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Background: The role of alcohol in carcinogenesis has received increasing
attention in recent years. Evidence shows its impacts on various aspects,
including epigenetics alteration. The DNA methylation patterns underlying
alcohol-associated cancers are not fully understood.

Methods:We investigated the aberrant DNAmethylation patterns in four alcohol-
associated cancers based on the Illumina
HumanMethylation450 BeadChip. Pearson coefficient correlations were
identified between differential methylated CpG probes and annotated genes.
Transcriptional factor motifs were enriched and clustered using MEME Suite,
and a regulatory network was constructed.

Results: In each cancer, differential methylated probes (DMPs) were identified,
and 172 hypermethylated and 21 hypomethylated pan-cancer DMPs (PDMPs)
were examined further. Annotated genes significantly regulated by PDMPs were
investigated and enriched in transcriptional misregulation in cancers. The CpG
island chr19:58220189–58220517 was hypermethylated in all four cancers and
silenced in the transcription factor ZNF154. Various biological effects were exerted
by 33 hypermethylated and seven hypomethylated transcriptional factor motifs
grouped into five clusters. Eleven pan-cancer DMPs were identified to be
associated with clinical outcomes in the four alcohol-associated cancers,
which might provide a potential point of view for clinical outcome prediction.

Conclusion: This study provides an integrated insight into DNA methylation
patterns in alcohol-associated cancers and reveals the corresponding features,
influences, and potential mechanisms.
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1 Introduction

A strong association has been established between alcohol
consumption and carcinogenesis in multiple cancers, including
head and neck squamous carcinoma, esophageal squamous
carcinoma, hepatocellular carcinoma, breast cancer, and
colorectal cancer (Scoccianti et al., 2015). Alcohol consumption is
also suspected to associate with pancreatic and lung cancers
(Boffetta and Hashibe, 2006). Previous studies have demonstrated
a dose-dependent effect of alcohol consumption on survival in head,
neck (Lee et al., 2019), and colorectal cancer patients (Cai et al.,
2014) and have also demonstrated that alcohol affected tumor
development during gene-encoding enzyme alterations for
alcohol metabolism, folate metabolism, DNA repair, and
oxidative stress (Boffetta and Hashibe, 2006; Seitz and Stickel,
2007). Relationships between alcohol and cancers deserved
extensive investigations.

DNA methylation alterations are one of the most frequently
identified events in various malignant tumors (Kodach et al., 2010;
Lee et al., 2013; Dong et al., 2019) and play important roles in cancer
initialization, progression, and recurrence (Ehrlich, 2006; Pellacani
et al., 2014; Tahara and Arisawa, 2015; Chen et al., 2016; Das et al.,
2019). A group of enzymes known as DNA methyltransferases
(DNMTs) are the key regulators that catalyze the methylation
process. DNMT1 functions as the maintenance DNMT
completing the methylation of the partially methylated DNA,
while DNMT3A and DNMT3B catalyze de novo methylation.
The abnormal expression of DNMTs can silence numerous
tumor suppressor genes and affect important biological functions
in multiple cancers (Sharma et al., 2010; Fattahi et al., 2018; Zhang
et al., 2020). Accumulating evidence has shown that alcohol
consumption may cause epigenetic changes, particularly
abnormal DNA methylation, which could be important
contributory factors to alcohol-induced carcinogenesis
(Schernhammer et al., 2010; Boycott et al., 2022; Zhao et al.,
2022; Zhou et al., 2022). Alcohol could regulate the expression of
DNMTs in mouse models (Mukhopadhyay et al., 2013; Miozzo
et al., 2018) and affect DNA methylation-associated pathways via
reprogramming S-adenosylmethionine (SAMe) metabolism or
disturbing the intake of vitamins B6 and B12 (Voigt, 2005;
Varela-Rey et al., 2013; Na and Lee, 2017). According to several
methylome-wide analyses, a robust association was established
between the methylation of specific sites and the clinical
outcomes of cancer patients with alcohol consumption
(Villanueva et al., 2015; Zhou et al., 2019). Nonetheless, most
studies focused on a limited number of CpG sites or genes in a
single cancer type, and few analyses rely on the common patterns of
alcohol-induced methylome changes. The underlying molecular
mechanisms of these aberrant alterations remain elusive, and
further explorations are required to uncover their possible effects
on tumor biological behaviors.

In this study, we investigated whether a common methylation
pattern existed in alcohol-associated neoplasms. The methylome,
transcriptome, and clinical information on four alcohol-associated

tumors, including esophageal carcinoma (ESCA), head and neck
squamous cell carcinoma (HNSCC), liver hepatocellular carcinoma
(LIHC), and pancreatic adenocarcinoma (PAAD), was downloaded
from The Cancer Genome Atlas (TCGA) portal. The differentially
methylated probes (DMPs) were identified between tumors
developed due to alcohol consumption and normal tissues. A
total of 172 hypermethylated and 21 hypomethylated pan-cancer
DMPs (PDMPs) were extracted. The PDMP-annotated genes were
investigated and mostly enriched in transcriptional misregulation of
cancer pathways. A CpG island chr19:58220189–58220517 was
significantly hypermethylated in all four cancer types and
strongly correlated with the downregulation of transcription
regulator zinc finger protein 154 (ZNF154), which could serve as
a potential epigenetic therapeutic biomarker. Transcription factor
(TF) motifs enriched in PDMP regions were clustered into five
groups and were significantly associated with multiple tumor
hallmarks, on which a TF network was constructed. Furthermore,
our studies also identified 11 hypermethylated PDMPs that may be
used to predict the overall survival of alcohol-associated cancer
patients.

2 Methods

2.1 Data acquisition

The clinical and transcriptome data on ESCA, HNSCC, LIHC,
and PAAD were obtained from TCGA data portal (https://portal.
gdc.cancer.gov/). The methylome data were downloaded from the
UCSC Xena browser (https://xenabrowser.net/datapages/), which
was based on the Illumina HumanMethylation450 BeadChip.
GSE123781 is a dataset of oral squamous cell carcinoma patients
under alcohol consumption documented in clinical information
(Nemeth et al., 2019). The methylation data and clinical data
were downloaded from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/).

2.2 Data preprocessing

We extracted 129 ESCA, 352 HNSCC, 118 LIHC, and
102 PAAD patients with a clear alcohol consumption history.
After samples with no methylation data or gene expression data
were excluded, 102 ESCA, 328 HNSCC, 117 LIHC, and 101 PAAD
patients were finally applied for further investigation.

Several criteria were used to filter out inappropriate DNA
methylation data in this study, including 1) probes having a ‘Not
Applicable’ (NA) beta value in more than 50% samples; 2) probes
containing no greater than three beads in a minimum of 5% samples;
3) probes with a detection p-value ≥ 0.01; 4) multiple-location-hitting
probes; 5) probes that are non-CpG; 6) probes associated with single
nucleotide polymorphism (SNP) sites; and 7) sex chromosome-
specific probes. The k-nearest neighbors (KNNs) method was then
applied to estimate the missing value, followed by type II probe
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normalization using the BMIQmethod (Fortin et al., 2017). Using the
ChAMP package, the aforementioned steps were performed to
preprocess raw methylation data (Morris et al., 2014).

2.3 DMP and PDMP definitions

The Limmamethod in the ChAMP package was applied to identify
DMPs in each cancer. The threshold of a significant probe is the fold
change (FC) of a beta value > 1.2 and p-value < 0.05. A DMP with a
higher methylation level (beta value) in the tumor sample was defined

as hypermethylated DMP, while a DMP with a lower methylation level
was defined as hypomethylated DMP. A probe is defined as PDMP if it
can be identified as DMP in all four cancer types and has the same
methylation status (hypermethylated or hypomethylated).

2.4 Regional methylation status assessment

Using probe beta values for one cancer type in a specific region,
we investigated the methylation status of various chromosomes and
functional CpG regions. The formula is as follows:

FIGURE 1
DMPswere investigated in four alcohol-associated cancers. (A)Combined plot showed the number of DMPs in each cancer type and that ofmultiple
cancer types. The number of the same DMPs between different cancer types was calculated and shown as the intersection size. (B). Proportion of
hypermethylated and hypomethylated DMPs located in chromosomes of each cancer type. The proportion was determined as the ratio of the number of
identified DMPs to the total number of CpG probes on each chromosome.
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MS � median ∑Mp,r
i,T( ) −median ∑Mp,r

j,N( ).

For a given cancer type, the median beta value M of probe p in
region r of all tumor samples T or normal samples N was calculated.
A hypermethylated region was defined as having a p-value <
0.05 and MS > 0, while a hypomethylated region was defined as
having a p-value < 0.05 and MS < 0.

2.5 Correlation between PDMPs and gene
expression

We calculated the Pearson coefficient correlations (PCCs)
between PDMPs and their annotated genes. A significant
correlation was defined as having |PCC| > 0.2 and p-value <
0.05. Because the positions of CpG probes in different regions
may have a different effect on genes (Yang et al., 2015), probe
regions were divided into two groups: a) the promotor region,
consisting of TSS200, TSS1500, 5′UTR, and 1stExon, and b) the
body region, consisting of Body, 3′UTR, and IGR. Upstream and
downstream genes that may potentially be regulated by enhancers
located on specific probes were investigated using the ELMER
package (Silva et al., 2019). A significant correlation was defined
as having |PCC| > 0.1 and p-value < 0.05.

2.6 Motif enrichment analysis

As a measurement of TF-binding motifs enriched in PDMP
regions, we generated sequences of 500 bp between 250 bp upstream
and 250 bp downstream of each probe and divided them into
hypermethylated and hypomethylated groups, followed by motif

enrichment analysis using the AME function on the MEME website
(http://meme-suite.org/tools/ame) (Buske et al., 2010; Bailey et al.,
2009; Kulakovskiy et al., 2018). The TF-enriched motif was obtained
with a E-value < 10−5, which was subsequently clustered using
STAMP (http://www.benoslab.pitt.edu/stamp/index.php)
(Mahony and Benos, 2007). clusterProfiler was used to explore
pathways enriched in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Yu et al., 2012).

2.7 Construction of the TF-regulated
network

The TRRUST database (https://www.grnpedia.org/trrust/) is a
practical website for TF-gene interaction prediction, collecting
8,444 TF-target regulatory relationships derived from
11,237 experiment-based articles (Han et al., 2018), which was
used to screen and filter high-reliability TF-gene pairs.
Subsequently, 40 TFs and their target genes were selected to
construct a TF-regulated network in each cancer based on the
adjacent matrix created by the weighted method (Langfelder and
Horvath, 2008). Each cancer regulatory network’s top 10% weighted
edges, which represent TF-gene interaction intensity, were
combined into one pan-cancer regulatory network (Yu, 2020).
Genes were clustered based on the greedy algorithm (Girvan and
Newman, 2002).

2.8 Survival analysis

To evaluate the prognostic ability of PDMPs for each cancer
type, a univariate Cox regression model was applied. Probes with

FIGURE 2
Heatmap showed the methylation status of chromosomes (A), feature regions (B), and CpG regions (C) in four alcohol-associated cancers.
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p-value < 0.1 in at least three cancer types were extracted and
considered prognosis-related PDMPs, followed by multivariate Cox
analysis. For each cancer, we evaluated the methylation prognosis
index (MPI) of each sample and divided them into high- and low-
risk groups by the following formula:

MPIi � ∑
n

p

βp,iIp.

For a given sample i, the beta value of prognosis-related PDMP p
to the index coefficient p was summed. To evaluate the survival
difference between two groups of patients, Kaplan–Meier survival
analysis was performed. AUC was calculated using the timeROC
package of R software to validate the predictive ability of the MPI
model (Blanche et al., 2013).

2.9 Statistical analysis

The statistical significance of continuous variables was estimated
using the Wilcoxon rank-sum test. Univariate and multivariate Cox
regression analyses were performed to construct the MPI model
using the survival package (Holleczek and Brenner, 2013). All the
aforementioned statistics were analyzed by R software
(version 4.0.2).

3 Results

3.1 Characteristics of alcohol-associated
DNA methylation patterns

The clinical information on each alcohol-associated
aforementioned cancer was downloaded from TCGA database.
ESCA, HNSCC, LIHC, and PAAD were included in further
studies, and other alcohol-related cancer types, such as lung and
colon cancer, were excluded due to the absence of a documented
history of alcohol consumption. We identified a set of DMPs in four
cancers, with 6,436 in ESCA, 10,891 in HNSCC, 31,620 in LIHC, and
3,592 in PAAD patients (Figure 1A), and the proportion of
hypermethylated or hypomethylated DMPs distributed on each
normal chromosome to all probes in that region was measured
(Figure 1B). Given the number of DMPs in each cancer, DNA
methylation alterations in pancreatic cancer might be affected
slightly by alcohol consumption, whereas liver cancer was more
affected. The methylation status of chromosomes in ESCA and
PAAD separately was more hypermethylated or hypomethylated
and that of HNSCC and LIHC was in an intermediate status
(Figure 2A). Most DMPs tended to be located in non-promotor
regions (Supplementary Figure S1A, S1B) and an approximately
equal percentage of the CpG island and open-sea regions
(Supplementary Figure S1C, S1D). Functional regions were

FIGURE 3
Proportion of hypermethylated (A) and hypomethylated (B) PDMPs located in chromosomes. The proportion was determined as the ratio of the
number of identified PDMPs to the total number of CpG probes on each chromosome.
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categorized based on the methylation status into two groups,
namely, the promotor (TSS200, TSS1500, 5′UTR, and 1stExon)
and body region (Body, 3′UTR, and IGR) or CGI (CpG island),
and non-CGI region (CpG shore, shelf, and opensea) (Figures 2B,C),
each of which was annotated with biological functions.

We computed DMPs with the same methylation status in all
four types of cancers and obtained 172 hypermethylated and
21 hypomethylated PDMPs (Supplementary Figure S2A, S2B).
The highest proportion of hypermethylated PDMPs was found
on chromosome 19, while the highest proportion of
hypomethylated PDMPs was found on chromosome 8.
(Figure 3). Interestingly, there was no PDMP located in
chromosomes 9, 21, and 22. One of the possible explanations
could be that DMPs in these chromosomes exhibit biological
behaviors that are specific to cancer. Compared with distribution
of the functional region of DMPs, PDMPs located in promotor or
body regions showed an almost equal percentage distribution
(46.7% and 53.3%) (Supplementary Figure S3A, S3B). In
addition, 72% of PDMPs were located in the CGI region
(Supplementary Figure S3C, S3D). We also validated the PDMPs
in GSE123781, and 182 of 193 probes were found significantly

differentially methylated (Supplementary Table S1). Taken together,
alcohol-associated aberrant pan-cancer methylation changes were
more likely to exert biological effects in promotor and CGI regions.

Aging was suggested to be associated with the increase of
methylation at a global level (Maegawa et al., 2017). To identify
whether aging contributed to the alcohol-associated methylation
alterations in our study, we investigated the DMPs between the
young group (<65 years old) and the old group (≥65 years old). We
found that there was only a total of 26 CpG probes with an adjusted
p-value < 0.05, with 21 in ESCA, 1 in HNSCC, 4 in LIHC, and none
in PAAD patients (Supplementary Table S2). Interestingly, none of
these probes reached the DMP-defined threshold of fold change >
1.2. These results suggest that aging has a very slight impact on our
findings.

3.2 PDMPs regulated the expression of
annotated genes

To better understand the potential biological effect of these
PDMPs, PCCs were used to evaluate the correlation between

FIGURE 4
Exploration of the PDMP-annotated genes. (A) Heatmap revealed the Pearson coefficient correlations between PDMPs and annotated genes.
PDMPs were defined into four groups: HeP, hypermethylated probe in the promotor region; HeB, hypermethylated probe in the body region; HoP,
hypomethylated probe in the promotor region; HoB, hypomethylated probe in the body region. (B). KEGG enrichment analysis of 33 PDMP-annotated
genes.
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PDMPs and their annotated downstream genes. Since probes
with different relative locations may have a different regulatory
effect on expression, 193 PDMPs were defined into four groups:
HeP = hypermethylated probe in the promotor region, HeB =
hypermethylated probe in the body region, HoP =
hypomethylated probe in the promotor region, and HoB =
hypomethylated probe in the body region. Thirty-seven
PDMP–gene pairs were identified in at least three cancer
types, and nine PDMP–gene pairs were found in all cancers
(Figure 4A; Supplementary Table S3). These 37 PDMP-annotated
genes were enriched in several cancer hallmarks, among which
transcriptional misregulation in cancer (q-value = 5.35e−3) stood
out as the most significant one (Figure 4B). There was a
surprising outcome that four of nine aforementioned PDMPs
(cg01268824, cg11294513, cg21790626, and cg27049766) belonged
to the same CpG island chr19:58220189-58220517 and correlated
with the same gene ZNF154. The role of this CpG island required
further exploration.

3.3 Hypermethylated CpG island chr19:
58220189-58220517 silenced downstream
gene expression

We checked all probes in chr19:58220189–58220517 and found a
total set of 11 probes, among which six probes were PDMPs
(cg11294513, cg05661282, cg21790626, cg27049766, cg08668790, and
cg01268824). cg03142586 was excluded from further analysis since its
beta value was NA in most samples. Probes in this region were
remarkably hypermethylated (Figure 5A; Supplementary Figure S4),
which were validated in GSE123781 (Supplementary Figure S5). It has
been shown that exposure to alcohol increases methylation levels at
certain loci in normal tissues (Lee et al., 2011). To obtain an overall
view of the methylation status of the region, we investigated the beta
values of samples exposed or not exposed to alcohol. Significant
differences were observed between alcohol-associated tumor samples
and non-alcohol-associated tumor samples (Supplementary Figure
S6). A strong negative correlation was found between the beta values

FIGURE 5
Exploration of the CpG island chr19:58220189–58220517. (A) Whole view of CpG probes in the CpG island chr19:58220189–58220517
demonstrated its hypermethylation status. The bottom dot plots from left to right represent the beta values of cg1129451, cg0566128, cg21790626,
cg27049766, cg03234186, cg08668790, cg12506930, cg26465391, cg01268824, and cg27324426, respectively. cg03142586 was excluded from
further analysis since its beta value was NA in most samples. (B) Heatmap revealed the correlation between the beta value of six PDMPs and the
expression of ZNF154, ZIK1, and ZNF418 in four cancer types.
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of these PDMPs and the expression of ZNF154 (Figure 5B), suggesting
a potential silence effect. Recently, the methylome and transcriptome-
based algorithm has been developed to identify cancer-specific
enhancers (Yao et al., 2015). The CpG probes located on these
enhancers possess the potential ability to regulate the expression of
upstream and downstream genes. We then applied this method and
explored the relationship between these PDMPs and the closest
10 upstream and downstream genes (Supplementary Figure S7).
Together with ZNF154, zinc finger protein interacting with K
protein 1 (ZIK1, the seventh closest upstream gene) and ZNF418
(the ninth closest downstream gene) was also found to have a negative
correlation with six PDMPs (Figure 5B), suggesting the
hypermethylation status of the CpG island chr19:
58220189–58220517 could potentially mediate transcription activity
of these three genes. All three genes were associated with DNA-
binding activity, suggesting that the disorder of DNA recognition
might be involved in alcohol-associated tumor behaviors.

3.4 Different pathways are correlated with
TF motifs in PDMP regions

Based on 500-bp sequences generated from PDMPs, possible
TF-binding motifs were scanned, enriched, and divided into

hypermethylated and hypomethylated groups. Thirty-three and
seven motifs located in hypermethylated and hypomethylated
regions, respectively, were identified, followed by the grouping of
these motifs into five clusters with STAMP. (Figure 6A;
Supplementary Table S4). POZ/BTB and AT-hook-containing
zinc finger protein 1 (PATZ1) showed the most significant
enrichment in the hypermethylated group (E-value = 3.36e−17),
and among hypomethylated groups, JUN was identified as the
most significant motif (E-value = 6.47e−17). All seven
hypomethylated motifs shared a close relatedness and were
clustered into one group, suggesting a similar regulatory
mechanism among them. The motif clusters exhibited distinct
biological pathways, and several pathways appeared to be
involved in the development and differentiation of cancers.
(Figure 6B). Cluster I was significantly enriched in the cell cycle
(q-value = 2.80e−2), and Cluster IV was associated with signaling
pathways regulating the pluripotency of stem cells (q = 7.00e−3).
Additionally, Cluster IV was associated with the IL-17 signaling
pathway (q-value = 1.10e−7) and TNF signaling pathway (q-value =
7.28e−4), which is possibly involved in modulation of the immune
response. According to the TRRUST database, we further explored
the target genes associated with the aforementioned TF motifs and
constructed a transcriptional regulatory network, which was
recognized as six distinct modules (Figure 7).

FIGURE 6
TFmotifs enriched in hypermethylated and hypomethylated PDMPs. (A) TFmotifs were divided into five clusters based on the sequence similarity. (B)
KEGG enrichment analysis of five clusters. The top two enriched pathways of each cluster were visualized.
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3.5 The prognostic potential of PDMPs

To evaluate the prognostic value of specific PDMPs, we
performed univariate Cox regression analyses in each cancer
separately (Figure 8A). We screened 11 PDMPs as they were
associated with prognosis in at least three types of cancer, and
these PDMPs were all hypermethylated (Figure 8B; Supplementary
Table S5). Seven out of 11 PDMPs (63.6%) were found in promoter
regions, while 10 out of 11 (90.1%) were found in CGI regions, which
confirmed the aforementioned findings that alcohol-associated
PDMPs were more likely to exert biological effects on these
regions. Patients were classified into low- and high-MPI groups
in each cancer based on the MPIs. High-MPI groups were
significantly associated with a worse outcome than low-MPI
groups by Kaplan–Meier survival analysis (Figure 8C). The ROC
curves were obtained, and the AUC of 3-year OS (range from

0.705 to 0.859) and 5-year OS (range from 0.621 to 0.881) was
calculated separately, revealing the reliability of MPIs (Figure 8D).

4 Discussion

The purpose of this study was to investigate PDMPs in four
cancers that were associated with alcohol consumption and the
distribution of PDMPs within these cancers. Promotor and CGI
regions were the two main regions that PDMPs were more likely to
enrich. Thirty-seven PDMPs were found to show a close regulatory
relationship with annotated genes and correlate with transcriptional
misregulation. Furthermore, we observed a hypermethylated CpG
island chr19:58220189–58220517, showing a strong correlation with
transcription regulatory genes. Thirty-three hypermethylated and
seven hypomethylated TF motifs were clustered into five groups and

FIGURE 7
Construction of the combined TF-gene regulatory network. For each cancer, a regulatory network was constructed from the adjacent matrix. The
top 10% of TF-gene interactions were considered significant and combined into one network.
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exerted various biological effects. Finally, 11 PDMPs were reported
to be associated with overall survival, providing valuable prediction
of clinical outcomes.

Many DMPs were found in each of the four alcohol-associated
cancers, and only a small percentage of DMPs were shared,
suggesting the presence of cancer-specific methylation patterns. A
study by Fan et al., for instance, revealed that preferred genomic
DNA sequence patterns were observed between different DNMTs in
hepatocellular carcinoma cells, which might promote to the
formation of a hepatocellular carcinoma-specific methylation
landscape (Fan et al., 2016). Cancer-specific methylation patterns
have not been explored here due to the limited scope of our studies
on common patterns of altered DNA methylation, which requires
further study.

The genome methylation landscape is wholly poor of CpG and
locally rich (in CpG islands). CGIs could be found in more than half

of the genes in the vertebrate genome and commonly maintain a low
methylated level (Jones, 2012). We reported a hypermethylated CpG
island chr19:58220189–58220517 in all four alcohol-associated
cancers, and this finding is consistent with that of Ruike Y et al.,
who also found that CGI regions tend to be hypermethylated in
cancers (Ruike et al., 2010). The expression of ZNF154 was
significantly downregulated by the CpG island chr19:
58220189–58220517, which has been partially demonstrated by
previous studies. Based on a computational algorithm, we also
found that the transcription activity of ZIK1 and ZNF418 might
be regulated by hypermethylation of the CpG island chr19:
58220189–58220517. According to a blood-based diagnostic
model, hypermethylation of the ZNF154 CpG island was
identified as a relevant biomarker for detecting circulating solid
tumor DNA (Margolin et al., 2016). Epigenetic silencing of ZNF154
was associated with multiple cancers and could serve as a biomarker

FIGURE 8
Survival analysis of PDMPs. (A) Volcano plot showing the survival-related PDMPs in each cancer. (B). Characteristics of 11 survival-related PDMPs. (C)
Kaplan–Meier analysis of high- and low-MPI group patients in each cancer type. (D). ROC curve validating the predictive ability of MPIs.
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predicting the recurrence of alcohol-associated pancreatic cancer
(Yamada et al., 2016; Mishra et al., 2019;Wiesmueller et al., 2019), as
well as non-alcohol-associated prostate cancer (Nahar et al., 2018)
and bladder cancer (Reinert et al., 2012). Hu et al. showed that
ZNF154 might serve as a tumor suppressor, and overexpression of
ZNF154 significantly inhibited cell migration and invasion in vivo, as
well as lung nodule formation in vitro, via suppressing Wnt/β-
catenin signaling pathway activation (Hu et al., 2017). ZIK1 was
identified as a transcriptional repressor blocking a gene promotor
bearing Gal4-binding elements via interacting with heterogeneous
nuclear ribonucleoprotein particle K protein (Denisenko et al.,
1996). Silenced ZIK1 was observed in noncancerous esophageal
mucosae (Oka et al., 2009), suggesting low expression of ZIK1
occurred at the early stages of cancer. Only a few studies
documented that ZNF418 negatively regulated transcription and
the MAPK signaling pathway (Li et al., 2008) and that lower
expression of ZNF418 was associated with poorer prognosis in
gastric cancer (Hui et al., 2018). As our scope was limited to
methylation alterations, the role of associated genes was not
identified, which required further investigation.

Thirty-three and seven TF motifs located in hypermethylated and
hypomethylated PDMP regions, respectively, were identified as
transcription regulators in alcohol-associated cancers, of which
PATZ1 and JUN were most notable. PATZ1, containing an A–T
hook DNA-binding motif, binds to other DNA-binding structures
to participate in chromatin modeling and transcription regulation.
PATZ1 is involved in the inhibition of the mesenchymal-to-
epithelial transition via disturbing the combination between
p53 gene and its response elements (Chiappetta et al., 2015; Keskin
et al., 2015) and could be an independent prognostic factor in multiple
cancers (Guadagno et al., 2017; Zhao et al., 2018; Passariello et al., 2019).
Junwas involved in a number of biological processes that were triggered
by oxidants and toxic stimuli when combined with other members of
the Fos family (Angel and Karin, 1991; Shaulian and Karin, 2002). An
in vitro experiment showed that alcohol promotes the direct
recruitment of c-Jun to TATA-binding protein, Brf1, and tRNA
gene promotors, inducing RNA polymerase III-dependent
transcription, thus contributing to liver tumor development (Zhong
et al., 2011). We established a TF-gene regulatory network in our article
that might assist in understanding the regulatory functions and
mechanisms of alcohol and carcinogenesis.

Aging may also contribute to methylation changes. Several studies
indicated that aging was closely linked to global hypermethylation. In
normal breast tissues, age acceleration was observed (Hofstatter et al.,
2018).Themethylation level of highly variable sites increased from amean
of 3% in the newborn to 20% in the old, and these age-related
hypermethylation cases were found to be enriched in the CGI region
(Maegawa et al., 2017). A large-scale methylation study revealed that
cancer risks andmortality increasedwith aging epigenetic changes, ranging
from 4% to 9% and 2% to 6%, respectively, with 5 years of age acceleration
(Dugue et al., 2018). According to Zheng et al., most epigenetic drifts were
nonfunctional, while some might randomly affect TF expression or the
binding affinity, resulting in an abnormality in tissue homeostasis (Zheng
et al., 2016). In light of the complex function and mechanism
underpinning aging and tumor epigenetics, the effect of aging on
PDMPs identified in this article has been difficult to estimate and remove.

This study only examined a small part of methylation sites.
Although the Illumina HumanMethylation450 array provided

coverage of 98.9% UCSC RefGenes, the coverage rate of total
genome CpG sites was only 2% (Bibikova et al., 2011;
Plongthongkum et al., 2014), leading to incomplete exploration of
alcohol-associated genome-aberrant CpG patterns. Non-coding
RNAs also play significant roles in cancer initiation, progression,
and metastasis (Gupta et al., 2010; Li et al., 2015; Ferreira and Esteller,
2018). The function and correlation of CpG sites annotated in these
regions were not explored. Due to a lack of alcohol consumption
documents in TCGA database, other alcohol-associated cancers such
as colorectal and lung cancers were not included in this study.

5 Conclusion

Based on multi-omics data on pan-cancer, this study explored the
global DNA methylation alterations of ESCA, HNSCC, LIHC, and
PAAD patients with alcohol consumption documents from TCGA
database. A total of 193 PDMPs were identified, and the preference
patterns of alcohol-associated DNAmethylation changes were located
in promotor and CGI regions. PDMP-annotated genes were enriched
in multiple pathways, especially transcriptional misregulation in
cancer, demonstrating that alcohol might contribute to
transcriptional disorder by inducing the methylation status of
transcription regulators, thus leading to tumor development. A
hypermethylated CpG island chr19:58220189–58220517 was
identified, and it regulated the transcription activity of downstream
genes, serving as a potential therapeutic biomarker. Five sets of
enriched TF motifs were involved in numerous cancer hallmarks
including tumorigenesis and immunoregulation, and a TF-gene
regulatory network was constructed for a better understanding of
potential regulation mechanisms. Additionally, 11 PDMPs were
reported to be associated with the overall survival of patients.
Estimated MPIs are reliable and provide a potential point of view
for clinical outcome prediction.
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