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Background: Breast cancer (BRCA) is a life-threatening malignancy in women with
an unsatisfactory prognosis. The purpose of this study was to explore the prognostic
biomarkers and a risk signature based on ferroptosis-related RNA-binding proteins
(FR-RBPs).

Methods: FR-RBPs were identified using Spearman correlation analysis. Differentially
expressed genes (DEGs) were identified by the “limma” R package. The univariate Cox
and multivariate Cox analyses were executed to determine the prognostic genes.
The risk signature was constructed and verified with the training set, testing set, and
validation set. Mutation analysis, immune checkpoint expression analysis in high- and
low-risk groups, and correlation between risk signature and chemotherapeutic
agents were conducted using the “maftools” package, “ggplot2” package, and the
CellMiner database respectively. The Human Protein Atlas (HPA) database was
employed to confirm protein expression trends of prognostic genes in BRCA and
normal tissues. The expression of prognostic genes in cell lines was verified by Real-
time quantitative polymerase chain reaction (RT-qPCR). Kaplan-meier (KM) plotter
database analysis was applied to predict the correlation between the expression
levels of signature genes and survival statuses.

Results: Five prognostic genes (GSPT2, RNASE1, TIPARP, TSEN54, and SAMD4A) to
construct an FR-RBPs-related risk signature were identified and the risk signature
was validated by the International Cancer Genome Consortium (ICGC) cohort.
Univariate and multivariate Cox regression analysis demonstrated the risk score
was a robust independent prognostic factor in overall survival prediction. The Tumor
Mutational Burden (TMB) analysis implied that the high- and low-risk groups
responded differently to immunotherapy. Drug sensitivity analysis suggested that
the risk signature may serve as a chemosensitivity predictor. The results of GSEA
suggested that five prognostic genes might be related to DNA replication and the
immune-related pathways. RT-qPCR results demonstrated that the expression
trends of prognostic genes in cell lines were consistent with the results from
public databases. KM plotter database analysis suggested that high expression
levels of GSPT2, RNASE1, and SAMD4A contributed to poor prognoses.
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Conclusion: In conclusion, this study identified the FR-RBPs-related prognostic genes
and developed an FR-RBPs-related risk signature for the prognosis of BRCA, which will
be of great significance in developing new therapeutic targets and prognostic
molecular biomarkers for BRCA.
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Introduction

Breast cancer (BRCA) is one of the most common malignancies in
women, accounting for a quarter of all female cancer cases (Siegel et al.,
2020). One statistic shows that 2.26 million cases and 684,996 fatalities of
BRCA were reported globally in 2020 (Sung et al., 2021). According to
hormonal status, three different types of BRCA may be identified
clinically: luminal-like, human epidermal growth factor receptor 2
(HER2) positive, and triple negative BRCA (TNBC) (Tian et al.,
2021). Currently, BRCA treatment strategies mainly include the
combination of surgical resection, endocrine therapy, chemotherapy,
immunotherapy, and other adjuvant therapies (Waks and Winer,
2019). Despite tremendous improvements in early detection and
treatment over the past few decades, the high morbidity and mortality
of BRCA continue to constitute a serious danger to human health (Early
Breast Cancer Trialists’ Collaborative Group (EBCTCG), 2011).
Therefore, accurate prediction of BRCA prognosis is essential to
improve prognosis and provide appropriate treatment for patients.

In contrast to cell necrosis, apoptosis, and autophagy, ferroptosis is
a novel type of regulated cell death that is brought on by the
accumulation of iron-dependent lipid peroxides (Song et al., 2021).
Ferroptosis-related genes (FRGs) are promising therapeutic targets for
BRCA patients (Li et al., 2021), and FRG signatures have been reported
to be effective in predicting the prognosis of BRCA patients in earlier
research (Liu et al., 2021). Some genes, such as ACSL4 and P53RRA,
are known to positively regulate ferroptosis. However, other
ferroptosis-related genes, including ATF2, NRF2, and GPX4, may
inhibit the ferroptosis process in BRCA (Peng et al., 2021).

RNA binding proteins (RBPs) are proteins that interact with RNA
through RNA binding domains. RBPs, as important coordinators for
maintaining genome integrity, are widely expressed in cells and play a
central role in gene regulation. RBPs are involved in regulating various
aspects of RNA metabolism and function, including RNA biogenesis,
maturation, transport, cell localization, and degradation, which have also
been found to play a key role in tumor development (Luo et al., 2021). For
example, RBP-related prognostic markers are highly expressed in BRCA
(Lan et al., 2021), and TRIM21 facilitates the transformation of breast
cancer cells from epithelium to stroma (Jin et al., 2019). In addition, RBPs
can be used to predict the prognosis of patients with lung adenocarcinoma
(Li et al., 2020a), and FOXK2 promotes colorectal cancer metastasis by
up-regulating ZEB1 and EGFR expression (Du et al., 2019). However, no
study has been undertaken on the prognostic significance of RBPs
associated with ferroptosis in BRCA.

Therefore, bioinformatics methods were used to identify
ferroptosis-related RBPs, establish an independent prognostic
model, and verify the good predictive performance of the model.
Further research was conducted on the variations in immune
checkpoint expression, chemotherapeutic agent sensitivity, and
TMB between high-risk and low-risk BRCA patients. The
prognostic signature in this study may improve prognostic

prediction and become the choice of treatment for patients
with BRCA.

Materials and methods

Data source

RNA-seq data and clinical information of 1091 BRCA samples and
113 normal samples were accessed from the Cancer Genome Atlas
(TCGA) database. RNA-seq data of 50 BRCA patients with survival
information were collected from the ICGC database (https://dcc.icgc.
org/) and utilized for risk signature validation, namely validation set.
117 BRCA samples fromGSE88770 dataset were also used to verify the
prognostic risk model. 259 ferroptosis-related genes (FRGs) were
extracted from the FerrDb database. 1542 RNA-binding proteins
(RBPs) were derived from a previous report (Wang et al., 2021).

Authentication of differentially expressed
genes (DEGs) in BRCA

The R language package ‘limma’ was engaged in analyzing the
DEGs between 113 normal samples and 1091 BRCA samples from the
TCGA database (Ritchie et al., 2015). The screening criteria for
difference were |log2Fold change (FC)| > 1 and adjusted p-value <0.05.

Excavation of FR-RBP genes in BRCA

The expression matrices of FRGs and RBPs were extracted
sequentially based on the transcriptome data from the TCGA
database, followed by the calculation of correlation coefficients and
p-values between FRGs and RBPs using the Spearman method. The
RBPs were identified as significantly correlated with FRG, i.e., FR
RBPs, by filtering with a threshold FDR <0.05 and |correlation
coefficient (cor)| > 0.3. The function of differentially expressed FR-
RBPs (DE-FR-RBPs) was probed by the R package ‘clusterProfiler’ (Yu
et al., 2012). Gene Ontology (GO) enrichment analysis mainly
described the biological processes (BP), cellular components (CC),
and molecular functions (MF) correlated with genes. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis revealed biological pathways associated with genes.

Establishment and validation of the risk
signature based on DE-FR-RBPs for BRCA

To estimate whether the DE-FR-RBPs were associated with
survival in BRCA patients, we randomly split the 1069 patients
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with survival information from the TCGA database into a training set
and a testing set in a 6:4 ratio, and the clinicopathologic characteristics
of the training set and testing set are shown in Table 1. Univariate Cox
and multivariate Cox regression analyses were executed in the training
set to screen prognostic genes. The risk score was calculated as Risk
score = h0(t)*exp (β1X1 +β2X2+. . .+βnXn), where β refers to the
regression coefficient; X represented the gene expression level; h0(t)

is the benchmark risk function. The following steps were performed
simultaneously in the training set, testing set, validation set, and
GSE88770 dataset. We calculated risk scores for each BRCA
patient based on prognostic genes and regression coefficients and
divided BRCA patients into high-risk and low-risk groups based on
the optimal cutoff values obtained from the surv_cutpoint function in
the ‘survival’ package. A Kaplan-Meier (K-M) curve, a risk curve, and

TABLE 1 The clinicopathologic characteristics of training set and testing set.

Features TCGA

Training set (n = 642) testing set (n = 427)

age (%)

≤30 7 (1.1) 5 (1.2)

>30 635 (98.9) 422 (98.8)

pathologic_M (%)

M0 535 (83.3) 355 (83.1)

M1 13 (2.0) 9 (2.1)

MX 94 (14.6) 63 (14.8)

pathologic_N (%)

N0 310 (48.3) 192 (45.0)

N1 207 (32.2) 150 (35.1)

N2 67 (10.4) 53 (12.4)

N3 47 (7.3) 26 (6.1)

NX 11 (1.7) 6 (1.4)

pathologic_T (%)

T1 179 (27.9) 100 (23.4)

T2 361 (56.2) 256 (60.0)

T3 75 (11.7) 57 (13.3)

T4 25 (3.9) 13 (3.0)

TX 2 (0.3) 1 (0.2)

tumor_stage.diagnoses (%)

stage I 113 (17.6) 68 (15.9)

stage II 360 (56.1) 246 (57.6)

stage III 145 (22.6) 95 (22.2)

stage IV 12 (1.9) 8 (1.9)

stage x 6 (0.9) 5 (1.2)

Unknow 6 (0.9) 5 (1.2)

race.demographic (%)

american indian or alaska native 1 (0.2) 0 (0.0)

asian 37 (5.8) 21 (4.9)

black or african american 107 (16.7) 73 (17.1)

Unknow 52 (8.1) 33 (7.7)

white 445 (69.3) 300 (70.3)
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a prognostic gene expression heatmap were plotted, and receiver
operating characteristic (ROC) curves for 1,3,5-year survival were
also drawn to assess the accuracy of the risk signature in predicting
survival.

Establishment of a nomogram

Chi-square tests were applied to examine the linkage of risk signatures
with other clinicopathological characteristics. Independent prognostic
profiling was undertaken by adopting univariate Cox and multivariate
Cox analysis. Clinical features and risk scores were selected to establish a
nomogram associated with outcome for assessing the overall survival (OS)
of 1-, 3-, and 5-year for BRCA patients. Furthermore, calibration curve
was plotted to evaluate the consistency between predicted probabilities of
1-, 3- and 5-year survival and actual ones.

Analysis based on risk signature

To investigate the relevance of risk signature to somatic mutations,
immune checkpoints, immune cell infiltration, and chemotherapeutic
efficacy, we conducted mutation analysis, immune checkpoint expression
analysis, and immune cell infiltration analysis in high- and low-risk
groups, and discovered the correlation between risk signature and
chemotherapeutic agents using the “maftools” package, the “ggplot2”
package, CIBERSORT algorithm and the CellMiner database respectively.

Analysis of prognostic genes

We used the cBioPortal database (http://www.cbioportal.org) to
analyze genetic alterations of prognostic genes in risk signatures. The
HPA database (https://www.proteinatlas.org/) was employed to
identify protein expression trends of prognostic genes in BRCA
and normal tissues. To further explore the possible molecular
mechanisms of prognostic genes in BRCA, we performed a single-
gene Gene Set Enrichment Analysis (GSEA) analysis based on the
KEGG gene set, setting SIZE >20, NOM p-value <0.05, and FDR
q-val >0.05 as significant pathways.

Verification of mRNA expression levels of
prognostic genes in cell lines

Human epithelial cell lines from the mammary gland, MCF-10A,
and three breast cancer cell lines MCF-7, MDA-MB-468, and T47D
were obtained from iCell Bioscience Inc. (Shanghai, China). MCF-10A
cells were cultured in MEGM Kit medium (Lonza/Clonetics, CC-
3150). MDA-MB-468 and T47D cells were cultured in RPMI-1640
medium (iCell-0002), supplemented with 0.02 mg/L of bovine insulin
(iCell-0016-a), 10% fetal bovine serum (FBS) (Gibco) and 1%
penicillin/streptomycin. MCF-7 cells were cultured in MEM basic
medium (iCell-0012), supplemented with 0.01 mg/mL of bovine
insulin, 10% FBS and 1% penicillin/streptomycin. The cells were
incubated at 37°C in a humidified atmosphere of 5% CO2. Total
RNA from the cell lines in logarithmic phage was isolated utilizing the
TRIzol Reagent following the producer’s instructions (Ambion, USA).
Next, total RNA was reverse transcribed into cDNA utilizing the

SweScript-First-strand-cDNA-synthesis-kit (Servicebio, China) and
qPCR was subsequently carried out using the 2xUniversal Blue
SYBR Green qPCR Master Mix, according to the manufacturers’
direction (Servicebio, China). The sequences of the primers were
listed in Table 2. The relative expression level was normalized to
the endogenous control GAPDH and calculated using the 2−ΔΔCq

method (Livak and Schmittgen, 2001). The Student’s t-test was
used to contrast the distinction. The two-tailed p-value <0.05 was
delimited as statistically significant.

The Kaplan-Meier (KM) plotter for prognostic
value

The survival probability of signature mRNA expression was
assessed using the KM plot database (www.kmplot.com), which
contained survival information and gene expression data for BRCA
patients. In order to analyze the OS of BRCA patients, the samples
were divided into high- and low-expression groups by median
expression and evaluated by a KM survival plot, with the log-rank
p-value and hazard ratio (HR) with 95% confidence intervals (CIs).

Statistical analysis

All bioinformatics analyzes were run in the R programming
language and the data from different groups were compared using
the Wilcoxon test. p values less than 0.05 were considered statistically
significant if not specified above.

Results

DE-FR-RBPs in BRCA

As shown in Figure 1A and Supplementary Table S1, a total of
1615 DEGs, including 600 upregulated genes and 1015 downregulated

TABLE 2 The sequences of the primers for qPCR.

Primer Sequences

GSPT2 For CGTCAACGCCAAGCC

GSPT2 Rev CCCCCGTCCCATCCT

RNASE1 For ACTCAGACAGTTCCCCCA

RNASE1 Rev CCTCCACAGAAGCATCAA

SAMD4A For AACCAATGGCAACAGGAAT

SAMD4A Rev GGTGGGGACAGATGAGGAG

TIPARP For GGCAGATCAAAAGGACAAC

TIPARP Rev ATAAAACAGGAGCGGAAGA

TSEN54 For AAGAATAACCCTGGCAAAC

TSEN54 Rev AAGTCCCTGAAGCTGTAGA

GAPDH For CCCATCACCATCTTCCAGG

GAPDH Rev CATCACGCCACAGTTTCCC
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genes, were exploited in BRCA samples compared with normal
samples. The expression heatmaps of the top 50 upregulated genes
and top 50 downregulated genes are displayed in Supplementary
Figure S1A. Then, 1377 FR-RBPs were identified by Spearman
correlation analysis between FRGs and RBPs (Supplementary
Tables S2, S3). After overlapping the DEGs and FR-RBPs, 46 DE-
FR-RBPs in BRCA, including 27 upregulated genes and
19 downregulated genes, were determined and all DE-FR-RBPs
were RBPs (Figure 1B; Supplementary Figure 1B; Supplementary
Table S4). To probe the possible functions of these 46 genes in
BRCA development, we proceeded with a functional enrichment
analysis. A total of 116 GO entries (56 BP, 47 CC, and 13 MF)
and 1 KEGG pathway were enriched for upregulated genes
(Supplementary Table S5). The downregulated genes were enriched
for a total of 87 GO entries (59 BP, 8 CC, and 20 MF) (Supplementary
Table S5). The top 5 entries in each category are shown in the bubble
diagram (Figures 1C–E). The upregulated genes in KEGG pathways

were associated with the “Spliceosome” pathway (Figure 1D). The
majority of the upregulated genes in BP were connected to biological
processes that included RNA splicing and regulation of nuclease
activity (Figure 1C). Most of the downregulated genes were
involved in the regulation of mRNA metabolism, translation,
mRNA catabolism, mRNA splicing via the spliceosome, and
nuclear-transcribed mRNA catabolism (Figure 1D).

The risk signature based on the DE-FR-RBPs
in BRCA

We randomly assigned 1069 BRCA cases with survival information
from the TCGA database into a training set and a testing set.We included
46 DE-FR-RBPs in a univariate Cox analysis in the training set. Based on
the p-value <0.2, eight genes (SAMD4A, CELF2, TSEN54, ZFP36L2,
TIPARP, GSPT2, YBX3, and RNASE1) were selected for incorporation

FIGURE 1
Identification of 46 DE-FR-RBPs and its functional enrichment analysis. (A) Volcano map of DEGs between BRCA and normal samples. Green dots
represent downregulated genes while red dots indicate upregulated genes. (B) Venn diagramwas conducted to detect the intersection of 46 DE-FR-RBPs by
DEGs and FR-RBPs. (C) The top5 GO entries under each category based on the function enrichment results of upregulated DE-FR-RBPs. (D) The KEGG
pathway enriched by upregulated DE-FR-RBPs. (E) The top5 GO entries under each category based on the function enrichment results of
downregulated DE-FR-RBPs. The larger the circle contains the greater the number of genes and the redder the color the smaller the p-value.
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into the next step of multivariate Cox analysis (Table 3). Five genes
associated with overall survival (OS) in BRCA patients were screened
(GSPT2, RNASE1, TIPARP, TSEN54, and SAMD4A) by multivariate
Cox analysis for risk signature establishment (Figure 2A). Of these,
GSPT2, TIPARP, TSEN54, and SAMD4A were protective factors for
patient OS (hazard ratio (HR) < 1), and RNASE1 was a risk factor (HR >
1). The risk score was calculated as: risk score = h0(t)×exp
((-0.31839)×expression of GSPT2 + (0.312671)×expression of RNASE1
+ (−0.31809)×expression of TIPARP + (−0.58387)×expression of
TSEN54 + (−0.64123)×expression of SAMD4A). Based on this
formula, we calculated the risk score for each BRCA patient in the
training set and classified them into high- and low-risk groups based on
optimal cut-off value (Figure 2B). The risk curve manifested that as the
risk score increased, patients confronted a higher risk of demise
(Figure 2B). The K-M curve indicated that the high-risk patients had
noteworthy poorer survival than the low-risk patients (Figure 2C). The
Area Under Curve (AUC) values for the ROC curves at 1, 3, and 5 years
were 0.821, 0.739, and 0.664, reflecting the decent accuracy of the gene
signature (Figure 2D; Supplementary Tables S6–S8). The heatmap
revealed that RNASE1 was highly expressed in the high-risk group
and GSPT2, TIPARP, TSEN54, and SAMD4A were highly expressed
in the low-risk group (Figure 2E). To further confirm the applicability and
reliability of the risk signature, the above analysis was carried out in both
the testing set and the external validation set. The results of the testing set
and external validation set were consistent with the training set
(Supplementary Figures S2A–H). The AUC values of the 1, 3, and 5-
year ROC curves in the testing set were 0.603, 0.649, and
0.606 respectively (Supplementary Figure S2C), while the AUC values
of the 1, 3, and 5-year ROC curves in the validation set were 0.897, 0.978,
and 0.846 respectively (Supplementary Figure S2G), suggesting that the
FR-RBPs associated risk signature was an effective predictor of survival in
BRCA patients. Moreover, the GSE88770 dataset was also used to validate
the prognostic model (Supplementary Figures S2I–L). The results
suggested that patients in high-risk group had poorer OS than low-
risk group (Supplementary Figure S2J), and the AUC values of 3 and
5 years were 0.724 and 0.690 respectively (Supplementary Figure S2K),
indicating the risk signature had good predictive ability.

The FR-RBPs associated risk signature was an
independent prognostic factor

We initially evaluated the proportion of individuals at high- and
low-risk under various clinical features in order to better investigate

TABLE 3 The result of Univariate Cox analysis.

id HR HR.95L HR.95H P-value

GSPT2 0.707641508 0.54167322 0.924462362 0.011214893

RNASE1 1.250347564 1.009428054 1.548767171 0.040766883

TIPARP 0.733565395 0.541961869 0.992907839 0.044851373

TSEN54 0.689105896 0.476337238 0.996913319 0.048112608

SAMD4A 0.662677227 0.406480148 1.080350687 0.098935143

YBX3 0.847845556 0.682996077 1.052483479 0.134586015

CELF2 0.828334478 0.630036769 1.089044389 0.177340052

ZFP36L2 0.844579069 0.659786412 1.081128364 0.179988295

ALYREF 0.821438156 0.606253705 1.113000447 0.204378613

LARP6 0.768080806 0.504944647 1.168342169 0.217593842

NUDT16L1 0.82550748 0.59655413 1.142331542 0.247259363

EZH2 0.867042096 0.65859947 1.141455515 0.309192942

DDX39A 0.86271146 0.630696363 1.180078255 0.355504011

EXOSC4 1.135808917 0.866411329 1.488971638 0.356588365

BOP1 1.116973789 0.878760146 1.419762208 0.366043977

EXO1 1.099478609 0.867536602 1.393431943 0.432744694

QKI 0.883711263 0.610381308 1.279438911 0.512607185

ACO1 0.87859728 0.595336873 1.296632571 0.514537779

SNRPE 1.136400042 0.773123506 1.670373553 0.515284169

SNRPB 0.889632146 0.622585703 1.271223143 0.520754293

RBMS3 0.898135035 0.624364616 1.29194788 0.562492321

MAZ 1.119591522 0.759603203 1.650184163 0.568172367

LSM4 0.900036413 0.621296936 1.303829936 0.577555478

MRPL12 0.933092038 0.730247914 1.192281053 0.579763207

ZNF106 1.101633388 0.760767574 1.595225878 0.608349773

RBMS2 0.886316661 0.556348736 1.411987074 0.611505345

ZFP36 0.951432459 0.781604851 1.15816032 0.619691033

OAS3 1.046277912 0.861897572 1.270101582 0.647397407

EIF3L 0.941677939 0.696351628 1.273433284 0.696358388

ESRP1 1.062783087 0.762096148 1.482106809 0.719706896

OAS2 1.029753483 0.873416765 1.214073598 0.727098229

PARP1 0.937945972 0.64125593 1.37190567 0.741252895

RNASEH2A 1.055259928 0.748967479 1.486811572 0.758473021

ZCCHC24 0.962498613 0.746990713 1.240180854 0.767576629

NOVA1 1.027431906 0.856821179 1.232014739 0.770212969

SNRNP25 0.950064372 0.663923509 1.359527564 0.779352003

MBNL2 0.967323505 0.723614741 1.293111805 0.822507597

RNASE7 1.063113031 0.603951646 1.871357292 0.832004214

EEF1A2 1.010017226 0.91721685 1.112206778 0.83937158

(Continued in next column)

TABLE 3 (Continued) The result of Univariate Cox analysis.

id HR HR.95L HR.95H P-value

HNRNPAB 1.030484411 0.652800239 1.626681577 0.897417351

OASL 0.990460197 0.831607532 1.179656705 0.914412957

RPUSD1 0.986777119 0.681941484 1.427877764 0.943710688

MRPS34 0.99432936 0.728127266 1.357854487 0.971465208

MEX3A 0.99898961 0.830181567 1.202122862 0.991459526

MRPL14 1.001139283 0.708039533 1.415570483 0.994859575

MRPS12 1.000436745 0.7027528 1.424218703 0.998066621
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the relationship between risk signature and clinicopathological factors.
As shown in Table 4, risk signature was associated with pathologic T
and stage in the training set, while in the testing set, risk signature was
correlated with pathologic T (Table 5). Age and stage were unrelated to
the risk signature in the validation set (Table 6). Stratified survival
analysis showed significant differences in survival between high- and
low-risk groups with different T subgroups, stage subgroups, age
(age >30), and subtypes (HER2-enriched, LuminalA, LuminalB,
and triple negative breast cancer (TNBC)) in the training set
(Figures 3A–I). Next, we integrated both risk score and clinical
factors into a univariate Cox analysis, with risk score, age,
pathologic N, pathologic T, pathological M, and the stage being

associated with OS in BRCA patients (Figure 4A). Then included
these factors into multivariate Cox analysis, the results indicated that
risk score and age were independent prognostic factors (Figure 4B).

Nomogram construction is based on risk
scores and clinicopathological factors

Independent prognostic indicators including risk score and age were
involved in the nomogram to forecast the survival probability of BRCA
patients. Nomography predicted the 1, 3, and 5 years survival probability
of patients with BRCA (Figure 4C). The calibration curve was plotted to

FIGURE 2
Construction of prognostic riskmodels in BRCA. (A) The forest map ofmultivariate Cox regression analysis. (B)Distribution of survival status based on the
median risk score in training set. (C) Kaplan-Meier survival analysis of high and low risk groups in TCGA-BRCA training set. (D) Time-independent receiver
operating characteristic (ROC) analysis of risk scores predicting the overall survival of 1-, 3-, and 5-year in training set. (E)Heatmap indicated the difference of
prognostic gene expression between high- and low-risk groups in TCGA-BRCA training set.
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assess the nomogram and indicated that the practical survival of BRCA
patients was in line with the predicted value (Figure 4D).

The role of risk signature in BRCA

We used the “maftools” program to display the distribution of
the top 20 mutated genes in the high- and low-risk groups in order

to further analyze the difference in mutations between the groups,
revealing that TP53 was more frequently mutated in the low-risk
group (Figure 5A). We further examined the tumor mutational
burden (TMB) of high- and low-risk patients and noted that the
TMB of the high-risk group was significantly higher than that of
the low-risk group (Figure 5B). The TMB was associated with
immunotherapy, implying that the high- and low-risk groups
responded differently to immunotherapy. Following that, we

TABLE 4 The number of patients in high- and low-risk groups with different clinical characteristics in the training set.

TCGA training set

Total (n = 642) High_risk (n = 322) Low_risk (n = 320) p-value

Age (years)

≤30 7 (1.1%) 4 (1.2%) 3 (0.9%) 1

>30 635 (98.9%) 318 (98.8%) 317 (99.1%)

pathologic_M

M0 535 (83.3%) 269 (83.5%) 266 (83.1%) 0.314

M1 13 (2.0%) 9 (2.8%) 4 (1.3%)

MX 94 (14.6%) 44 (13.7%) 50 (15.6%)

pathologic_N

N0 310 (48.3%) 156 (48.4%) 154 (48.1%) 0.298

N1 207 (32.2%) 94 (29.2%) 113 (35.3%)

N2 67 (10.4%) 40 (12.4%) 27 (8.4%)

N3 47 (7.3%) 26 (8.1%) 21 (6.6%)

NX 11 (1.7%) 6 (1.9%) 5 (1.6%)

pathologic_T

T1 179 (27.9%) 74 (23.0%) 105 (32.8%) 0.0042

T2 361 (56.2%) 189 (58.7%) 172 (53.8%)

T3 75 (11.7%) 40 (12.4%) 35 (10.9%)

T4 25 (3.9%) 19 (5.9%) 6 (1.9%)

TX 2 (0.3%) 0 (0%) 2 (0.6%)

Stage

stage I 113 (17.6%) 46 (14.3%) 67 (20.9%) 0.0209

stage II 360 (56.1%) 179 (55.6%) 181 (56.6%)

stage III 145 (22.6%) 83 (25.8%) 62 (19.4%)

stage IV 12 (1.9%) 9 (2.8%) 3 (0.9%)

stage x 6 (0.9%) 1 (0.3%) 5 (1.6%)

Unknow 6 (0.9%) 4 (1.2%) 2 (0.6%)

race

american indian or alaska native 1 (0.2%) 1 (0.3%) 0 (0%) 0.306

asian 37 (5.8%) 20 (6.2%) 17 (5.3%)

black or african american 107 (16.7%) 49 (15.2%) 58 (18.1%)

Unknow 52 (8.1%) 32 (9.9%) 20 (6.3%)

white 445 (69.3%) 220 (68.3%) 225 (70.3%)
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compared the expression of immune checkpoint molecules in the
high- and low-risk groups, displaying that NRP1, CD244,
ADORA2A, TNFRSF14, and TNFRSF15 were significantly less
expressed in the high-risk group than in the low-risk group and
that LAG3 was significantly more expressed in the high-risk
group than in the low-risk group (Figure 5C). The
CIBERSORT algorithm revealed that the high-risk group with
more immune cell infiltrates included T cells CD4 memory

activated, Macrophages M2, Dendritic cells activated, and
Neutrophils, but low immune cell infiltrates included B cells
naive and T cells memory resting (Figure 5D). We then
investigated whether the risk signature could predict sensitivity
to chemotherapy drugs. Using the CellMiner database, we
calculated risk scores for NCI60 cell lines and divided them
into high- and low-risk groups delimited by median values.
Correlations between risk score and the half maximal

TABLE 5 The number of patients in high- and low-risk groups with different clinical characteristics in the testing set.

TCGA testing set

Total (n = 427) High_risk (n = 99) Low_risk (n = 328) p-value

Age (years)

≤30 5 (1.2%) 0 (0%) 5 (1.5%) 0.482

>30 422 (98.8%) 99 (100%) 323 (98.5%)

pathologic_M

M0 355 (83.1%) 83 (83.8%) 272 (82.9%) 0.235

M1 9 (2.1%) 4 (4.0%) 5 (1.5%)

MX 63 (14.8%) 12 (12.1%) 51 (15.5%)

pathologic_N

N0 192 (45.0%) 36 (36.4%) 156 (47.6%) 0.114

N1 150 (35.1%) 35 (35.4%) 115 (35.1%)

N2 53 (12.4%) 19 (19.2%) 34 (10.4%)

N3 26 (6.1%) 7 (7.1%) 19 (5.8%)

NX 6 (1.4%) 2 (2.0%) 4 (1.2%)

pathologic_T

T1 100 (23.4%) 15 (15.2%) 85 (25.9%) 0.0197

T2 256 (60.0%) 69 (69.7%) 187 (57.0%)

T3 57 (13.3%) 9 (9.1%) 48 (14.6%)

T4 13 (3.0%) 6 (6.1%) 7 (2.1%)

TX 1 (0.2%) 0 (0%) 1 (0.3%)

Stage

stage I 68 (15.9%) 10 (10.1%) 58 (17.7%) 0.104

stage II 246 (57.6%) 54 (54.5%) 192 (58.5%)

stage III 95 (22.2%) 29 (29.3%) 66 (20.1%)

stage IV 8 (1.9%) 4 (4.0%) 4 (1.2%)

stage x 5 (1.2%) 1 (1.0%) 4 (1.2%)

Unknow 5 (1.2%) 1 (1.0%) 4 (1.2%)

race

asian 21 (4.9%) 2 (2.0%) 19 (5.8%) 0.259

black or african american 73 (17.1%) 14 (14.1%) 59 (18.0%)

Unknow 33 (7.7%) 10 (10.1%) 23 (7.0%)

white 300 (70.3%) 73 (73.7%) 227 (69.2%)
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inhibitory concentration (IC50) values of FDA-approved drugs
were calculated using the Spearman method, which showed that
by-products of CUDC-305, Denileukin/Diftitox/Ontak, LDK-
378, Nilotinib and Tamoxifen were significantly correlated
with the risk score (|cor| > 0.3 and p-value <0.05) (Figure 5E).
In addition, IC50 values for by-products of CUDC-305,
Denileukin/Diftitox/Ontak, and Tamoxifen were lower in the
low-risk group (Figure 5F). These findings suggest that the
model may be able to act as a chemosensitivity predictor.

The role of prognostic FR-RBPs in BRCA

We carried out the relevant study by utilizing the cBioPortal
database in order to better comprehend the mutations in the five
prognostic genes in BRCA. As shown in Supplementary Figure S3,
GSPT2, RNASE1, TIPARP, TSEN54, and SAMD4A were mutated in
BRCA, with amplification being the predominant mutation type. To
further investigate the role of prognostic genes in the BRCA
progression, we proceeded with a single-gene GSEA enrichment

TABLE 6 The number of patients in high- and low-risk groups with different clinical characteristics in the validation set.

ICGC

Total (n = 50) High_risk (n = 10) Low_risk (n = 40) p-value

Age (years)

≤30 13 (26.0%) 5 (50.0%) 8 (20.0%) 0.126

>30 37 (74.0%) 5 (50.0%) 32 (80.0%)

Stage

0 3 (6.0%) 0 (0%) 3 (7.5%) 0.402

1 13 (26.0%) 4 (40.0%) 9 (22.5%)

2 28 (56.0%) 4 (40.0%) 24 (60.0%)

3 6 (12.0%) 2 (20.0%) 4 (10.0%)

FIGURE 3
Kaplan-Meier curve analysis of clinical pathologic factors for the OS in BRAC patients in the training set. Stratified K-M curves among different groups,
including pathologic T stage (A, B), pathologic stage (C, D), age (E), HER2-enriched (F), Luminal A (G), Luminal B (H), and TNBC (I).
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analysis with detailed information on the results listed in
Supplementary Table S9. The top 5 pathways activated in the low
expression group and the top 5 pathways activated in the high
expression group for each gene are shown in Figures 6A–E. We
noted that the low expression groups of GSPT2, SAMD4A,
TIPARP, and the high expression group of TSEN54 significantly
activated the “oxidative phosphorylation” and ‘DNA replication’
pathways. The high expression group of RNASE1 significantly
activated the ‘cytokine receptor interaction’ and ‘natural killer cell
mediated cytotoxicity’ pathways. The high expression group of
GSPT2, SAMD4A, TIPARP, and the low expression group of
TSEN54 significantly activated the “ECM receptor interaction”
pathway. The low expression group of TSEN54 significantly
activated the “TGF beta signaling pathway”.

The expression of prognostic FR-RBPs in
BRCA

As exhibited in Figure 7, TSEN54 was upregulated in BRCA tissues,
while GSPT2, RNASE1, TIPARP, and SAMD4A were downregulated in
BRCA tissues compared to normal tissues. We then validated the
expression of prognostic genes at the mRNA level in human epithelial
cell lines from themammary gland,MCF-10A and three breast cancer cell
lines MCF-7, MDA-MB-468, and T47D. Consistent with the trend of
results from public databases, TSEN54 was upregulated in breast cancer
cell lines and GSPT2, RNASE1, SAMD4A, and TIPARP were
downregulated in breast cancer cell lines (Figure 8A-E). To further
determine the changes in expression of prognostic genes at the protein
level, we obtained corresponding images from the HPA database. We did

not detect immunohistochemical results for TIPARP in BRCA. As shown
in Figure 9, we found that protein expression levels of GSPT2 and
SAMD4A were decreased in BRCA tissues compared to normal
tissues, but RNASE1 was largely unexpressed in normal breast tissues
and BRCA tissues at protein levels. The increased expression of
TSEN54 at protein level in BRCA tissues compared to normal tissues
was noteworthy.

The survival status of signature genes

KM plotter database was utilized to analyze the OS of BRCA
patients. The log-rank test and KM curve analyses suggested that the
high expression level of GSPT2 (HR = 1.41, p = 0.0042), RNASE1
(HR = 1.45, p = 0.0012), and SAMD4A (HR = 1.75, p < 0.001) were
significant with the poor OS of the BRCA patients. While the
expression levels of TIPARP and TSEN54 were not associated with
OS of BRCA patients (Figure 10A-E).

Discussion

BRCA is the most common factor in cancer deaths in women
globally. Even though the prognosis for BRCA patients has
significantly improved due to advancements in numerous
treatment modalities such as local surgery, radiation,
chemotherapy, and endocrine therapy, the risk of recurrence and
death still exists for many individuals (Dong et al., 2018; Wang et al.,
2020a). In clinical settings, the prognosis of BRCA patients is
frequently predicted using the tumor size, tumor grade, and TNM

FIGURE 4
Estableshment of a nomogram. (A) Univariate Cox analysis of the correlations between risk score and clinicopathological factors in TCGA-BRCA training
set. (B)Multivariate Cox of the correlations betweent the risk score and clinicopathological factors independent prognostic analysis of in TCGA-BRCA training
set. (C) Nomogram for forecasting 1-, 3- and 5-year OS. (D) The calibration for forecasting 1-, 3- and 5-year OS.
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stage (Al-Keilani et al., 2021). However, because of individual
variability, these clinical markers frequently fall short of the ideal
prediction effect and the overall diagnostic standards. In recent years,
many researchers have been exploring new biomarkers that can
predict the prognosis of BRCA at the molecular level, and we have
made new discoveries in this area.

Functional enrichment analysis was used to determine the
biological roles of these DE-FR-RBPs. Little is known about the
specific mechanism of action of the spliceosome in cancer. In the
past, it was found that there is a high frequency of mutations in
different components of the spliceosome in chronic granulocytic
leukemia (Quesada et al., 2012), and deregulation of RNA splicing
is common in many tumor transcriptomes (Dvinge and Bradley, 2015;
Kahles et al., 2018), suggesting the development of cancer may be
influenced by this biological process (Ebert and Bernard, 2011).
Similarly, a recent study in BRCA showed that mutations in key
genes in the spliceosome lead to a BRCA-like cell phenotype (Lappin

et al., 2022). In our study, upregulated genes were significantly
enriched for biological processes associated with spliceosomes.
Nucleases are key components of biological processes and are
expressed at both gene and protein levels in cancer cells (Doherty
and Madhusudan, 2015; He et al., 2016), and the failure of nuclease
activity can lead to genomic instability and susceptibility to many
cancers, including BRCA (Zheng et al., 2007). The mRNA metabolic
pathways include mRNA transport, pre-mRNA splicing, RNA editing,
mRNA degradation, and translation activation (Zou et al., 2018).
Numerous regulatory proteins are involved in these biological
processes (Niu et al., 2020), and some of these have been
demonstrated to have intricate roles in cancer; for example, m6A
regulatory proteins can induce oncogene expression, cancer cell
proliferation, survival, and tumorigenesis and development (Sun
et al., 2019; Wang et al., 2020b). Translation regulation is a critical
stage in the development and progression of cancer, which mediates
the overall expression of protein synthesis as well as the precise

FIGURE 5
Correlation analysis of risk model with genomic mutations, immune checkpoints, immune cell infiltration, and chemotherapeutic drug efficacy. (A) The
waterfall maps of the somatic mutations of the top 20 mutated genes in the high and low risk groups. (B) Boxplot of TMB score in high and low risk group. (C)
Boxplot of the relationships of immune checkpoint expression between high and low risk group. (D) The immune cell infiltration using CIBERSORT. (E)
Correlation analysis between drugs and risk score. (F) Boxplot of IC50 values of significantly related drugs in high and low risk group. *p-value <0.05,
**p-value <0.01, ***p-value <0.001, ****p-value <0.0001.
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translation of certain mRNAs that may promote a variety of oncogenic
characteristics, such as cell transformation, tumor cell survival,
invasion, metastasis, and angiogenesis (Khan et al., 2016). In
conclusion, this is consistent with our findings that various genes,
chemicals, and pathways are involved in the development of BRCA.

The prognostic model proposed in this study consists of five DE-
FR-RBPs (TIPARP, SAMD4A, TSEN54, GSPT2, and RNASE1).
Several studies have demonstrated the significant role that these
genes play in the development of numerous malignancies,
including BRCA. TIPARP acts as a tumor inhibitor by down-
regulating pro-tumor transcription factors. Therefore, small
molecules that increase the expression or activity of TIPARP may
be effective anticancer drugs (Zhang et al., 2020a). In addition, the
expression of TIPARP is negatively correlated with the methylation
status, and DNAmethylation may be an important mechanism for the
dysregulation of TIPARP in BRCA. It is worth noting that the
expression of TIPARP is significantly reduced in BRCA, and more
advanced BRCA tends to express lower levels of TIPARP, compared
with adjacent normal tissues. The expression of TIPARP in BRCA

tissues has always been low (Lin Cheng et al., 2019). SAMD4A is a
novel breast tumor suppressor, significantly inhibiting breast tumor-
induced angiogenesis by disrupting the balance of angiogenesis-
related genes in tumor cells (Zhou et al., 2021). TSEN54 is
involved in the complex process of pre-tRNA splicing site
identification and cutting and may be related to the survival rate of
BRCA patients (Lou et al., 2021; Yan et al., 2022). Further research is
required to fully understand its mechanism of action in BRCA. We
originally reported GSPT2 as a protective factor linked with BRCA
based on current prognostic models, as there is no research on the role
of GSPT2 in BRCA. In comparison to liver cancer patients, the normal
control group’s blood had greater levels of GSPT2 expression in other
malignancies (Li et al., 2014). Similarly, GSPT2 was discovered to be
the most distinct and singular factor in stage II colorectal cancer
patients when evaluating the difference in gene expression between
stage II and stage III patients (Groene et al., 2006). RNASE1 can
regulate the vascular homeostasis of extracellular RNA (Bedenbender
et al., 2019). In prostate cancer, the overexpression of RNASE1 is
associated with poor survival (Gao et al., 2020). Li et al. pointed out

FIGURE 6
GSEA analysis of prognostic genes. Top5 KEGG pathways significantly enriched in high and low expression groups of GSPT2 (A), RNASE1 (B), SAMD4A (C),
TIPARP (D) and TSEN54 (E).
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that RNASE1 was highly expressed in BRCA (Li et al., 2020b).
However, further research is needed to confirm its specific
mechanism of action in BRCA.

TMB is defined as the number of mutations per DNA giant base
(Greillier et al., 2018). In this study, we found that the TMB, related to
immunotherapy, in the high-risk group was significantly higher than that
in the low-risk group. We found that NRP1, CD244, ADORA2A,
TNFRSF14, and TNFRSF15 were sparsely expressed in the high-risk

group by comparing the expression of immune checkpoint molecules
in the high-risk and low-risk groups. LAG3 was highly expressed in the
high-risk group. NRP1 is a potential molecule that can modify the tumor
microenvironment (TME) and innate immune system in a targeted way to
produce an efficient anti-tumor immune response, which binds to and
uptakes neutrophil elastin on a number of BRCA cell lines (Kerros et al.,
2017). One of the immune cell receptors that CD244 regulates is NK cell
toxicity (Buller et al., 2020). Expression of CD244 is linked to the

FIGURE 7
| Validation of the expression of five prognostic genes in the normal and BRCA samples from ICGC cohort. ****p-value < 0.0001.

FIGURE 8
Verification of the expression of prognostic genes by RT-qPCR. The expression of GSPT2 (A), RNASE1 (B), SAMD4A (C), TIPARP (D), and TSEN54 (E)
among MCF-10A, MCF-7, MDA-MB-468, and T47D. *p-value <0.05, **p-value <0.01, ***p-value <0.001, ****p-value <0.0001.

Frontiers in Genetics frontiersin.org14

Chen et al. 10.3389/fgene.2023.1025163

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1025163


generation of inhibitory molecules and the inhibition of antigen-specific
CD8+T cell activity, primarily spreading inhibitory signals in immune cells
linked with tumors and immunosuppression in tumor microenvironment
experiences (Agresta et al., 2018). ADORA2A, an immunological
checkpoint molecule, has been found to have a high association with
the majority of female cancers, including BRCA (Wan et al., 2022).
Adenosine mediates TME immunosuppression of immune cells via

ADORA2A, and in addition, drugs targeting ADORA2A have entered
phase I clinical trials for immunotherapy of renal cell carcinoma (Fong
et al., 2020; Feng et al., 2022). In the tumor microenvironment,
TNFRSF14 is crucial for immune system activation and recruitment
(Lombardo et al., 2020). Studies of diffuse large B-cell lymphomas have
revealed that TNFRSF14 changes are described as early driver mutations
and accelerated mutations that may occur in the early stages of the disease,

FIGURE 9
Immunohistochemical results of four prognostic genes in normal and BRCA tissues obtained from HPA database.

FIGURE 10
The prognostic value of fivemodel genes in BRCA Patients using the Kaplan-Meier plotter database. The survival probability of patients in high- and low-
expression groups divided by the transcriptional expression levels of GSPT2 (A), RNASE1 (B), SAMD4A (C), TIPARP (D), and (E) TSEN54. The red colored lines
indicate high expression levels while the black colored lines indicate low expression levels.

Frontiers in Genetics frontiersin.org15

Chen et al. 10.3389/fgene.2023.1025163

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1025163


considerably earlier than the diagnosis of malignant lymphoma
(Vogelsberg et al., 2020). This further strengthens our observations and
suggests that similar mechanisms can be shared in BRCA. LAG3 builds up
in many malignancies, and the activity of this protein is associated with
immune cell infiltration, proliferation, and secretion (Shi et al., 2022). A
favorable prognosis is connected with cutting the surface portion of LAG3,
which weakens the lymphocytes’ inhibitory signal (Du et al., 2020). The
immunological checkpoint molecule LAG3 was also shown to be
substantially expressed in breast tumor tissues as compared to the
normal control group, according to BRCA research (Sasidharan Nair
et al., 2018), which is consistent with what we discovered.

Clinically, susceptibility to chemotherapy drugs differs from person to
person; even BRCA patients with the same stage of cancer will react
differentially to the same treatment regimen. Breast tumors are often
categorized using lymph nodemetastasis and histological grade in order to
apply various treatment regimens. However, this approach lacks accuracy,
as 70%–80% of patients survive without these treatments (van’t Veer et al.,
2002). Therefore, the finest individualized treatment programs for diverse
people before chemotherapywill have an impact on the patient’s prognosis.
In comparison to a single gene alone, many gene combinations may
predict chemotherapy sensitivity with higher sensitivity and specificity
(Zhang et al., 2020b). In this study, our risk model based on TIPARP,
SAMD4A, TSEN54, GSPT2, and RNASE1 was compared with the high
and low risk groups of breast cancer cell lines in the CellMiner database.
IC50 values for by-products of CUDC-305, Denileukin/Diftitox/Ontak,
and Tamoxifen were lower in the low-risk group. A lower IC50, in our
opinion, implies that these medications function more efficiently. Our
study may enable physicians to customize medicine for each patient by
assisting them in predicting the therapeutic response of BRCA patients
before they undergo treatment.

Previous studies have shown that gene mutations are the causes of
cancer (Frixa et al., 2015; Liu et al., 2017), with gene amplification being
themost common genetic change associatedwith cancer (Wu et al., 2020).
According to our analysis of the cBioPortal database, TIPARP, SAMD4A,
TSEN54, GSPT2, and RNASE1 are all mutated in BRCA, and gene
amplification is the main mutation type. This study’s GSEA enrichment
analysis leads to the conclusion that certain biological processes are crucial
to the development of cancer. In many malignant tumors, loss of tumor
suppressor factors and inactivation of some proto-oncogenes can induce
oxidative phosphorylation (Becherini et al., 2021). In BRCA, breast cancer
stem cells upregulate oxidative phosphorylation signals and rely on
oxidative phosphorylation phenotypes to meet their own high
metabolic requirements. Therefore, biological processes that inhibit
oxidative phosphorylation can produce tumor suppressive effects
(Raninga et al., 2020). DNA replication is the basis of all tissues,
including tumor tissue. A study of BRCA has shown that cancer cells
somehow improve or compensate for any potential DNA replication and/
or repair defects (Lee et al., 1999). The cytokine-cytokine receptor
interaction is a key pathway for regulating cellular inflammation (He
et al., 2019). Many studies have supported the role of inflammatory
response in BRCA (Guaita-Esteruelas et al., 2017; Pham et al., 2020;
Zhang et al., 2021). Natural killer cells are lymphocytes of the natural
immune system that have cytotoxic activity and help eliminate pathogen-
induced infections and cancer cells (Al Absi et al., 2018). The natural killer
cell-mediated cytotoxicity pathway is associated with NK cell activation,
which inhibits tumor development and eradicates malignancies (Yoon
et al., 2015; Paul and Lal, 2017). Tumor adhesion, abscission,
disintegration, motility, and proliferation are all impacted by the ECM
receptor interaction pathway (Bao et al., 2019). ECMplays a role in gastric

cancer invasion and metastasis as well as the promotion of epithelial-
mesenchymal transition in colorectal cancer cells (Rahbari et al., 2016;
Yan et al., 2018). In breast tumor tissues, ECM proteins or genes are
significantly expressed (Yoon et al., 2015). TGF-β is a key regulator of
epithelial-to-mesenchymal transformation, and TGF-β signal also
upregulates a series of oncogenic genes to further promote metastasis.
Therefore, inhibition of TGF-β signal transduction is conducive to
inhibiting BRCA metastasis (Tang et al., 2017). In addition, among
the prognostic genes screened in this study, GSPT2, RNASE1, and
SAMD4A are downregulated in the Cytokine-Receptor Interaction
pathway, and cytokines play a broad range of immunomodulatory
roles critical to human biology and disease (Spangler et al., 2015).
GSPT2, SAMD4A, and TIPARP are downregulated in ECM-receptor
interaction pathways, which play important roles in tumor shedding,
adhesion, degradation, motility, and proliferation and may be involved in
breast cancer development (Bao et al., 2019). High expression levels of
ECM proteins or genes in breast tumor tissues may provide new ideas for
cancer therapy. We believe that these genes and pathways may be
potential markers of breast cancer, but the mechanisms of
tumorigenesis and progression need further experimental validation.

In addition, we acknowledge limitations in our work. First,
because our data were obtained from public sources, certain
clinical details, such as patient treatment information, were omitted
to allow for more detailed analyses of the data for comparison
purposes. Second, clinical application studies and more
experimental mechanism studies are lacking. We will continue to
focus on these topics in the next studies as well.

In summary, we identified key genes and related pathways through
bioinformatics analysis of differential expression of DE-FR-RBPs in BRCA.
We established a new prediction model based on the key genes. ROC
analysis further proved that this method was reliable in predicting the
prognosis of BRCA patients. Furthermore, we found that the FR-RBPs-
associated risk signature was an independent and effective predictor of
BRCA survival. Subsequently, we verified the consistency of transcription
levels in clinical samples and explored trends in the expression of
prognostic genes at the protein level in BRCA and normal tissues.
These results may make it easier to understand the mechanisms of
BRCA and help us explore new biomarkers for BRCA patients.
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