRCC prognosis, and multivariate cox regression analysis was
utilized to choose the best genes for construction of the BM-related
risk score system (BMRS): risk score = coefficient 1*gene expression
1 + . . . + coefficient n * gene expression n (1 to n represent each
prognostic genes).

2.5 Analysis of the prognostic predictive
capacity of BMRS

To investigate the predictive ability of BMRS, the TCGA training
cohort, TCGA testing cohort, TCGA cohort, and E-MTAB-
1980 cohort were respectively divided into high and low risk
groups according to the median risk scores. Kaplan-Meier analysis
was applied in each pair of high and low risk groups to reveal the
relationship between risk score and the overall survival (OS) of ccRCC
patients. Subsequently, with the help of time-dependent Receiver
Operating Characteristic (tROC) curves, the predictive power of
the risk scoring system for the 1-, 3-, and 5-year OS of each cohort
were illustrated and the corresponding values of area under curve

FIGURE 1
The flow chart of the current study.
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(AUC) were calculated. Additionally, the clinical features (age, gender,
Fuhrmann grade, and AJCC stage) in high and low risk groups of the
TCGA cohort were compared through chi-square test. Meanwhile, the
ability of BMRS in differentiating ccRCCOSwas tested under different
clinical statuses by Kaplan-Meier survival analysis.

2.6 Establishment of a clinical predictive
nomogram

For better application in the clinic, BMRS (high risk vs. low risk)
combined with age (<65-year-old vs. >=65-year-old), gender (female
vs. male), Fuhrmann grade (Grade 1/2 vs. Grade 3/4), AJCC stage
(Stage I/II vs. Stage III/IV), T stage (T1/2 vs. T3/4), N stage (N0 vs. N1),
and M stage (M0 vs. M1) were incorporated into univariate and
multivariate cox regression analyses to demonstrate its predictive
value. Furthermore, the resulting values of the multivariate cox
regression analysis were used to construct a nomogram for the
prediction of ccRCC survival. The predictive capability of the
nomogram for 3-and 5-year survival was assessed by calibration
plot. Besides, decision curve analysis (DCA) was utilized to
compare the net benefit of BMRS, AJCC stage and two previous
BM-related gene signatures (Zhou et al., 2022a; Xiong et al., 2022) in
predicting 3- and 5-year survival of ccRCC. TCGA cohort was
separated into high and low risk groups according to the median
of nomogram scores and was analyzed to identify their survival
difference.

2.7 Investigation of the genomic variation in
different BMRS groups

The genomic features in high and low BMRS groups were
illustrated and compared through the R package ‘maftool’. The
variation status of the top 20 mutation genes in both groups was
depicted and all the mutated genes were compared between groups to
identify the group-specific mutation. At the same time, by applying
pairwise Fisher’s exact test between every two genes, we wanted to
discover whether there were some exclusive or co-occurrence gene
pairs in the high BMRS group. Furthermore, some tumor
heterogeneity-related features, including single nucleotide variation
(SNV), homologous recombination defects (HRD), cancer testis
antigen (CTA), and intratumor heterogeneity (ITH) were
introduced from previous research (Thorsson et al., 2018) and
compared between different BMRS groups.

2.8 Analysis of the immune landscape related
to BMRS

In order to investigate the BMRS-related biological processes,
cellular components, and molecular functions, the genes that were
differentially upregulated in the high BMRS group were chosen and
incorporated into GO functional analysis through the R package
‘clusterProfiler’ (Wu et al., 2021). Concerning the immune
microenvironment in ccRCC, the immune scores calculated from
ESTIMATE and the infiltrating scores of 23 TIICs were compared
between BMRS groups. Each TIIC was analyzed through Kaplan-
Meier survival analysis to discover its relationship with ccRCC

prognosis. Meanwhile, ssGSEA algorithm was utilized to induce
scores representing immune suppression and some immune-related
functions with the help of previously published gene signatures (Yi
et al., 2020). In addition, a publicly accessible website called Tumor
Immune Dysfunction and Exclusion (TIDE, http://tide.dfci.harvard.
edu) which provides a platform for estimation of T cells dysfunction
scores based on gene expression data, was adopted to compare the
T cells status between high and low BMRS clusters.

2.9 Exploration of the therapeutic predictive
potential of BMRS

The gene expression of several popular inhibitory immune
checkpoints was extracted and differentially analyzed between high
and low BMRS groups. Additionally, the immunophenoscores, which
are estimated scores of immunotherapeutic response to ICIs for TCGA
samples, were obtained from The Cancer Immunome Atlas (TCIA,
https://tcia.at/home) and compared between BMRS groups. Except for
immunotherapeutic response, sensitivity toward some therapeutic
drugs (Axitinib, Pazopanib, Sorafenib, Sunitinib, and Mitomycin C)
clinically used for ccRCC patients were predicted through R package
‘pRRophetic’ (Barbour et al., 2014), which connects a large amount of
gene expression and drug sensitivity data in Genomics of Drug
Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org).
Furthermore, the gene expression of immune chemokines, immune
receptors, and major histocompatibility complex (MHC) molecules
was correlated with BMRS with the concern of discovering potential
therapeutic targets. Besides, we uploaded the top 150 upregulated
genes in high and low BMRS groups respectively to ConnectivityMap
(CMap, https://clue.io) for exploration of potential therapeutic
compounds for patients in each group.

2.10 Transcriptome sequencing analysis

To further prove the applicability of BMRS, we collected clinical
ccRCC and adjacent normal samples (18 ccRCC and 6 adjacent normal
samples) for transcriptome sequencing analysis. This project was
supported by the hospital ethics committee and consent was
acquired from all the patients. In line with the protocol of the
manufacturer, each ccRCC and adjacent normal samples underwent
paired-end sequencing on the NovaSeq 6000 high-throughput
sequencing platform (Illumina, United States) to remove sequencing
reads containing aptamer sequences and low-quality reads as well as
bases. Then, high-quality pairwise reads were aligned to the human
genomeGRCh38 throughHISAT2 (v2.1.1), generating BAM files. BAM
files were arranged by samtools (v1.15.1) and then counted with the help
of Subread (v2.0.1). Raw counts of transcripts per gene were converted
to the format of TPM, allowing better analysis of gene expression
between samples. Thereafter, the genes enrolled in BMRS were
differentially analyzed between the normal and ccRCC samples.

2.11 Statistical analysis

All the analyses process in the current study were achieved
through the usage of R 4.1.0 and R studio Desktop 2022.07.1 +
554. The graphs displayed were drawn by R studio Desktop
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2022.07.1 + 554 and Adobe Illustrator CS6 (64 Bit). During
differentially expression analysis, genes with the absolute value of
log fold change (logFC) more than were selected. p-value less than
0.05 was regarded as significant for all analyses.

3 Results

3.1 Identification of the differentially
expressed and prognostic BM genes

Differential expression analysis of the 222 BM genes between
539 ccRCC samples and 72 normal samples revealed that there were
106 differentially expressed BM genes, in which 39 genes were

downregulated and 67 genes were upregulated (Supplementary
Table S1). Then, after univariate cox regression analysis, 49 BM
genes were demonstrated to be prognostic including 26 protective
genes and 23 risk genes (Supplementary Table S2). A substantial
positive correlation existed between these prognostic BM genes
indicating that they were highly interconnected (Figure 2A). As for
the genomic variation that happened in these genes, 25.6% of the
ccRCC samples possessed prognostic BM gene alterations and more of
these alterations were missense mutations (Figure 2B). The top
3 mutated genes were HMCN1 (5%, risk gene), COL6A3 (3%,
protective gene), and COL4A5 (2%, protective gene). In addition,
the CNV of these genes was analyzed and a relatively low frequency of
CNV was discovered, except for SPARC (21.0%, gain of function), and
TGFBI (19.8%, gain of function) (Figures 2C, D).

FIGURE 2
Genetic analyses of the BM-related genes. (A) The inter-relationship between each BM-related gene and the role of these genes in the prognosis of
ccRCC. (B) The waterfall plot depicting the mutation of the prognostic BM genes. (C) The CNV frequency of the prognostic BM genes. (D) The distribution of
the prognostic BM genes in each chromosome with CNV gain colored red, CNV loss colored blue and no CNV colored black.
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3.2 Recognition of BM-based clusters of
ccRCC

The 49 differentially expressed and prognostic BM genes were
further used for the classification of ccRCC patients through CNMF
algorithm. As the results show, the samples could be classified into two
separate clusters A and B, in which cluster A had significantly lower
OS than cluster B and the average silhouette width was 0.94 (Figures
3A–C). For the reason that the average silhouette widths were
relatively low, classifications of 3, 4, and 5 clusters were not under

consideration (Supplementary Figure S1). By comparing the clinical
features in both clusters, we discovered that the ccRCC samples in
cluster A had more advanced features including Fuhrmann grade,
AJCC stage, T stage, N stage, and M stage. There were more males in
cluster A than in cluster B while the age distributions in both clusters
were similar (Figure 3D). The differentially expressed analysis also
indicated that some metastasis-related genes, such as MMP13 and
ROS1 were upregulated in cluster A. The following GSEA analysis
demonstrated that basement membrane-related functions like
collagen fibril organization and collagen catabolic process were

FIGURE 3
BM gene-based classification of ccRCC patients. (A) Survival analysis of the two ccRCC clusters classified based on BM genes. (B) The sample similarity
matrix plot of the two identified clusters. (C) The Silhouette width plot of the two BM-related subtypes. (D) The heatmap depicting the distinct clinical features
and gene expression between cluster (A) and cluster (B). (E, F). The biological processes that enriched in cluster (A). (G) Comparison of the stromal score,
immune score and ESTIMATE score between cluster (A) and cluster (B). (H, I) The different infiltration levels of immune cells and stromal cells between
the two BM-related subtypes.
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more prominent in cluster A. Meanwhile, some immune-related
biological processes were notably enriched in cluster A, such as
positive regulation of T helper 1 type immune response and
positive regulation of interleukin 17 production (Figures 3E, F).
Considering these enriched immune functions, we further
investigated the microenvironment components in both clusters
through ESTIMATE and ssGSEA. It was demonstrated that the
stromal score, immune score and ESTIMATE score in cluster A
were higher than those in cluster B, indicating the rich stromal,
immune components and low tumor purity in cluster A
(Figure 3G). At the same time, cluster A had a higher level of
nearly every type of infiltrating immune cell than cluster B except
for eosinophils, neutrophils, and plasmacytoid dendritic cell
(Figure 3H). As for stromal cells, more adipocytes, chondrocytes,

fibroblasts, and mesangial cells were found in cluster A while cluster B
possessed more endothelial cells, lymphatic endothelial cells and
microvascular endothelial cells (Figure 3I). Therefore, the
prognostic BM genes could divide ccRCC samples into two clusters
with distinct clinical and TME features.

3.3 Construction of BMRS risk scoring system
for prognosis prediction

Since the BM gene-based ccRCC subtypes could discriminate
prognostic and clinical features, we would like to derive a more
applicable risk scoring system from these subtypes. In the TCGA
training cohort, the differentially expressed genes between clusters A

FIGURE 4
Construction and evaluation of the risk scoring systemBMRS. (A) The forest plot illustrating the 7 genes resulted frommultivariate cox regression analysis.
(B, C) Distribution of the risk scores and survival status of ccRCC patients in the TCGA training cohort. (D, F) The Kaplan Meier survival curve comparing the
overall survival between high and low risk groups in the TCGA training cohort and E-MTAB-1980 cohort respectively. (E, G) The tROC curve of the risk score
for 1-, 3-, and 5-year survival in the TCGA training cohort and E-MTAB-1980 cohort. (H) Comparison of the clinical features in high and low risk groups.
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and B were identified (Supplementary Figure S2A). Based on these
genes, univariate cox regression analysis was conducted and induced
414 prognostic genes (Supplementary Table S3). Subsequently, LASSO
algorithm was applied to obtain 12 genes that were significantly
associated with the prognosis of ccRCC (Supplementary Figure
S2B, C). Then, these 12 genes were incorporated into multivariate
cox regression analysis (Figure 4A), inducing a risk scoring system,
BMRS, based on 7 genes, CCDC85A, AJAP1, ANK3, P4HA3, C8G,
ADAM8, HJURP.

3.4 Evaluation of the predictive ability of
BMRS

For the evaluation of BMRS system, we calculated risk scores for
each sample in TCGA training cohort and divided them into high and
low risk groups according to the median risk scores (Figure 4B). It could
be recognized that samples with high risk were more frequently dead
than those with low risk (Figure 4C). At the same time, survival analysis
demonstrated that the high risk group had longer OS than the low risk
group (Figure 4D). The results of tROC curve proved that BMRS system
possessed a great prognostic capacity for 1-year (AUC = 0.813), 3-year
(AUC = 0.753), and 5-year (AUC = 0.777) survival (Figure 4E). The
same analyses were applied in the TCGA testing cohort and TCGA
cohort as an internal validation and delivered similar results
(Supplementary Figure S2D–K). As an external validation, the
survival analysis result and tROC curve derived from E-MTAB-
1980 also supported that BMRS could discriminate the prognosis of
ccRCC and had high accuracy (Figures 4F, G, 1-year AUC = 0.867, 3-
year AUC = 0.832, and 5-year AUC = 0.843). Furthermore, survival
analyses of high and low risk groups in the TCGA cohort under various
clinical situations were conducted and revealed that BMRS could
discriminate ccRCC survival in most situations (Supplementary
Figure S3). Meanwhile, the Fuhrmann grade, AJCC stage, T stage, N
stage, andM stage in the high risk group were notably higher than those
in the low risk group, which was in line with the poor prognosis in the
high risk group (Figure 4H). Moreover, we evaluated the gene
expression of the genes used for BMRS and the results demonstrated
that most of the genes were differentially expressed in ccRCC
(Supplementary Table S4), consistent with the above analysis. In this
way, a reliable risk scoring system BMRS was constructed with
considerable predictive capacity.

3.5 Establishment of a clinical nomogram
based on BMRS

For better application of the BMRS in clinic, we evaluated its
predictive ability with the consideration of the clinical variables.
Analyzing risk score and clinical variables cooperatively, univariate
cox regression analysis revealed that only age and gender could not
predict ccRCC prognosis (Figure 5A). The following multivariate cox
regression analysis uncovered the independent prognostic predictive
ability of BMRS, T stage and M stage (Figure 5B). Thereafter, the
Fuhrmann grade, T stage, M stage and BMRS risk were incorporated
to establish a nomogram (Figure 5C). The calibration curve depicted
the 3-year and 5-year OS predicted by the nomogram had a
satisfactory consistency with those observed in clinic (Figure 5D).
While compared with the clinically popular TNM stage, Zhou’s and

Xi’s gene signatures, the nomogram could deliver higher net benefit in
3-year (Figure 5E) and 5-year OS prediction (Figure 5F). The survival
analysis also demonstrated that samples with high points had
significantly lower OS than those with low points (Figure 5G).
Thus, BMRS could not only independently predict ccRCC survival
but also assist in establishing more competitive predictive methods.

3.6 The genomic variation in different risk
groups

After discovering the clinical significance of BMRS, further analyses
of the underlying genomic alterations were under concern. In both risk
groups, the mutation of VHL (44%), PBRM1 (38%), TTN (13%), and
SETD2 (11%) comprised the major part of all gene alterations
(Figure 6A). The following comparison revealed that 10 mutants were
occurring more frequently in the high risk group (Figure 6B). Among
these mutants, SETD2 was the most frequent and significant one and
most of its mutation happened in the non-coding area (Figure 6C).
Besides, the discovery of the relationship between gene variations
uncovered a notable co-occurance of SETD2 and PBRM1 mutation.
At the same time, the mutation of MUC16 and BAP1 also exhibited a
significant positive inter-relationship while MUC17 and VHL mutation
were mutually exclusive (Figure 6D). Apart from these mutational
differences, the high risk group was demonstrated to have higher
scores of SNV antigens and HRD, indicating the high genomic
heterogeneity in patients with high BMRS risk (Figures 6E, F).
Meanwhile, the CTA and ITH scores in the high risk group were
significantly higher than those in the low risk group (Figures 6G, H).

3.7 The association between BMRS and the
immune landscape of ccRCC

Considering that BMRS was derived from the BM-related clusters
with distinct functional and immunal features, we also investigated the
functions associated with BMRS. Similar to the above results, the high
risk group was enriched with BM-related functions, such as
extracellular structure organization and extracellular matrix
organization. Meanwhile, there were some immune involvements
recognized in the high risk group including humoral immune
response and acute inflammatory response (Figure 7A). The
comparison of immune scores between the two risk groups also
indicated that the high risk group had a higher immune level than
the low risk group (Figure 7B). For a better understanding of this
immune involvement, we further evaluated the infiltrating immune
cells in each group. As the results showed, most of the immune cells
were more frequently infiltrated in the high risk group than in the low
risk group except for eosinophil and neutrophil whose infiltrating
levels were lower in the high risk group (Figure 7C). Survival analyses
were conducted for each immune cell and it was revealed that some
innate immune cells like neutrophil, and mast cell were protective
cells. Most of the immune cells enriched in the high risk group were
associated with poor survival, including suppressive immune cells
(e.g., MDSC) and effector immune cells (e.g., activated CD8 T cell).
For an exploration of this connection between abundant immune
infiltration and poor survival, the functionality of the immune
environment was assessed, delivering a result that ccRCC samples
with high risk scored higher on immune suppression and T cell
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dysfunction than those with low risk (Figures 7D, E). Moreover,
although high-risk samples had a higher level of most immune
functions like APC co-stimulation and T cell co-stimulation, their
scores of some negative immune functions such as APC co-inhibition
and T cell co-inhibition were also greater than low-risk samples
(Figure 7F). Therefore, BMRS may have a relationship with the
suppressive immune microenvironment of ccRCC.

3.8 The therapeutic predictive potential of
BMRS

After the investigation of BMRS and the immune
microenvironment, the potential relationship between BMRS and
immunotherapies was under consideration. Differential analysis of
the gene expression of inhibitory immune checkpoints showed that

FIGURE 5
Establishment and evaluation of the clinical predictive nomogram. (A, B) The forest plots depicting the results of univariate cox regression analysis and
multivariate cox regression analysis respectively. (C) The nomogrambased on grade, T stage, M stage, and risk score. The red dot lines represented an example
of the total point calculation. (D) The calibration curve testing predictability of the nomogram for 3- and 5-year survival. (E, F) The DCA curves comparing the
net benefit of nomogram, TNM stage, Zhou’s and Xi’s gene signatures for prediction of 3- and 5-year survival respectively. (G) The Kaplan Meier survival
curve comparing the overall survival of ccRCC patients with high and low points.
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PD1, CTLA4, LAG3, and TIGIT were significantly upregulated in the
high risk group (Figure 8A). Data on immunotherapeutic response
predicted by TCIA demonstrated that high-risk ccRCC patients
possessed a higher level of IPS to CTLA4 inhibitor and combination
of PD1 and CTLA4 inhibitors than low-risk patients, indicating high-
risk patients may respond better toward these two strategies of
immunotherapies (Figure 8B). Apart from immunotherapies, we also
correlated BMRS with some therapeutic drugs used in clinic. The half
maximal inhibitory concentration (IC50) of sorafenib, sunitinib, and
mitomycin C. were notably lower in the high risk group than in low risk
group, suggesting that ccRCC patients with high risk may have better
outcomes receiving these drugs (Figure 8C).

To discover some additional therapeutic targets, we analyzed the
correlation between BMRS and some immune-related molecules
(Figure 8D). There were multiple immune checkpoints (e.g.,

CXCL13, and CCL25), immune receptors (e.g., CXCR5, and CCR6)
and MHC molecules (e.g., HLA-E) significantly related to BMRS,
providing potential targets for therapeutic investigation. Moreover, as
predicted by CMap (Figure 8E), molecular compounds like BRD-
K23875128, which is Rho associated kinase inhibitor, could serve as
therapeutic drugs for high-risk ccRCC patients. Some other
compounds were also estimated to be effective in low-risk ccRCC
patients, for example, PF-04217903, which is a kind of arginase
inhibitor.

4 Discussion

With the progression of ccRCC research, more treatment options
were available to improve the prognosis of ccRCC patients (Choueiri

FIGURE 6
Genomic analysis in accordance with the BMRS risk groups. (A) The waterfall plot representing the top 20 mutated genes in both risk groups. (B) The
mutants that significantly differentiated between high and low risk groups. (C) Exhibition of the mutation sites and types of SETD2 in both risk groups. (D) The
correlation of the mutants in the high risk group. (E–H) Comparison of SNV neoantigens, HRD, CTA score, and ITH between high and low risk groups.
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and Motzer, 2017). However, the existing predictive markers for the
prognosis and therapeutic response of ccRCC had limited functions
due to the heterogeneity of this type of patient (Greef and Eisen, 2016).
As a component of ECM, BM serves as not only a physical barrier

against tumor invasion and metastasis but also a mediator of signals
between microenvironment and cells (Bissell and Hines, 2011),
indicating its potential as a target for the investigation of novel
biomarkers. Through analyses of the expression of BM-related

FIGURE 7
The immune landscape in different BMRS risk groups. (A) The enriched GO functions in the high risk group. (B) The different cumulative distributions of
the immune score in different risk groups. (C) The distinct infiltration level of the immune cells in high and low risk groups. (D, E) Comparison of the scores of
immune suppression and T cell dysfunction between the two BMRS groups. (F) The difference in immune functions between high and low risk groups.
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genes, we discovered two subtypes with distinct clinical and
microenvironmental features and established a 7-gene risk scoring
system for the prediction of prognosis and treatment response of
ccRCC patients.

According to statistics, the prognosis of ccRCC was largely
influenced by the occurrence of distant metastasis, which could
decrease the 5-year survival rate to less than 20% (Siegel et al.,
2022). In line with this finding, our results demonstrated that BM-
related genes could divide ccRCC patients into two clusters with
distinct prognosis features. This could be explained by the
defensive role of BM in preventing the tumor cells from invading
the stroma (Valastyan and Weinberg, 2011). Matrix
metalloproteinases (MMPs), a series of zinc-dependent proteinases,

played an important role in the degradation of BM to weaken its
barrier capacity. Without MMPs, the tumor cells could hardly squeeze
through the nanosized pores in the BM (Wolf et al., 2013; Eatemadi
et al., 2017). It was demonstrated that the increased expression of
MMPs was correlated with the invasion and poor prognosis of
carcinomas (Winer et al., 2018), and in our study, the upregulation
of MMP13 was identified in cluster A. Moreover, the high infiltration
of fibroblasts in cluster A could also be associated with the expression
of MMPs. It was reported that tumor cells induced the secretion of
MMPs from cancer-associated fibroblasts (CAFs) to modulate BM
(Kessenbrock et al., 2010). Conversely, MMPs such as MMP1 secreted
from tumor cells promote the transdifferentiation of fibroblasts into
CAFs (Heneberg, 2016). In addition to the chemical changes, BM

FIGURE 8
The potential of BMRS in guiding ccRCC treatment. (A) Comparison of the inhibitory immune checkpoint expression in different risk groups. (B) The
IPS difference of4 types of ICI therapies in high and low BMRS groups. (C) Differential analysis of the IC50 of 5 therapeutic agents between BMRS risk
groups. (D) Correlation between BMRS risk scores and the expression level of immune checkpoints, immune receptors and MHCmolecules. (E) Potential
therapeutic compounds predicted for high and low risk groups respectively.
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could also be modulated into an invasion-favored status. A recent
study revealed that in those BM with high plasticity, cells could
mechanically enlarge the nanosized pores and migrate through BM
without the help of MMPs (Wisdom et al., 2018). Meanwhile, the
stiffness of BM could influence tumor invasion through a protein
called netrin-4 (Net4). Net4 in BM mechanistically bound to laminin
and diluted laminin ternary node complex, softening the BM and
making it more resistant to tumor cell invasion (Reuten et al., 2021).
Therefore, the different statuses of BM could influence the prognosis
of ccRCC and may facilitate the survival prediction.

Based on the BM-related clusters, we constructed a risk scoring
system called BMRS. Genes included in BMRS were found to be
correlated with the progression and metastasis of cancers including
both risk and protective genes. Holliday junction recognition protein
(HJURP) is a kind of centromeric protein, being essential for the
stimulation of chromosome division and cell mitosis (Zhang et al.,
2021). Its upregulation was correlated with an increased invasion and
migration capacity of cancer (Chen et al., 2019). Prolyl 4-hydroxylase
alpha subunit 3 (P4HA3) is also a risk gene that could strengthen the
motility and invasiveness of tumors (Song et al., 2018). As an enzymic
subunit of prolyl 4-hydroxylase, P4HA3 was critical for the stability of
collagen and its dysregulation would directly activate the invasiveness
potential of tumor cells (Nakasuka et al., 2021). Meanwhile, a
disintegrin and metalloproteinase 8 (ADAM8) was another gene
related to enzyme production and could promote tumor metastasis
probably through the degradation of ECM components (Conrad et al.,
2019). Apart from risk genes, BMRS also contained protective genes
including adherens junctional associated protein-1 (AJAP1) and
ankyrin G (ANK3). AJAP1 belonged to multi-protein complexes
named adherens junction, which is critical for cell adhesion and
growth inhibition (Xu et al., 2019; Zhou et al., 2022b). ANK3, a
family member of ankyrins, assisted in maintaining cell stability
through anchoring cytoskeleton to the cell membrane (Wang et al.,
2016). The downregulation of both genes could lead to the
proliferation and invasion of cancer cells. However, little was
known about coiled-coil domain-containing protein 85A
(CCDC85A) and complement component 8 gamma (C8G) in
tumorigenesis and further investigations were required.

Further analysis of the TME in ccRCC revealed that BM-based
clusters and risk groups had distinct immune landscape. Higher
immune scores and infiltration levels of immune cells were
discovered in the cluster or group that possessed more enriched
BM-related functions. It was reported that BM was one of the
barriers through which the extravasation of lymphocytes into
tumor sites should be overcome (Marchand et al., 2019). During
this process, laminin, the major component of BM, played an
important role in mediating the functions of lymphocyte trafficking
(Pozzi et al., 2017). Evidence suggested that laminins containing
LAMA4 favored the transmigration of T cells through providing
some permissive signals while those with LAMA5 tended to oppose
this process (Sixt et al., 2001). Besides, T cells might adhere less
strongly to LAMA4-bearing laminins but migrate faster across these
lamins than those with LAMA5 (Zhang et al., 2020). BM distributed
with a higher level of LAMA4-containing laminins would have a
higher potential for lymphocyte extravasation (Wu et al., 2009).
However, we discovered that cluster with high immune cell
infiltration was related to poor prognosis and most of the
infiltrated lymphocytes in ccRCC including CD8 T lymphocyte and
CD4 T lymphocyte were associated with low survival time. This could

be due to the dysfunction of lymphocytes by the suppressive
lymphocytes and tumor cells. Myeloid-derived suppressor cells
(MDSCs) were a cluster of immune suppressive myeloid cells
frequently found in cancers (Gabrilovich et al., 2007). As their
name suggested, MDSCs exerted suppressive functions on various
cells, especially T lymphocytes (Gabrilovich et al., 2012). They could
induce tolerance of antigen-specific T lymphocytes mainly through
the production of reactive oxygen species (ROS) to nitrate receptors on
T lymphocytes and reduce their responsiveness, inhibiting the anti-
tumor function (Nagaraj et al., 2007). Apart from suppressive immune
cells, tumor cells themselves could transduce inhibitory signals to
lymphocytes for immune evasion (Muenst et al., 2016). Inhibitory
immune checkpoints such as PD1 were targeted by tumor cells to
transform T lymphocytes into suppressive status (Daassi et al., 2020).
Thus, BM remodeling may assist in the development of the rich but
suppressive immune microenvironment in ccRCC.

With an increasing understanding of the mechanisms
underlying tumorigenesis, therapeutic strategies developed
against them were shown to be effective in cancer therapy. ICIs,
functioning through interrupting the suppressive signals
transduced by CTLA4 or PD1 to reactivate the anti-tumor
immunity and prevent tumor immune evasion, was approved to
be successful in the treatment of multiple cancers (Sharma and
Allison, 2015). It was believed that normalization of the
suppressive environment and restoration of the anti-tumor
immunity would be more effective than directly enhancing the
immune function (Sanmamed and Chen, 2018). In line with this
statement, our finding suggested that clusters with high
immunogenicity potential but suppressed responded better to
ICIs. The higher level of SNV, HRD, and CTA in the high risk
group indicated it possessed a higher potential to generate tumor-
associated neoantigens, which were critical for the immune system
to exert anti-tumor function (Meng et al., 2021; van Wilpe et al.,
2021; Wang et al., 2021). Meanwhile, once the suppressive
environment was removed, the relatively high infiltration level
of immune cells served as an immune reservoir that supported a
powerful immune reaction (Waldman et al., 2020). Additionally,
the increased expression of immune checkpoints in the high risk
group was thought to be predictive for immunotherapy (Thommen
et al., 2018). Apart from ICI monotherapy, recent studies had
domonstrated the benefits of treatment combined ICI and TKI,
which could have the better therapeutic capacity (Quhal et al.,
2021). Our results also demonstrated that the high risk group was
more sensitive to TKIs including sorafenib and sunitinib, as well as
chemotherapy like mitomycin C. The mutation analysis helped
discover a co-occurance mutant pair, SETD2 and PBRM1, in which
SETD2 mutation was correlated with a favorable outcome of ICI-
treated patients (Lu et al., 2021) and PBRM1 mutation was
associated with high angiogenesis and TKIs therapeutic
outcomes (Motzer et al., 2020b), indicating the potential of the
high risk group for combination therapy. It was demonstrated that
TKIs therapy was associated with improved vessel extravasation
and enhanced drug delivery to tumors (Zhou et al., 2008; Zhou and
Gallo, 2009). Moreover, after TKI treatment, the amount of
suppressive immune cells including Treg and MDSCs was found
to be decreased in TME (Finke et al., 2008; Ko et al., 2009).
Therefore, BMRS constructed in the current study could not
only help individualized administration of immunotherapy but
also assist in the combination therapy of ICIs and TKIs.
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In addition to the existing therapeutic agents, the investigation
was also focus on novel therapeutic targets. In patients with high
BMRS, we identified the upregulation of chemokine (C-X-C motif)
ligand 13 (CXCL13) and its receptor CXCR5. Their interaction
could impede the tumor-specific cytotoxic function of
CD8 T lymphocytes and be related to the recruitment of
suppressive immune cells including MDSCs and Treg
(Ammirante et al., 2014). Inhibitor targeting the CXCL13/
CXCR5 axis was demonstrated to have an encouraging effect on
cancer treatment (Hussain et al., 2019). A Rho associated kinase
inhibitor, BRD-K23875128, may be a potential therapeutic agent
for high risk patients. Rho kinase pathway took part in multiple cell
functions and was implicated in tumor metastasis as well as ECM
remodeling. It may be a candidate for combination treatment due
to its ability to increase sensitivity to other therapeutic drugs (Kim
et al., 2021). As for patients with low BMRS, there may also be some
curative agents. Histocompatibility leucocyte antigen E (HLA-E)
and its cognate inhibitory receptor NKG2A could serve as a novel
immune checkpoint to be targeted for inducing anti-tumor
immunity (Borst et al., 2020). As predicted by CMap, arginase
inhibitor, could also potentially treat patients with high BMRS by
promoting the T cells activation and proliferation to exert an anti-
tumor immune response (Borek et al., 2020).

Overall, the current study identified BM-related subtypes of ccRCC
and constructed a risk scoring system BMRS for prognosis and
therapeutic prediction based on both public and clinical data. The
mutation, TME and treatment analysis also provided potential novel
therapeutic agents for further investigations. Comparing with the
existing similar gene signatures, BMRS possessed higher net benefit
in predicting the prognosis of ccRCC patients. Besides, we had validated
the scoring system and its gene expression using external dataset and
clinical samples. However, the lack of accessibility to clinical treatment-
related data restricted our analysis of BMRS in predicting therapeutic
response. More in-depth study could be conducted to validate the
proposed potential therapeutic targets for ccRCC.

5 Conclusion

In summary, we recognized BM-related subtypes of ccRCC with
distinct survival and TME features. A risk scoring system BMRS was
established for prognosis prediction and individualized treatment
instruction. Mechanistic investigations based on BM-related
clusters and risk groups helped identified some therapeutic
candidates. With more and more studies focusing on combination
therapy, our results may provide certain practical instructions for
clinical application and future research.
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