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Introduction: Group A rotaviruses are major pathogens in causing severe diarrhea in
youngchildren andneonatesofmanydifferent speciesof animalsworldwide andgroup
A rotavirus sequence data are becoming increasingly available over time. Different
methods exist that allow for rotavirus genotyping, but machine learning methods have
yet to be explored. Usage of machine learning algorithms such as random forest
alongside alignment-based methodology may allow for both efficient and accurate
classification of circulating rotavirus genotypes through the dual classification system.

Methods: Random forest models were trained on positional features obtained
from pairwise and multiple sequence alignment and cross-validated using
methods of repeated 10-fold cross-validation thrice and leave one- out cross
validation. Models were then validated on unseen data from the testing datasets to
observe real-world performance.

Results: All models were found to perform strongly in classification of VP7 and VP4
genotypes with high overall accuracy and kappa values during model training
(0.975–0.992, 0.970–0.989) and during model testing (0.972–0.996, 0.969–0.996),
respectively. Models trained on multiple sequence alignment generally had slightly
higher overall accuracy and kappa values than models trained on pairwise sequence
alignment method. In contrast, pairwise sequence alignmentmodels were found to be
generally faster than multiple sequence alignment models in computational speed
when models do not need to be retrained. Models that used repeated 10-fold cross-
validation thricewere also found to bemuch faster inmodel computational speed than
models that used leave-one-out cross validation, with no noticeable difference in
overall accuracy and kappa values between the cross-validation methods.

Discussion: Overall, random forest models showed strong performance in the
classification of both group A rotavirus VP7 and VP4 genotypes. Application of
these models as classifiers will allow for rapid and accurate classification of the
increasing amounts of rotavirus sequence data that are becoming available.
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1 Introduction

Group A rotaviruses have been found to be among the most common causes of acute
gastroenteritis infections in both young children and animals across the globe. Nearly all
young children are expected to be infected with rotavirus within their first 5 years of life,
contributing to over 215,000 deaths annually worldwide (Lanzieri et al., 2011; Tate et al.,
2016). In children, several vaccines have been developed to prevent rotavirus infections, but
efficacy of vaccines have been shown to vary greatly in regions such as South Africa and
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Bangladesh. This can be attributed to large genotypic variation
within circulating rotavirus strains consisting of VP7 genotypes
G1-G36 and VP4 genotypes P[1]-P[51] across the globe (Madhi
et al., 2010; Zaman et al., 2010; Harris et al., 2017; Burke et al., 2019;
Rotavirus Classification Working Group: RCWG, 2021). Global
surveillance of rotavirus genotypes is therefore critical to monitor
and evaluate emerging and circulating genotypes of rotaviruses
before and after vaccine introduction. This will in turn allow for
more targeted development of vaccines as well as updating them on
an as-needed basis for rotavirus prevention. Although not
monitored with the same intensity, rotaviruses are important
pathogens of animals as well. Young cattle, horses, poultry, and
pigs are also commonly infected by rotaviruses, contributing to
economic burdens arising from weight loss, mortality, and cost of
treatment for infected animals (Luchs and Timenetsky, 2016).

Rotaviruses are double-stranded RNA viruses classified into the
Reoviridae family and can be further classified into nine antigenically
unique groups (Walker et al., 2019). Of these groups, group A
rotaviruses are of primary interest due to high frequency of
infection within avian and mammalian species (Maes et al., 2009).
Rotaviruses are composed of a total of 11 double-stranded RNA
segments, which encode for six (VP1-VP4, VP6-VP7) structural
proteins and six (NSP1-NSP4, NSP5/6) non-structural proteins
(Müller and Johne, 2007). A dual classification system using the
nomenclature of GxP[x] (where x is the respective genotype number)
has been established for the 36 G and 51 P genotypes, based on the
two outer capsule proteins VP7 and VP4, respectively (Rotavirus
Classification Working Group: RCWG, 2021). Several alignment-
based methods have been used for classification of rotavirus
nucleotide sequence data into their respective genotypes, such as
the RotaC web-based tool, Basic Local Alignment Search Tool
(BLAST), and the Virus Pathogen Database and Analysis Resource
(VIPR) Rotavirus A Genotype tool. RotaC uses neighbour-joining
phylogenetic trees built from distance matrices obtained from
alignment and nucleotide identity cut-off values to phylogenetically
identify the genotype of a query sequence (Maes et al., 2009). BLAST
compares query sequences to a known database of sequences and
identifies similar sequences above a certain threshold within that
database (Altschul et al., 1990). The VIPR tool is a reimplementation
of RotaC using custom java code that also outputs corresponding
BLAST results from a curated database (Pickett et al., 2012). The
amount of rotavirus nucleotide sequence data available is rapidly
increasing however, providing opportunities to use machine learning
methods such as random forest for genotype classification.

Random forest is a widely used supervised machine learning
algorithm in completing both binary and multi-class classification
tasks (Chaudhary et al., 2016; Lakshmanaprabu et al., 2019; Lee
et al., 2019). Random forest uses bootstrap samples from a training
data set and grows decision trees by randomly sampling the number of
features available (themtry) and choosing the best split at each node from
this value (Liaw and Wiener, 2002). Predictions from each of the
decision trees are then aggregated, and the final prediction on new
data is decided by amajority vote. Random forest can be trained on both
categorical and numerical data, allowing for flexibility in the features
present in the training data (Ion Titapiccolo et al., 2013). Important
features can also be identified in random forest models, although there
are limitations to this that arise due to multicollinearity (Kuhn and
Johnson, 2013). Overall, random forest has previously demonstrated

strong performance using sequence data for classification of viral
pathogens or for the prediction of their hosts on the basis of genetic
data; such as influenza A virus (0.857–1 overall accuracy), Coronavirus
(0.728–0.735 overall accuracy, 0.688–0.696 kappa), and porcine
reproductive and respiratory syndrome virus (>0.99 AUC) (Cook
et al., 2020; Brierley and Fowler, 2021; Kim et al., 2021). Resultantly,
using random forest in combination with a large amount of rotavirus
sequence data as input, may allow for a novel approach towards
classification of rotavirus genotypes. Therefore, we looked to address
the objective of developing a machine learning classifier using random
forest alongside alignment-based methodology for efficient and accurate
classification of circulating group A rotavirus VP7 and VP4 genotypes.

2 Materials and methods

2.1 Dataset retrieval

The two datasets used in this study were obtained on 15 November
2020 by downloading and excluding sequences from the NCBI
Nucleotide database, as shown in Figure 1. Sequences were initially
obtained by searching the database using the keywords “Rotavirus A
VP7” and “Rotavirus A VP4” in R statistical software version 3.6.1 (R
Core Team, 2013). Sequences that were not labelled with either the G or
P genotype were excluded from their respective datasets. Sequences with
less than 400 nucleotide base pairs or greater than the expected length of
1062 base pairs for the VP7 dataset and less than 500 nucleotide base
pairs or greater than 2,362 base pairs for the VP4 dataset were excluded
(Supplementary Figure S1). The total number of sequences available for
each of the genotypes were also tallied, and sequences that belonged to a
genotype where the total count was less than 10 were also excluded to
prevent classification of genotypes with insufficient amount of data to
train the random forest algorithm on. For the VP4 dataset specifically,
genotypes with excess amounts of sequence data available (>500) were
reduced to a maximum of 100 randomly selected sequences to reduce
computational strain when training the models. Distributions of these
sequences by animal species are shown in Table 1.

2.2 Sequence alignment

Each of the datasets were aligned separately using two different
alignment methods, pairwise sequence alignment and multiple
sequence alignment. The resulting aligned sequences were then
used to train the random forest algorithm and model
performance was compared between the two different alignment
methods. Code samples for each alignment method and model
training are shown in Supplementary Data Sheet S1.

2.3 Pairwise sequence alignment

Sequenceswere individually aligned against an appropriate complete
gene segment reference sequence using the Needleman-Wunsch global
alignment method from the Biostrings package in R (Needleman and
Wunsch, 1970; Pagès et al., 2020). The reference sequences used were
obtained from the NCBI RefSeq database (O’Leary et al., 2016). After
each alignment, the first nucleotide from each of the aligned sequences,
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either an “A,T, C,G, or—(gap)”was extracted and stored as position one
in a new data frame. This was repeated for the next nucleotide in the
sequence as position two and so forth, up to the end of each aligned
sequence (Supplementary Figure S2). This was performed separately for
both the VP7 and VP4 datasets and the resulting 1097 and

2,416 positional features from each dataset, respectively, were used to
train the random forest algorithm.

2.4 Multiple sequence alignment

Sequences were aligned against each other using the multiple
sequence alignment method from the MUSCLE package in R
(Edgar, 2004). Default parameters were used for the multiple
sequence alignment and the resulting alignment was stored in a
similar data frame to pairwise sequence alignment. This was
performed separately for both the VP7 and VP4 datasets and the
resulting 1223 and 2,624 positional features from each dataset,
respectively, were used to train the random forest algorithm.

2.5 Training and testing datasets

Using the data consisting of positional features obtained from
pairwise and multiple sequence alignment, training and testing
datasets were formed by randomly partitioning the data into 70%
training data and 30% testing data. The training dataset was used to

FIGURE 1
Flow chart of data processing for the VP7 and VP4 datasets.

TABLE 1 Distribution of VP7 and VP4 sequences from their respective datasets
by animal species after retrieval from the NCBI Nucleotide database.

VP7 and VP4 sequence distribution by species

Species VP7 Sequences VP4 Sequences

Human 405 397

Equine 409 53

Bovine 2 221

Avian 45 1

Swine 21 101

Other 2 78

Total 884 851
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train the random forest algorithm and the testing dataset was used to
validate model performance on unseen data. Genotype distribution
of the data into training and testing data are summarized in Table 2
for the VP7 dataset and Table 3 for the VP4 dataset. Accession
numbers for sequences in each training and testing datasets are
shown in Supplementary Data Sheet S2.

2.6 Model training

Models were trained in R by using the caret package with
random forest as the chosen classification algorithm (Kuhn,

2008). Due to the unbalanced nature of the datasets, two
different cross-validation methods of repeated 10-fold cross-
validation thrice (R10FCVT) and leave-one-out cross-validation
(LOOCV) were chosen to evaluate model performance during
training. Ten-fold cross-validation is where the training data are
randomly divided into 10 distinct folds and each fold performs once
as the test dataset and the remaining folds perform as the training
dataset for that given fold. Leave-one-out cross-validation is where
the number of folds is equivalent to the number of samples in the
dataset, and each fold performs once as the test dataset and the
remaining folds perform as the training dataset for that given fold.
Two models are trained for each alignment method, one using

TABLE 2 Distribution of VP7 genotypes obtained from the NCBI nucleotide database sequences and after division into training (70%) and testing (30%) datasets.

VP7 sequence distribution by genotype

Genotype Labelled Sequences Obtained Sequences After Exclusion Training Dataset Testing Dataset

G1 176 134 94 40

G2 22 18 13 5

G3 330 309 217 92

G4 22 22 16 6

G5 7 0 0 0

G6 7 0 0 0

G7 4 0 0 0

G8 20 20 14 6

G9 53 49 35 14

G10 7 0 0 0

G11 4 0 0 0

G12 102 95 68 27

G13 2 0 0 0

G14 196 194 136 58

G15 5 0 0 0

G16 1 0 0 0

G17 2 0 0 0

G18 9 0 0 0

G19 49 43 31 12

G20 2 0 0 0

G21 2 0 0 0

G22 2 0 0 0

G23 0 0 0 0

G24 1 0 0 0

G25 3 0 0 0

G26 6 0 0 0

G27-G36 0 0 0 0

Total 1034 884 624 260
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TABLE 3 Distribution of VP4 genotypes obtained from the NCBI nucleotide database sequences and after division into training (70%) and testing (30%) datasets.

VP4 sequence distribution by genotype

Genotype Labelled sequences obtained Sequences after
exclusion

Training dataset Testing dataset

P[1] 48 48 34 14

P[2] 3 0 0 0

P[3] 18 18 13 5

P[4] 574 100 70 30

P[5] 80 79 56 23

P[6] 294 100 70 30

P[7] 45 43 31 12

P[8] 2,840 100 70 30

P[9] 52 52 37 15

P[10] 1 0 0 0

P[11] 95 95 67 28

P[12] 53 51 36 15

P[13] 31 24 17 7

P[14] 65 65 46 19

P[15] 1 0 0 0

P[16] 0 0 0 0

P[17] 8 0 0 0

P[18] 2 0 0 0

P[19] 7 0 0 0

P[20]-P[22] 0 0 0 0

P[23] 24 24 17 7

P[24] 1 0 0 0

P[25] 6 0 0 0

P[26] 0 0 0 0

P[27] 5 0 0 0

P[28] 1 0 0 0

P[29] 0 0 0 0

P[30] 2 0 0 0

P[31]a 42 0 0 0

P[32] 17 17 12 5

P[33] 1 0 0 0

P[34] 0 0 0 0

P[35] 1 0 0 0

P[36]–P[37] 0 0 0 0

P[38] 1 0 0 0

P[39] 1 0 0 0

P[40] 1 0 0 0

(Continued on following page)
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R10FCVT and one using LOOCV, for a total of four models each for
the VP7 and VP4 datasets. Confusion matrices were also generated
for each of the models and overall accuracies and kappa values are
calculated from these confusion matrices to evaluate performance
during training. Cohen’s Kappa was calculated using the following
equation:

K � p0 − pe

1 − pe

where p0 is the observed agreement and pe is the expected
agreement of the model (Cohen, 1960).

2.7 Model hyperparameter tuning

The mtry hyperparameter was tuned during model training
alongside cross-validation. The default value for the mtry is equal
to the square root of the number of features in the data and tuning of
the mtry allowed for obtaining the most robust models possible.
Cross-validation allows for optimal tuning of the mtry without
concern for overfitting of the models, and therefore it is
beneficial to perform them concurrently (Probst et al., 2019). The
tuning range used to train each of the models consists of the default
mtry value and range of 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. All
other hyperparameters such as the number of trees, minimum and
maximum node size, and maximum depth were left as their default
values.

2.8 Model testing

The trained models were tested by evaluating how well they
perform on unseen data in the testing dataset. Confusion matrices
were generated for each of the models after using them to predict the
classes of unseen aligned sequence data and metrics such as overall
accuracies, 95% confidence intervals, kappa values, no-information
rates, and p-values were generated from the confusion matrices to
evaluate model performance on the testing dataset. Misclassified
sequences were explored after model testing by constructing
maximum-likelihood phylogenetic trees with 100 bootstrap
iterations using MEGA-X software on a partial training dataset

(10 randomly sampled sequences from each class) and a full testing
dataset, with possible outliers determined through visual analysis
using the Interactive Tree of Life webtool (iTOL) (Kumar et al., 2018;
Letunic and Bork, 2021).

2.9 Model computational performance

Model computational performance was determined to see how
practical each model may be in real-world situations where there is a
query sequence that needs to be identified. Three different components
of each model were timed to determine computational performance, the
time elapsed to perform the initial alignment for a query sequence, the
time elapsed to train the model, and the time elapsed for the model to
predict the class of the query sequence. The total time elapsed with and
without training were also summed to compare model performance
in situations where the models need to be retrained regularly and when
they do not.

3 Results

3.1 Training model performance

Using the VP7 training dataset of 624 sequences and VP4 training
dataset of 601 sequences, random forest models were trained using cross-
validationmethods of bothR10FCVTandLOOCVonpositional features
from aligned sequence data. Overall accuracies and kappa values were
calculated to compare model performance during training directly and
are summarized in Table 4. The best performing model for the
VP7 dataset was found to be the multiple sequence alignment
LOOCV model, which had mtry, overall accuracy, and kappa values
of 30, 0.992, and 0.986, respectively. The worst performing model for the
VP7 dataset was found to be the pairwise sequence alignment LOOCV
model, which had mtry, overall accuracy, and kappa values of 33, 0.981,
and 0.976, respectively. For the VP4 dataset, the best performing model
was found to be either of the multiple sequence alignment models,
R10FCVT and LOOCV, where both models had the same mtry, overall
accuracy, and kappa values of 40, 0.990, and 0.989, respectively. Theworst
performing model for the VP4 dataset was found to be the pairwise
sequence alignment R10FCVT model, which had mtry, overall accuracy,

TABLE 3 (Continued) Distribution of VP4 genotypes obtained from the NCBI nucleotide database sequences and after division into training (70%) and testing
(30%) datasets.

VP4 sequence distribution by genotype

Genotype Labelled sequences obtained Sequences after
exclusion

Training dataset Testing dataset

P[41]–P[46] 0 0 0 0

P[47] 1 0 0 0

P[48] 1 0 0 0

P[49] 35 35 25 10

P[50]–P[51] 0 0 0 0

Total 4357 851 601 250

a36 of 42 sequences were excluded by criteria of sequence length less than 500 base pairs.
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and kappa values of 90, 0.975, and 0.976, respectively. Confusionmatrices
were generated for each of the trained models to observe class accuracies
for the imbalanced VP7 and VP4 datasets and are shown in Figure 2 and
Figure 3, respectively.

3.2 Model validation

Using the VP7 testing dataset of 260 sequences and VP4 dataset
of 250 sequences, random forest model performance was validated

by using each of the trained models to predict the class of unseen
aligned sequences from the testing datasets. This was done to
observe how well they may perform in real-world situations
where the class of query sequences need to be identified.

Overall accuracies, kappa values, 95% confidence intervals, no
information rates, and p-values were calculated for each of the
models to compare performance on the testing datasets directly and
are summarized in Table 5. The best performing model on the
VP7 testing dataset was found to be either of the multiple sequence
alignment models, R10FCVT and LOOCV, where both models had

TABLE 4 Comparison of overall accuracy, accuracy standard deviation across folds, kappa, andmtry values after training and tuning of random forest models using
positional features from pairwise and multiple sequence alignment.

VP7 and VP4 training model performance

Methods mtry Accuracy Accuracy Std Kappa

Pairwise Sequence Alignment

R10FCVT VP7 90 0.9813 0.0119 0.9736

LOOCV VP7 33 0.9808 0.1374 0.9757

R10FCVT VP4 90 0.9751 0.0217 0.9763

LOOCV VP4 90 0.9767 0.1509 0.9701

Multiple Sequence Alignment

R10FCVT VP7 90 0.9919 0.0091 0.9878

LOOCV VP7 30 0.9920 0.0892 0.9858

R10FCVT VP4 40 0.9900 0.0082 0.9891

LOOCV VP4 40 0.9900 0.0995 0.9891

R10FCVT, Repeated 10-fold cross-validation thrice.

LOOCV, Leave-one-out cross-validation.

FIGURE 2
Confusion matrixes for the trained VP7 models on the cross-validated training dataset composed of 624 VP7 sequences.
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overall accuracy, 95% confidence interval, and kappa values of 0.996,
(0.979, 0.999), and 0.995, respectively. The worst performing model
on the VP7 testing dataset was found to be the pairwise sequence
alignment R10FCVT model, which had overall accuracy, 95%
confidence interval, and kappa values of 0.985, (0.961, 0.996),
and 0.980, respectively. Similarly, the best performing model on
the VP4 testing dataset was found to be either of the multiple
sequence alignment models, R10FCVT and LOOCV, where both
models had overall accuracy, 95% confidence interval, and kappa
values of 0.996, (0.978, 0.999), and 0.996, respectively. The worst
performing model on the VP4 testing dataset was found to be the

pairwise sequence alignment R10FCVT model with overall
accuracy, 95% confidence interval, and kappa values of 0.972,
(0.943, 0.989), and 0.969, respectively. VP7 and VP4 models were
found to have no-information rates of 0.354 and 0.120, respectively,
with overall accuracy for all models being significantly greater (p <
0.01) than the no-information rate.

Confusion matrices were generated to observe class accuracies
on the VP7 and VP4 testing dataset and are shown in Figure 4 and
Figure 5, respectively. Misclassified sequences were identified
through these confusion matrices and are summarized in
Table 6. Possible outliers from these misclassified sequences were

FIGURE 3
Confusion matrixes for the trained VP4 models on the cross-validated training dataset composed of 601 VP4 sequences.

TABLE 5 Comparison of overall accuracy, 95% confidence intervals, kappa, no-information rates, and p-values for trained VP7 and VP4 random forest models on
testing data using positional features from pairwise and multiple sequence alignment.

VP7 and VP4 testing data model performance

Methods Overall accuracy 95% confidence interval Kappa No-information rate p-value [ACC > NIR]

Pairwise Sequence Alignment

R10FCVT VP7 0.9846 (0.9611, 0.9958) 0.9804 0.3538 <0.01
LOOCV VP7 0.9885 (0.9668, 0.9976) 0.9854 0.3538 <0.01
R10FCVT VP4 0.9720 (0.9432, 0.9887) 0.9693 0.1200 <0.01
LOOCV VP4 0.9760 (0.9485, 0.9911) 0.9737 0.1200 <0.01

Multiple Sequence Alignment

R10FCVT VP7 0.9962 (0.9788, 0.9999) 0.9951 0.3538 <0.01

LOOCV VP7 0.9962 (0.9788, 0.9999) 0.9951 0.3538 <0.01

R10FCVT VP4 0.9960 (0.9779, 0.9999) 0.9956 0.1200 <0.01

LOOCV VP4 0.9960 (0.9779, 0.9999) 0.9956 0.1200 <0.01

R10FCVT, Repeated 10-fold cross-validation thrice LOOCV, Leave-one-out cross-validation.
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determined through phylogenetic analysis (Supplementary Figure
S3). Misclassified sequences with the accession numbers
AB735641.1 and EU033979.1 were found to be possible outliers
in the VP7 testing dataset. Misclassified sequences with the accession
numbers EU033986.1 and MH446387.1 were found to be possible
outliers in the VP4 testing dataset.

3.3 Model computational performance
results

The time elapsed for alignment of a query sequence, training of
models, and model predictions were recorded to compare model
computational performance and are summarized in Table 7. The

FIGURE 4
Confusion matrixes for the trained VP7 models on the testing dataset composed of 260 VP7 sequences.

FIGURE 5
Confusion matrixes for the trained VP4 models on the testing dataset composed of 250 VP4 sequences.
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time elapsed for pairwise and multiple sequence alignment of a
query VP7 sequence were found to be 0.14 and 17.21 s, respectively.
The time elapsed for pairwise and multiple sequence alignment of a
query VP4 sequence were found to be 0.22 and 44.17 s, respectively.

The models with the shortest time elapsed for both the VP7 and
VP4 datasets during training were found to be the pairwise sequence
alignment R10FCVTmodels, with time elapsed of 502.01 and 1377.69 s.
The models with the longest time elapsed for both the VP7 and
VP4 datasets during training were found to be the pairwise

sequence alignment LOOCV models, with time elapsed of
8145.21 and 26136.72 s, respectively. Multiple sequence alignment
R10FCVT models were found to have much longer time elapsed
during training than their pairwise counterparts for both the
VP7 and VP4 datasets, with time elapsed of 1323.69 and 3395.97 s,
respectively. On the other hand, multiple sequence alignment LOOCV
models were found to have shorter time elapsed than their pairwise
counterparts for both the VP7 and VP4 datasets, with time elapsed of
7612.43 and 18273.13 s, respectively.

TABLE 6 Comparison of model predictions for misclassified sequences obtained from using the trained models on the VP7 and VP4 testing datasets.

VP7 and VP4 model predictions for misclassified sequences

Unique
Identifier

Animal
Species

Reference
Genotype

PW R10FCVT
Prediction

PW LOOCV
Prediction

MSA R10FCVT
Prediction

MSA LOOCV
Prediction

VP7 Dataset

EU033979.1 Human G3 G4 G3 G1 G1

AB735641.1 Swine G9 G4 G4 G9 G9

KU372573.1 Avian G19 G4 G4 G19 G19

AY750923.1 Equine G14 G4 G1 G14 G14

VP4 Dataset

KY077643.1 Swine P[13] P[11] P[11] P[13] P[13]

KT906385.1 Swine P[13] P[6] P[6] P[13] P[13]

KT261372.1 Bovine P[14] P[11] P[11] P[14] P[14]

EF672605.1 Human P[9] P[11] P[11] P[9] P[9]

MH446387.1 Human P[8] P[11] P[11] P[4] P[4]

KF414619.1 Unknown P[8] P[4] P[8] P[8] P[8]

EU033986.1 Human P[6] P[11] P[11] P[6] P[6]

PW R10FCVT, Pairwise repeated 10-fold cross-validation thrice PW LOOCV, Pairwise leave-one-out cross-validation MSA R10FCVT, Multiple sequence alignment repeated 10-fold cross-

validation thrice MSA LOOCV, Multiple sequence alignment leave-one-out cross-validation.

TABLE 7 Comparison of computational performance times for query sequence alignment, model training, and model prediction on testing data for each of the
models using pairwise and multiple sequence alignment on the VP7 and VP4 datasets.

VP7 and VP4 model computational performance

Methods Query Sequence Alignment Time Elapsed
(seconds)

Training Time Elapsed
(seconds)

Prediction Time Elapsed
(seconds)

Pairwise Sequence Alignment

VP7 R10FCVT
Model

0.14 502.01 0.47

VP7 LOOCV Model 0.14 8145.21 0.47

VP4 R10FCVT
Model

0.22 1377.69 1.45

VP4 LOOCV Model 0.22 26136.72 1.45

Multiple Sequence Alignment

VP7 R10FCVT Model 17.21 1323.69 0.53

VP7 LOOCV Model 17.21 7612.43 0.53

VP4 R10FCVT Model 44.17 3395.97 1.74

VP4 LOOCV Model 44.17 18273.13 1.74

R10FCVT, Repeated 10-fold cross-validation thrice LOOCV, Leave-one-out cross-validation.
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The models with the shortest time elapsed for class prediction of
a query VP7 sequence were found to be either of the pairwise
sequence alignment models, R10FCVT and LOOCV, which both
had time elapsed of 0.47 s. Similarly, the models with the shortest
time elapsed for class prediction of a query VP4 sequence were
found to be either of the pairwise sequence alignment models,
R10FCVT and LOOCV, which both had time elapsed of 1.45 s.
The models with the longest time elapsed for class prediction of a
query VP7 sequence were found to be either of the multiple sequence
alignment models, R10FCVT and LOOCV, which both had time
elapsed of 0.53 s. Similarly, the models with the longest time elapsed
for class prediction of a query VP4 sequence were found to be either
of the multiple sequence alignment models, R10FCVT and LOOCV,
which both had time elapsed of 1.74 s.

The total time elapsed with and without training were summed
to compare model performance in circumstances where models may
or may not need to be retrained and are summarized in Table 8.
Models with the shortest time elapsed with training were found to be
the pairwise R10FCVT models for both VP7 and VP4 datasets.
Models with the shortest time elapsed without training were found
to be either of the pairwise sequence alignment models, R10FCVT
and LOOCV, for both VP7 and VP4 datasets. Multiple sequence
alignment models were generally slower than their pairwise
sequence alignment counterparts with and without training for
both datasets, with an exception where multiple sequence
alignment LOOCV models were slightly faster than the pairwise
sequence alignment LOOCV models only during model training.

4 Discussion

4.1 Previous literature and significance of
results

Previous studies have looked at prevalent strains found in
humans and many different animal species globally. Strains that

commonly infect humans worldwide consist of G1, G2, G3, G4, G9,
and G12 VP7 genotypes as well as P[4], P[6], and P[8]
VP4 genotypes (Gentsch et al., 2005; Santos and Hoshino, 2005;
Matthijnssens et al., 2009). Strains that commonly infect equines
consist of G3, G5, G10, and G14 VP7 genotypes as well as the P[12]
VP4 genotype. Strains that commonly infect bovines consist of G1,
G6-G8, G10, G11, G15, G18, and G21 VP7 genotypes as well as P[1],
P[5], P[11], P[14], P[17], P[21], and P[29] VP4 genotypes. Strains
that commonly infect swine consist of G1-G6, G8-G12, and
G26 VP7 genotypes as well as P[1]-P[8], P[11], P[13], P[19], P
[23], P[26], P[27], P[32], and P[34] VP4 genotypes (Luchs and
Timenetsky, 2016; Vlasova et al., 2017). Given that circulating
genotypes within humans and animal species are known, we
compared the distribution of species and genotypes within our
VP7 and VP4 datasets to check for agreement with the literature.
Most of the sequences found within our VP7 dataset were from
humans and equines. The most prevalent genotypes within our
VP7 dataset were found to be G1, G3, G12, and G14, which is in
general agreement with current literature. Within our VP4 dataset,
most of the sequences were found to be from humans, bovines, and
swine. The most prevalent genotypes within this dataset were found
to be P[4], P[5], P[6], P[8], P[11], and P[14], which is also in general
agreement with current literature.

A previous study has also looked at alignment-based
classification of group A rotavirus genotypes, although using a
full genome classification system rather than the dual
classification system (Maes et al., 2009). The RotaC web-based
tool initially identifies the gene segment that a query sequence
belongs to by comparing it to a full genome reference alignment
containing group A rotavirus standards. Distance matrices are then
generated from pairwise alignment between the query sequence and
an appropriate reference sequence using the Needleman-Wunsch
algorithm. Neighbour-joining phylogenetic trees are then generated
using the distance matrices from alignment alongside nucleotide
identity cut-off for classification into genotypes, with tree reliability
assessed using 100 bootstrap replicates. Phylogenetic methods for

TABLE 8 Comparison of total time elapsed with and without training for each of the models using pairwise and multiple sequence alignment for classification of a
query sequence from start to finish for the VP7 and VP4 datasets.

VP7 and VP4 model classification comparison

Methods Total time elapsed with training
(seconds)

Total time elapsed without training (seconds)

Pairwise Sequence Alignment

VP7 R10FCVT Model 502.62 0.61

VP7 LOOCV Model 8145.82 0.61

VP4 R10FCVT Model 1379.36 1.67

VP4 LOOCV Model 26138.39 1.67

Multiple Sequence Alignment

VP7 R10FCVT Model 1341.43 17.74

VP7 LOOCV Model 7630.17 17.74

VP4 R10FCVT Model 3441.88 45.91

VP4 LOOCV Model 18319.04 45.91

R10FCVT, Repeated 10-fold cross-validation thrice LOOCV, Leave-one-out cross-validation.
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classification which involve bootstrapping may become
computationally intensive as bootstrapped trees will need to be
generated every time a query sequence is being classified. Random
forest models with established accuracy, generally, only need to be
trained once before being usable for classification. The full genome
classification system also uses all 11 genome segments, and
nomenclature is defined using the notation of Gx-P [x]-Ix-Rx-
Cx-Mx-Ax-Nx-Tx-Ex-Hx (where x is the genotype number) for
the encoding genes VP7, VP4, VP6, VP1, VP2, VP3, NSP1, NSP2,
NSP3, NSP4, NSP5/6, respectively (Matthijnssens et al., 2011).
Classification through the full genome classification system is
considerably more descriptive and may allow for further studies
analyzing strain reassortments between same and different host
species as well as for discovering new genotypes (Matthijnssens et al.,
2008; Maes et al., 2009). However, full genome sequences are not as
readily available yet in comparison to partial genome sequences,
therefore dual classification models may remain useful until
sequencing efforts catch up. In consideration of this, we looked
to see how well our models performed using the readily available
partial genome sequence data with the dual classification system of
G and P genotypes. Expansion of our models into full genome
classification can be done when these data become more readily
available, and if accuracy warrants it.

Results from our model training showed that random forest
models trained on positional features from pairwise and multiple
sequence alignment perform very well in learning and predicting the
genotypes for labelled VP7 and VP4 sequences. Overall, multiple
sequence alignment models were shown to outperform pairwise
sequence alignment models in both overall accuracy and kappa
during training. R10FCVT and LOOCV models were shown to
perform very similarly during training, with LOOCVmodels having
slightly higher overall accuracy and kappa in most cases. Tuning of
each of the models during training also demonstrated that the
optimal mtry value of VP7 and VP4 models can be both identical
or different when using either R10FCVT or LOOCV for each
alignment method. This in turn led to some models being almost
identical in terms of overall accuracy and kappa values during model
training, and performance of these models were expected to also be
very similar during model validation. In circumstances where model
validation also demonstrated that these models were identical in
overall accuracy and kappa, the models were expected to differ in
terms of computational performance during training and tuning due
to the use of different cross-validation methods.

Results from model validation showed that the trained random
forest models perform very strongly in classification of unseen data.
Overall, multiple sequence alignment models were again found to
outperform pairwise sequence alignment models in overall
accuracies and kappa values. R10FCVT and LOOCV models
were also shown to perform the same in multiple sequence
alignment models, with LOOCV outperforming R10FCVT for
pairwise sequence alignment models. All models were also found
to perform significantly better than the no-information rates, which
demonstrates that the random forest algorithm was robust against
model tendencies to predict classes as the majority class in situations
involving imbalanced datasets (Breiman, 2001).

Phylogenetic analysis of each of the datasets also revealed that some
of themisclassified sequences in the testing dataset were possibly outliers,
as both the models and phylogenetic trees were not able to correctly

classify some of these sequences into the correct genotype. These
sequences could be further analyzed through other tools such as
BLAST to confirm whether they are indeed outliers or simply
mislabeled. Moving these sequences from the testing dataset to the
training dataset may also allow for the models to learn from these
misclassified sequences and improve the next time it encounters a similar
sequence. Some of the misclassified sequences were also incorrectly
classified by only the pairwise sequence alignment models and not the
multiple sequence alignment models or phylogenetic trees. This further
supports that multiple sequence alignment models are generally more
accurate at classifying VP7 and VP4 genotypes than the pairwise
sequence alignment models.

Results from model computational performance showed that
pairwise sequence alignment models generally outperform multiple
sequence alignment models in terms of speed for alignment of a
query sequence, training of the models, and model prediction.
R10FCVT models were also found to be much faster than LOOCV
models specifically during the training of the model, with no difference
during model prediction time. Total time elapsed summed from these
3 components and summed without the training component also
showed that pairwise sequence alignment models generally
outperform multiple sequence alignment models. In situations where
models may need to be continually retrained due to factors such as
constant influxes of new sequence data, pairwise sequence alignment
R10FCVTmodels are favoured. Similarly, in situations where models do
not need to be retrained and classification speed is amajor consideration,
such as in general query sequence classification (Williams et al., 2006),
pairwise sequence alignment R10FCVT models are also favoured.
Situations where rare genotypes are being classified or where cost of
misclassification is very high such as in targeted vaccine development
may favourmultiple sequence alignment LOOCVmodels at the expense
of speed to achieve the maximum classification accuracy possible.

4.2 Limitations

Amajor limitation for these models is that they rely on sufficient
sequence data being available for each of the genotypes to train the
random forest algorithm. Sequence data retrieved from NCBI for
VP7 and VP4 sequences were still lacking for many of the known
genotypes, and therefore, the classifier is not able to predict the
classes of these genotypes yet. The number of VP7 and
VP4 genotypes have also been shown to be increasing over time,
which will lead to more and more sequence data being required
(Matthijnssens et al., 2008; Mwanga et al., 2020). Models will also
need to be continually retrained over periods of time to account for
these new genotypes as the sequence data become more available.

Another limitation that these models face would be that they are
not able to recognize a new genotype for group A rotaviruses.
Sequence data for a new group A rotavirus genotype will most
likely be incorrectly classified as a current genotype that it is most
similar too, even though it may be distinct enough to be categorized
as a new genotype. Identification of new group A rotavirus
genotypes will have to be done through alternative methods, such
as the RotaC tool, other hierarchical agglomerative clustering
algorithms (Maes et al., 2009), or other methods. In addition,
although distribution of genotypes in our dataset is in general
agreement with reported genotypes, it is likely that important
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genotypes, for a specific species and jurisdiction, were not included
into training and test datasets. However, these genotypes could be
available internally in diagnostic laboratories and the results of this
study suggest that random forest could be used to develop
classification models on sufficient data in such situations.

Additionally, the usage of alignment could also be considered a
limitation of our models as alignment is generally considered a
computational slow process. Multiple sequence alignment was
identified to be the primary bottleneck in computational
performance for models that did not need to be retrained.
Pairwise alignment was also found to slow down computational
performance in models that did not need to be retrained, although to
a much lesser extent. Alignment-free methods such as k-mer counts
have previously been used in combination with random forest and
may provide a suitable alternative to alignment if accuracy and
computational performance warrants it (Liu et al., 2017; Malhotra
et al., 2017).

5 Conclusion

In conclusion, random forest models trained on positional features
from pairwise and multiple sequence alignment were shown to achieve
very high levels of performance for the dual classification of group A
rotavirus VP7 andVP4 genotypes.Multiple sequence alignmentmodels
were shown to perform more accurately than pairwise sequence
alignment models in both training and testing, with the trade-off
being that pairwise sequence alignment models are generally faster
in comparison with regards to computational performance. Application
of these models as classifiers will allow for more efficient and accurate
classification of group A rotaviruses on increasing amounts of new
sequence data, which may aid in vaccine development. Additionally,
methodology for these models may also be applicable for accurate and
quick classification of other species of rotaviruses and possibly other
viral pathogens which do not have a classification tool. Further
improvements to these models and expansion towards the full
genome classification system can be done as these data become
more readily available.
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