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Mendelian randomization (MR) has become a common tool used in
epidemiological studies. However, when confounding variables are correlated
with the instrumental variable (in this case, a genetic/variant/marker), the
estimation can remain biased even with MR. We propose conditioning on
parental mating types (a function of parental genotypes) in MR to eliminate the
need for one set of assumptions, thereby plausibly reducing such bias. We
illustrate a situation in which the instrumental variable and confounding
variables are correlated using two unlinked diallelic genetic loci: one, an
instrumental variable and the other, a confounding variable. Assortative mating
or population admixture can create an association between the two unlinked loci,
which can violate one of the necessary assumptions forMR.We simulated datasets
involving assortative mating and population admixture and analyzed them using
three different methods: 1) conventional MR, 2) MR conditioning on parental
genotypes, and 3) MR conditioning on parental mating types. We demonstrated
that conventional MR leads to type I error rate inflation and biased estimates for
cases with assortative mating or population admixtures. In the presence of non-
additive effects, MR with an adjustment for parental genotypes only partially
reduced the type I error rate inflation and bias. In contrast, conditioning on
parental mating types in MR eliminated the type I error inflation and bias under
these circumstances. Conditioning on parental mating types is a useful strategy to
reduce the burden of assumptions and the potential bias in MR when the
correlation between the instrument variable and confounders is due to
assortative mating or population stratification but not linkage.
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Introduction

Randomized experiments, often called randomized controlled
trials, are the gold standard for drawing causal inferences. In
randomized experiments, observational units (e.g., subjects) are
randomly assigned to different levels of the variable being used
to assess the causal effect, e.g., the treatment. The randomization
process eliminates the influence of potential confounding variables
on the exposure variable (e.g., treatment or control). Therefore, we
can conclude that the observed difference in outcomes between
groups in randomized controlled trials is purely caused by the
treatment (barring stochastic variations). However, randomized
experiments are not always ethical, feasible, or practical (Sanson-
Fisher et al., 2007).

Observational studies do not always yield unbiased estimates of
effects because of their lack of random assignment. Of the multiple
limitations that these studies have, herein, we will only consider the
bias due to confounding.

To mitigate confounding, researchers often include potential
confounders in analyses as covariates in regression models or stratify
analyses by confounders. Figure 1A depicts a general causal model
with an exposure variable (X), an outcome (Y), a confounder (U),
and a genetic marker (G), where U is associated with both X and Y
and G determines X. The variables X, Y, and U are assumed to be
continuous. Causal effects and associations are represented by
directional and bidirectional arrows, respectively. If U is
observable and is included in the model, the estimate of the
effect of X on Y will be unbiased, provided the estimation
method does not induce a bias. However, the confounder (U) is
not always measurable or known. If U is a set of confounders of the
relationship betweenX andY and is not appropriately accounted for
in the analysis, the estimator of the regression coefficient of Y on X
will be biased.

Mendelian randomization (MR) was proposed to address the
issue of unmeasured confounders in observational studies (Smith
and Ebrahim, 2003; Boutwell and Adams, 2020; Sanderson et al.,
2022). MR uses genotypic (G) data from loci that affect the exposure
variable (X), do not have a direct effect on the outcome, and are
uncorrelated with potential confounders. The most commonly used
process of estimation is as follows: 1) X is regressed on G to obtain
the predicted value of X, X̂; 2) Y is regressed on X̂, and then, the
estimated coefficient is an unbiased estimator of the effect ofX on Y
under some assumptions. As a simple and robust approach for
causal inference, MR has become common in epidemiological
studies during the last few decades.

However, MR rests on three assumptions (Emdin et al., 2017):
“1) the genetic variant is associated with the risk factor; 2) the genetic
variant is not associated with confounders; and 3) the genetic variant
influences the outcome only through the risk factor.” In Figure 1A,
these assumptions correspond to the following: 1) G and X are
associated, 2) there is no association between G and U, and 3) there
is no direct effect of G on Y, not through X. If any of the
aforementioned three assumptions are violated, the estimated
effect is not guaranteed to be unbiased.

Unfortunately, the violation of assumptions, especially the
violation of assumption (2), is quite plausible: the genotype (G)
can be associated with confounders (U). Even without a direct effect
of G on U (or vice versa), assortative mating and population

stratification can yield associations between them, which violate
assumption (2). Furthermore, it is hard to verify this assumption
because U includes unmeasurable variables: “The second and third
assumptions, however, cannot be empirically proven and require
both judgment by the investigators and the performance of various
sensitivity analyses” (Emdin et al., 2017). This paper proposes
conditioning on parental mating types (defined as a combination
of genotypes of parents at a locus used as an instrumental variable
(Allison, 1997)) in MR to eliminate the bias in conventional MR,
when there is correlation between the instrumental variable and
confounding variables. This means that our approach obviates the
need for one of the three necessary assumptions in MR.

This paper consists of two parts. First, we demonstrate that the
estimation using conventional MR (without conditioning on
parental mating types) could lead to biased estimates, when there
is a correlation between the instrumental variable and confounding
variables due to assortative mating or population stratification.
Second, we propose the use of parental mating types in
conventional MR and to assess the utility of this approach.

Materials and methods

Mechanisms violating assumptions for MR:
Assortative mating and population
stratification

First, we define the variables, parameters, and error terms used
in the simulation and analyses (summarized in Table 1), with
explicit mathematical expressions and causal mechanisms. There
are six variables: X, Y, U, G,H, and P. X, Y, and �U are an exposure
variable, an outcome variable, and a confounder, respectively, and all
are quantitative traits (thus, continuous variables), such as weight
and height. G and H are genotypes defined by SNPs; thus, they are
one of the three statuses: AA,Aa, aa{ } for G and BB, Bb, bb{ } forH,
respectively; fA(*) and fD(*) are functions to calculate the additive
and dominance effect of a genotype, respectively (fA counts the
number of A [or B] alleles for the genotype; fD is 1 for a
heterozygote and 0 for a homozygote). P is the parental mating
type, a combination of genotypes of parents at a locus used as an
instrumental variable, and one of the six statuses:
AA/AA,AA/Aa, AA/aa, Aa/Aa,Aa/aa, aa/aa{ }. We introduce
five indicator functions to compute the genetic effect of parental
mating types, IAA/AA(P), IAA/Aa(P), IAA/aa(P), IAa/Aa(P), IAa/aa(P),
where the function is 1 if P is the same as the subscript of the
function and otherwise, 0. The effect of a variableM on a variableN
(i.e., the difference in N due to a single unit increase in M) is
represented by βMN. It should be noted that the additive effect and
the dominance effect of a genotype M on a variable N are
represented as βMAN

(i.e., difference in N by substituting allele A
[or B] for allele a [or b]) and βMDN

(i.e., deviance from the average of
genotypic values of the two homozygotes), respectively.
Furthermore, there are five coefficients to represent the effect of
parental mating type P on a variable M using the parental mating
type aa/aa as a reference group. Thus, for example, βAA/AAM is the
unit increase inM for the parental mating typeAA/AA compared to
the increase in the parental mating type aa/aa. Estimated regression
coefficients are distinguished from the causal effect using the
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following: β̂MN is the regression coefficient estimated by regressing
N on M.

Figure 1B is a causal model in which the confounding variable set,
U, is separated into two sets of variables: one set includes a
confounding variable consisting of a genotype on a single biallelic
locus (H) with two alleles B and b, and the second set �U consists of all
other confounders. We note that in our scenario,H and the genotype
on the biallelic locus, used as an instrumental variable (G), are
unlinked. However, G and H could be correlated (i.e., non-linkage
disequilibrium), which would violate assumption (2). The following
describes two situations, assortative mating and population
stratification, which can cause such a non-linkage disequilibrium.

Situation 1: Assortative mating
In human and other animal populations, the choice of a mate

does not plausibly occur at random. One may be more likely to mate
with another who has specific phenotypes, resulting in non-random
or assortative mating (Anonymous, 1903). For example, assortative
mating for body mass index (BMI) or body fatness (i.e., individuals

with a high BMI or body fatness are more likely to mate with one
another, as are individuals with low BMI or body fatness) is widely
observed (Allison et al., 1996; Silventoinen et al., 2003; Jackson et al.,
2007). We modeled assortative mating as being dependent on the
exposure variableX. Mothers and fathers are separately sorted byX,
and they are paired according to the order. For this purpose, each
parent’s genotype, exposure, outcome, and confounders are
explicitly modeled. Variables are given with one of the two
subscripts, m or f, for either the mother or the father (variables
without these subscripts are for an offspring). The model is
summarized in Figure 1C.

Briefly, the correlation between G andH is explained as follows:
Assortative mating on X (i.e., Xm and Xf) induces associations
between Gm andHf and Gf andHm, which result in an association
between G and H, thus violating the MR assumption (2).

Situation 2: Population stratification
Population stratification occurs and can create

genotype–phenotype associations in the absence of linkage or a
causal effect of the specific genotype on the specific phenotype, when
a population consists of multiple subpopulations (Freedman et al.,
2004) and some subpopulations have different allele frequencies and
phenotypic distributions. By using the framework given in Figure 1C
without assortative mating, we assume two different subpopulations.
Therefore, within each subpopulation, three assumptions are held
for conventional MR. The difference between the two populations is
that they have different allele frequencies. If data from the two
subpopulations were analyzed as a single population without
accounting for the population substructure, they would yield a
spurious association between G and H (because all parental loci
[Gm, Hm, Gf, and Hf] are associated), which violates the MR
assumption (2).

Correcting the bias in MR: Conditioning on
parental mating types

Assuming the aforementioned two situations, the conventional
MR estimation procedure can lead to biased estimates because MR
assumption (2) is violated. To eliminate the bias, we propose
conditioning on the parental mating type P, which is a
combination of parental genotypes used for the instrumental
variable in MR. The rationale for using P is that both Gm and
Gf are located on open (i.e., d connected) paths between genotypes
G andH in both situations 1 and 2, and conditioning on P blocks the
path. We also follow the approach of using parental genotypes
instead of mating types, as proposed by Hartwig et al. (2018),
which is another reference method.

In the following, we show details of three methods: conventional
MR,MR conditioning on parental genotypes [a method proposed by
Hartwig et al. (2018)], and MR conditioning on parental mating
types (which we propose in this study). It should be noted that
unmeasurable variables (variables in ovals, given in Figure 1C) do
not appear in any of the analyses.

Conventional MR
1) Conventional MR uses the following model:

X � β1 + βGAX
fA(G) + βGDX

fD(G) + εX, where εX is an error

FIGURE 1
Causal models for Mendelian randomization. Directional and
bidirectional arrows correspond to causal and associational
relationships, respectively. βs are regression coefficients. Variables in
rectangles and ovals correspond tomeasurable or unmeasurable
variables, respectively. (A) Generalized model for Mendelian
randomization (MR) with three assumptions. (B) Explicit causal model
separating confounding variables, U, into the variable consisting of
unlinked heritable variants in the nuclear genome, H, and all other
confounding variables, �U. (C) Explicit causal model for the
father–mother–offspring trio. The parental mating type, P, is the
combination of parental genotypes (Gm and Gf ), which takes one of
the six possible values. The dotted line connecting Xm and Xf implies
assortative mating of these variables.
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term. Therefore, the auxiliary regression of X on fA(G) and
fD(G) is performed to obtain the estimated value of X (= X̂):
X̂ � β̂1 + β̂GAX

fA(G) + β̂GDX
fD(G).

2) Then, the regression of Y on X̂ is conducted by assuming the
following model with an error term εY: Y � β2 + βXYX̂ + εY.

MR conditioning on parental genotypes
To correct for the bias in MR, Hartwig et al. (2018) proposed

conditioning on parental genotypes. The analysis proceeds as
follows:

1) MR conditioning on parental genotypes uses the following
model: X � β1 + βGAX

fA(G) + βGDX
fD(G) + βGmAX

fA(Gm) +
βGmDX

fD(Gm)+ βGfAX
fA(Gf) + βGfDX

fD(Gf) + εX. Therefore,
the auxiliary regression of X on fA(G) and fD(G) conditioning
on fA(Gm), fD(Gm), fA(Gf), and fD(Gf) are performed to
obtain the estimated value of X (= X̂): X̂ � β̂1 + β̂GAX

fA(G) +
β̂GDX

fD(G) + β̂GmAX
fA(Gm) + β̂GmDX

fD(Gm) + β̂GfAX
fA(Gf) +

β̂GfDX
fD(Gf).

2) The regression of Y on X̂ is conducted assuming the following
model: Y � β2 + βXYX̂ + βGmAY

fA(Gm) + βGmDY
fD(Gm) +

βGfAY
fA(Gf) + βGfDY

fD(Gf) + εY.

MR conditioning on parental mating types
Hartwig et al. (2018) assumed an additive model and, thus, used a

parental genotype as an instrumental variable. However, if the effect of

the parental genotype on an offspring’s phenotype is non-additive,
using a parental mating type, i.e., a combination of parental genotypes
taking one of the six possible values (Figure 1C), is more appropriate.
The corresponding analysis proceeds as follows:

1) MR conditioning on parental mating types uses the following
model: X � β1 + βGAX

fA(G) + βGDX
fD(G)+

βAA/AAXIAA/AA(P) + βAA/AaXIAA/Aa(P) + βAA/aaX IAA/aa(P), +
βAa/AaXIAa/Aa(P) + βAa/aaX IAa/aa(P) + εX. Therefore, the
auxiliary regression of X on G1 conditioning on the parental
mating type P is performed to obtain the estimated value of
X (= X̂): X̂ � β̂1 + β̂GAX

fA(G) + β̂GDX
fD(G) +

β̂AA/AAXIAA/AA(P) + β̂AA/AaXIAA/Aa(P) + β̂AA/aaX IAA/aa(P), +
β̂Aa/AaXIAa/Aa(P)+ β̂Aa/aaX IAa/aa(P).

2) The regression of Y on X̂ is conducted by assuming the
following model: Y � β2 + βXYX̂ + β̂AA/AAXIAA/AA(P) +
β̂AA/AaXIAA/Aa(P) + β̂AA/aaX IAA/aa(P), + β̂Aa/AaXIAa/Aa(P) +
β̂Aa/aaX IAa/aa(P) + εY.

Simulations

To demonstrate the potential bias when conventional MR is used
due to the violation of the MR assumption (2) and the utility of using
parental mating types to eliminate the bias, we performed simulations
considering assortative mating and population stratification.

TABLE 1 Summary of variables, functions, and intercepts in regression models.

Parameter Description

X Exposure variable

Y Outcome

G Genotype of a locus with effects on X (G ∈ AA,Aa, aa{ })

H Confounder consisting of a genotype of a locus with effects on X and Y (H ∈ BB, Bb, bb{ })
�U All other (non-genetic) confounders (with effects on X and Y)

P Parental mating type on G (P ∈ AA/AA,AA/Aa, AA/aa, Aa/Aa,Aa/aa, aa/aa{ })

Function for genetic effects Description

fA(M) Function to compute the additive effect of genotype M (counting the number of A or B)

fD(M) Function to compute the dominance effect of genotype M (1 for a heterozygote and 0 for a
homozygote)

IAA/AA(P) Indicator function (1 for the parental mating type AA/AA and 0 for the other)

IAA/Aa(P) Indicator function (1 for the parental mating type AA/Aa and 0 for the other)

IAA/aa(P) Indicator function (1 for the parental mating type AA/aa and 0 for the other)

IAa/Aa(P) Indicator function (1 for the parental mating type Aa/Aa and 0 for the other)

IAa/aa(P) Indicator function (1 for the parental mating type Aa/aa and 0 for the other)

Iaa/aa(P) Indicator function (1 for the parental mating type aa/aa and 0 for the other)

Intercept in the regression model Description

β1 Genotypic value of aa on X

β2 Genotypic value of bb on Y when both X and �U are zero
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For the simulation of each situation, we created data for
1,000 trio (father–mother–offspring) families (500 trios each for
the population for situation 2) for a single simulation and performed
three different analyses on each dataset. We repeated the process
1,000 times for each parameter setting. The type I error rate (when
βXY � 0) is defined as the proportion of simulations in which the
estimated association between X and Y is statistically significant
(false-positive finding). The bias in the estimated coefficient
E[β̂XY − βXY] is also assessed when βXY > 0. The coefficient βXY

was set as 1.0 for bias assessment. The sensitivity of the type I error
rate and the bias on the magnitude of the violation of MR
assumption (2) were assessed by varying the parameters. The
significance level was set as 0.05. The process for generating data
and analyses are described in the next section.

Simulation 1: Assortative mating
The following is a step-by-step protocol and parameter setting

for the simulation:

1) Allele frequencies of A and B are 10% for each:
Prob(A) � Prob(B) � 0.1, Prob(a) � Prob(b) � 0.9. Each
parent’s genotypes (Gm, Hm, Gf, and Hf) are determined
assuming the Hardy–Weinberg equilibrium (Hardy, 1908). It
should be noted that G and H are independent.

2) The confounding variables for parents, �Um and �Uf, are
determined, which follow a bivariate normal distribution:
N(0, 0.1).

3) The exposure variables of parents,Xm andXf, are determined by
their genotype and confounding variable:
Xm � β1 + βGAX

fA(Gm) + βGDX
fD(Gm) + β �UX

�Um + εX, where
εX ~ N(0, 0.1). β1 is interpreted as the genotypic effect of the
genotype aa on X. Xf is determined in the same way as Xm.

4) The outcome of parents, Ym and Yf, are determined by their
exposure, genotype, and confounding variable: Ym � β2 +
βXYXm+ βHAY

fA(Hm) + βHDY
fD(Hm) + β �UY

�Um + εY, where
εY ~ N(0, 0.1). β2 is interpreted as the genotypic effect of the
genotype bb on Y,when bothX and �U are zero. Yf is determined
in the same way as Ym.

5) Proportion p is selected from paternal and maternal populations.
In the selected population, both parents are sorted separately by
the exposure Xm or Xf and are paired according to the order of
Xm and Xf. Unselected parents (1-p) are randomly coupled
regardless of the values of X and Y.

6) The genotype of the offspring, G and H, are determined by
randomly selecting an allele from each parent.

7) The exposure, X, and the outcome, Y, of the offspring are
determined by following the same process as for the parents
(see 3 and 4).

FIGURE 2
Type I error rate and bias of estimated coefficients for three different types of MR. Open squares, open circles, and open triangles correspond to
conventional MR, MR conditioning on parental mating types, andMR conditioning on parental genotypes, respectively. For simulation 1, the proportion of
the population involved in assortative mating was changed from 0 to 0.8. For simulation 2, allele frequencies of A and B for subpopulation 2 were varied
from 10% to 90%. (A, B) Type I error rates for simulations 1 and 2. Gray dotted lines are significance levels (= 0.05). (C, D) Bias in the estimated
regression coefficient of an offspring’s outcome on exposure (β̂XY − βXY ) for simulations 1 and 2.
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The sensitivity of the type I error rate and bias was assessed by
changing p from 0.0 to 0.8. All effects from �U to X and Y are
assumed to be 1. For genetic effects, we assumed that there is no
additive effect (βGAX

� βHAX
� βHAY

� 0), but there is a strong
dominance effect (βGDX

� βHDX
� βHDY

� 1) of G and H on any
associated variables.

Simulation 2: Population stratification
The simulation setting for simulation 2 is similar to simulation

1 save for a couple of differences: 1) no assortative mating and 2) we
assume two populations (i.e., subpopulation 1 and subpopulation 2)
with different allele frequencies. Allele frequencies of A and B for
subpopulation 1 are 10% each. Otherwise, all simulation settings,
including parameter settings, are the same as those in simulation 1.
The source of the violation of MR assumption (2) is different allele
frequencies. To demonstrate the sensitivity of the type I error rate
and bias on the magnitude of the violation of MR assumption (2),
allele frequencies of A and B for subpopulation 2 were varied from
10% to 90%. All simulations and analyses were performed using
statistical computing software R (version 3.6.1).

Results

The type I error rate for simulation 1 is shown in Figure 2A.
Type I error inflation was observed for conventional MR and MR
conditioning on parental genotypes, and it increased as the
proportion involved in assortative mating increased. Type I error
inflation was not observed for MR conditioning on parental mating
types. Type I error inflation was mitigated by conditioning on
parental genotypes to some extent, which still remained. The
type I error rate for simulation 2 is shown in Figure 2B. Type I
error inflation was observed for both conventional MR and MR
conditioning on parental genotypes but not for MR conditioning on
parental mating types. As shown in simulation 1, conditioning on
parental genotypes reduced but did not eliminate type I error rate
inflation. Interestingly, we observed a large type I error inflation
when allele frequencies for the subpopulation were intermediate
(0.5). This is because we assumed that homozygous genotypes
(i.e., AA, aa and BB, bb) have the same effect on phenotypes
(X and Y).

The bias of the estimated coefficient is shown in Figures 2C, D.
We observed similar results for the bias in estimation as in type I
error rates. When type I error rate inflation was observed, a
statistically significant bias was also observed, and magnitudes of
type I error rate inflation and absolute bias were positively
associated.

Discussion

MR has become a common approach for causal inference in
epidemiology, as genetic data become more accessible owing to fast
and efficient DNA sequencing technology and as journals and
funding bodies encourage data sharing (Levey et al., 2009; Bloom
et al., 2014; Loder and Groves, 2015). However, as for most
epidemiological approaches, MR has essential assumptions we
need to check before performing analysis. Among them, the

assumption of no association between genetic variants used in
MR and confounders [MR assumption (2)] could be violated or
is difficult to check in practice. First, we demonstrated that MR
produces inflation in type I error rates and a biased estimation in
realistic settings where the assumption is violated. We introduced
two plausible situations: assortative mating and population
stratification. The sensitivity of type I error rates and estimation
bias was assessed by changing parameters relevant to the violation of
the MR assumption. As expected, we observed type I error inflation
and estimation bias in these realistic settings when conventional MR
was used, and such inflations and biases worsened as violations
became more severe. They were mitigated by conditioning on
parental genotypes to some extent; however, type I error inflation
remained. Second, we proposed the use of parental mating types for
a valid association inference for these two situations. We successfully
confirmed that conditioning on parental mating types solves the
problem in both situations.

We noted that we are not the first to propose the idea of
considering parental genetic information in an epidemiological
study. The idea was originally proposed in testing for linkages in
the presence of associations (Allison, 1997). Redden et al. suggested
using parental mating types in the inference of genotype–phenotype
associations (Redden and Allison, 2006). Later, Liu et al. (2015)
extended the idea to testing causal effects of a fetal drive. In this
work, they showed the relationship between this idea and MR. In
MR, the genetic variant needs to be a causal variant. However, it may
be difficult to verify this assumption in practice, if not impossible.
Conditioning on parental mating types is one way to identify causal
genetic variants, thus relaxing assumptions, specifically assumption
(2) of MR (resulting in the strengthening of MR). In the context of
MR, Hartwig et al. proposed using parental genotypes in the case of
assortative mating, which violates MR assumption (3) (Hartwig
et al., 2018). They proposed two methods to integrate parental
genotypes in MR analyses. The first method is to adjust
conventional MR by parental allele scores, which we used in
this study. The second method is to use parental non-
transmitted allele scores and the offspring allele score as
instrumental variables of parental and offspring exposure
variables. They demonstrated that both methods provide
unbiased estimates of the exposure–outcome association and
avoid type I error inflation even under strong assortative
mating conditions. The difference between the study by
Hartwig et al. and ours is that we assumed that the locus
influencing the outcome (H) also influences the exposure (X).
Therefore, their model is considered a special case of ours.
Although Hartwig et al. (2018) concluded that only cross-trait
assortative mating (between X and Y) yields a bias, we found that
same-trait assortative mating (between Xs or between Ys) can also
yield a bias due to the heritable confounding variable (H).
Furthermore, we found that conditioning of parental genotypes
is not enough to control the bias if effects of alleles on phenotypes
are non-additive. In our previous work (Liu et al., 2015), we
indicated that random mating is not assumed with conditioning
on parental mating types. We also explained that it is necessary to
condition on parental mating types to achieve randomization,
which is the basis for causal inference. Further insights into the
rationale for this or other ways of expressing fundamental ideas
can be found in the study by Pearl et al. (2016).
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We list a few limitations of our approach. One apparent limitation
is the data availability. Most genetic epidemiological research studies
do not have (or is not designed to collect) parental genetic data
(i.e., mother–father–offspring). However, because family trio data
collection is considered to be a powerful tool for identifying rare
diseases, even outside the context of MR, and owing to technological
advancements in gene sequencing, the collection of family trio data
may become more common (Infante-Rivard et al., 2009). In a recent
study, Young et al. proposed imputing parental genotypes to reduce
biases in GWA studies (Young et al., 2022). The imputation strategy
presented in this study provides an opportunity to implement
methods we proposed here for MR in situations where parental
genotypes are not directly available. In this work, we propose that
conditioning on parental genetic mating types can reduce
assumptions needed for MR. We illustrate this key principle using
a simulation study involving one locus with dominance effects.
However, the approach we propose is general and does not require
dominance effects. Indeed, our approach will also work under an
additivemodel because the additivemodel is a special case of themore
general model we use for conditioning. However, if the mode of action
of the locus is strictly additive, conditioning on a parental allele dosage
may be enough to reduce the bias. Therefore, in future studies, we plan
to assess the superiority of conditioning on parental mating types
relative to conditioning on allele dosages. Furthermore, we plan to
assess the principle we proposed in a broader range of realistic
circumstances. We are, particularly, interested in investigating two
situations. The first is to evaluate the performance of the proposed
approach in a multi-locus context for models involving epistatic
interactions, which seem common (Zhu et al., 2015). The second
situation is one where there is a selection bias on the exposure, X.
Since X is a collider of G,H, and �U, if a subpopulation was sampled
according to X (people with X higher than the threshold, for
example), spurious correlations among G,H, and �U might occur.
In this case, conditioning on parental genetic mating types can
account for the correlation between G andH but not for the
correlation between G and �U because �U is not a heritable variable.

However, regardless of the limitations suggested previously,
conditioning on parental mating types in MR can strengthen
assumptions and help avoid type I error inflation and bias, when
a heritable confounding variable is associated with the instrumental
variable in MR.
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