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Hepatocellular carcinoma (HCC) is themost common type of liver cancer with a high
morbidity and fatality rate. Traditional diagnosticmethods for HCC are primarily based
on clinical presentation, imaging features, and histopathology. With the rapid
development of artificial intelligence (AI), which is increasingly used in the
diagnosis, treatment, and prognosis prediction of HCC, an automated approach to
HCC status classification is promising. AI integrates labeled clinical data, trains on new
data of the same type, and performs interpretation tasks. Several studies have shown
that AI techniques can help clinicians and radiologists be more efficient and reduce
the misdiagnosis rate. However, the coverage of AI technologies leads to difficulty in
which the type of AI technology is preferred to choose for a given problem and
situation. Solving this concern, it can significantly reduce the time required to
determine the required healthcare approach and provide more precise and
personalized solutions for different problems. In our review of research work, we
summarize existing research works, compare and classify the main results of these
according to the specified data, information, knowledge, wisdom (DIKW) framework.
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1 Introduction

Estimates from year 2000 indicated that liver cancer will continue to be the most
common human malignancy, with a case growth predicted at over 500,000 per year and, for
high-risk countries, a large number of cases occurring before age 20 and lasting for decades
(Bosch et al., 2004). Publicly available data from 2012, GLOBOCAN 2012, demonstrated that
the number of cases exceeded 770,000 in 2012 (Maucort-Boulch et al., 2018). By 2018, the
data in GLOBOCAN 2018 indicated that new cases had exceeded 840,000. These figures
show the rapid growth of liver cancer cases worldwide and level of attention andmedical care
challenges that the disease requires (Freddie et al., 2018). In 2020, the American Cancer
Society reports noted that, in the United states, there were 30,160 local cancer fatalities and
42,810 new instances of liver and intrahepatic bile duct tumors, implying a variety of clinical
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conditions that may accompany HCC, reflecting the potential
pathophysiological heterogeneity and tenaciousness of the disease
(Jemal et al., 2020).Therefore, in such a medical context, HCC has
become a common and worthwhile research topic to investigate its
early diagnosis and intervention and propose prognostic medical
behaviors.

The conception of artificial intelligence (AI) was introduced in
the 1950 s, and researchers have widely applied, and reinvented the
intersection within themedical field through continuous exploration
and innovation within the field, due to the intention of rising the
expertise of clinicians and patients. AI technologies began to rapidly
evolve in the 21st century, powering the training of machine
learning (ML) and deep learning (DL) algorithms. Whether in
prospective research; in the analysis of medical images, non-
image data sources, non-routine problem formulation, and
human-AI collaboration; or in the prevention and prediction of
personalized patient intelligence solutions for major medical
diseases, the intersection of AI and healthcare has been a
promising research direction for the current and future
healthcare field (Rajpurkar et al., 2022).

AI plays several roles in the medical industry and has
demonstrated outstanding results at various levels. AI technology
is currently being deployed in clinics to increase the operational
efficiency of medical staff and minimize the misdiagnosis rate (Beam
et al., 2018). Oncology therapy and management typically follow
particular patterns. AI technology can be trained using clinical data
interpreted by physicians and then used to identify or predict
diseases based on new data of the same type (Dias and
Torkamani, 2019). Furthermore, in the field of HCC, research
teams have used DL with the aid of entire images to assist
pathologists in diagnosis and prediction, achieving an accuracy
rate over 88% by assessing the impact of diagnostic performance
of pathologists with varying levels of expertise (Kiani et al., 2020).
Consequently, AI is both required and advantageous for patients as a
smart, dependable, and non-invasive diagnostic method. In this
study, we briefly outline the use of AI approaches in the diagnosis of
HCC and examine the benefits and drawbacks of various
researchers’ findings by classifying and comparing their
performance on several aspects.

The main purpose of this review is to collect, synthesize, and
reallocate past and ongoing classification results (Perez and Grande,
2020; Feng et al., 2021) on the deployment of conventional models
and tools in AI applications concerning serology, imaging,
histopathology, proteomics, and the genetic diagnosis of HCC,
combined with the use of the data, information, knowledge,
wisdom (DIKW) framework to reorganize and reclassify the
results provided by these studies to achieve horizontal
performance comparisons at the same level to provide new ideas
for vertical classification at different depths of the technology
employed. The DIKW framework is used to understand the
importance and conceptual limits of each layer by assigning
certain qualities to the next layer. The first data layer is the most
basic, and information adds a deeper level of content, knowledge
adds the concept of how to use it, and the wisdom level determines
when/what to use it (Fricke, 2009; Rowley, 2010), such as in ML, DL,
neural networks, and big data for an early HCC diagnosis. The
framework is also used to review the advantages and disadvantages
by comparing the effects of different researchers’ models and

multidimensional comparisons in the context of specific HCC
medical fields. For instance, studies have demonstrated that the
early diagnosis of HCC could improve the prognosis owing to early
intervention (Singal et al., 2020). In addition, HCC can be diagnosed
without a confirmatory biopsy owing to particular radiological
features (Heimbach et al., 2018). Although ML algorithms,
models, and packages are gradually optimized as technology
advances, as the problems broaden, so do the demands on the
models’ efficacy and accuracy. As the issues gradually diversify and
the requirements for model effectiveness and algorithm accuracy
gradually increase, algorithm requirements become higher.
Consequently, surveillance techniques with a reliable and good
sensitivity and specificity for early HCC remain scarce.

2 DIWK framework

This review is based on widely used research publication
databases, including the Scopus, Google Scholar, and PubMed
database. We started with keywords defined by articles. Because
technology and medicine have developed in recent decades, these
keywords were more precisely defined for certain scenarios. By
searching for these keywords, we collected 83 research
publications concerning similar scenarios and prepared these
for a secondary filtering process. Although most of these
articles covered a keyword or a combination of keywords for
specific scenarios, some articles were excluded from the secondary
filtering process because our focus was on the medical diagnosis
and classification of HCC, such as the diagnosis of other liver
diseases or the use of liver disease to determine whether other
hidden diseases were present. The remaining articles were first
classified by the AI and traditional medical diagnostic techniques
used. Using the DIKW framework, the articles were then classified
and reconstructed to obtain more relevant comparisons with
similar dimensions to obtain our final review results. Here, we
applied the general definition of DIKW to this review research for
the specified HCC filed. In the first layer, the data contains basic
testing items such as, blood testing indicators includes but not
limit to, alanine transaminase (ALT), aspartate aminotransferase
(AST) testing, prothrombin time (PT) testing, total-value
bilirubin (TBil) blood testing, direct bilirubin (DBil) blood
testing, alkaline phosphatase (ALP), albumin (ALB) blood
testing, gamma-glutamyl transferase (GGT) testing, adenosine
deaminase (ADA), alpha-l -fucosidase (AFU) testing, yoo-REE
(urea) testing, urinary aldosterone (UA), blood ammoria (BA),
lactate dehydrogenase and lactic acid dehydrogenase (LDH),
superficial thrombophlebitis (STP), serum total bilirubin (STB),
alpha-fetoprotein (AFP), monoamine oxidase inhibitor (MAO)
testing, amino terminal peptide of type III procollagen (PIIINP),
monoethylglycinexylidide (MEGX test), serum Golgi protein 73
(GP73) testing, 3-Glypican-3 (3GPC-3) testing, carbapenem-
resistant Enterobacterales (CRE) testing and Immunoglobulin
G (IgG) testing. Image testing data includes magnetic
resonance imaging (MRI), computed tomography (CT) and
Ultrasound (US). And patient’s feature indicators. The
information layer refines the data from the first layer using
identifiable data to perform a basic identification of the
existence of HCC, using information such as Hepatitis B Virus
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(HBV), Hepatitis C Virus (HCV) indicators, fatty liver indicators,
inherited liver disease and regenerative nodule family history. The
knowledge layer fuses the valuable part of information collected
through the second layer to understand the knowledge and logical
connections behind the data through prerequisite knowledge. For
example, by establishing the functions between the input and
output, we can build ML and DL models and algorithms for
prediction and derivation. In particular, if the patient’s HBC and
HCV indicators are not in the normal range, the model predicts
the diagnosis of HCC. Therefore, we can assume that the risk of
the disease is significant given that the patient has a family
history of pathology and is older. The wisdom layer, based on
intelligent analysis and assisted decision making by applying a
thorough understanding of the deep logic transmitted by the
knowledge layer, produces reports and recommends more
detailed and in-depth content such as decision-making
solutions (Figure 1).

3 Data and information layers in the
diagnosis of HCC

Some of the common core technologies in AI include ML,
NLP (natural language processing), computer vision, and
robotics, which have all become autonomous sub-industries.
Combined with the hot cross-domain technologies that have
emerged in recent years, AI technologies have also produced
different levels of quality products through their different
features and advantages. Traditional ML is a type of AI based
on automatically learning from previously provided data and
algorithm training, to organize and recognize patterns. Support
vector machines (SVMs), Bayesian networks (BNs) (Wu and Cai,
2011; Jia et al., 2015), k-nearest neighbor (KNN) (Wu et al.,
2012), decision trees (DTs) (Wang et al., 2018), artificial neural

networks (ANNs), and classification and regression trees have all
been employed in the medicinal field (Kaul et al., 2020). Over the
last decade, technological improvements have resulted in the
appearance of DL as a new ML model for creating multilayer
hierarchies of ANNs (Berre et al., 2020). For example, deep
neural networks (DNNs) have been used in substantial
research employing to handle a wide range of pattern
recognition and classification tasks (Liu et al., 2020; Ma et al.,
2021; Su et al., 2021), ranging from smart speakers that introduce
intelligent assistants to complex computer vision tasks in self-
driving automobiles (Bazrafkan and Corcoran, 2018). Many of
these issues can be applied to the design of smarter consumer
electronics (CE) systems and devices. Engineers must translate
the results of this rich academic and industrial research into
practical DNN solutions and investigate accessing the broader
utility of DL such that increasingly large datasets can be
processed in a reasonable time-frame in the CE industry,
particularly with the arrival of optimized hardware based on
graphics processing units (GPUs) (Lemley et al., 2017). AI is
gaining popularity in clinical decision-making concerning
HCC. Figure 2 presents an overview of applying AI to HCC
diagnosis.

3.1 Image data and information

3.1.1 Serology
The early detection of HCC is critical for improving prognosis and

long-term survival. The traditional paradigm relies on imaging tests,
such as ultrasonographic methods that are not as sensitive as serologic
markers. Serologicmarkers are convenient, fast, inexpensive, and can be
used for the dynamic surveillance of HCC (Witjes et al., 2013). However
Serology is prone to false positives and negatives. The diagnostic
potential of four serum biomarkers was used to model the diagnosis

FIGURE 1
DIKW framework system overview.
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of HCC via multilayer perceptron (MLP) and radial basis function
(RBF) neural networks, according to a combination of results from
previous studies (Memarian and Balasundram, 2012; Li B. et al., 2017).
The results showed that the combination of serological markers and
ANNs could improve the sensitivity and accuracy of HCC diagnosis,
thereby improving the prevention and treatment of HCC. The
applications of AI technology can analyze the disease risk coefficient
from large datasets related to the laboratory indicators of patients.

In 2005 (Wang et al., 2005), a team developed a method for
detecting serum protein fingerprints using protein microarray
technology, in which surface-enhanced ionization time-of-flight mass
spectrometry (SELDI-TOF-MS) on protein biochips was combined
with ANN analysis to analyze and model liver cancer, cirrhosis, and
healthy individuals. The trained ANNs’ sensitivity and specificity for
detecting liver cancer reached 88.2% and 94.6%, respectively. This
optimized the sensitivity and specificity compared with the
conventional approach. Unlike the aforementioned single-factor
analysis, a multi-factor analysis approach can establish a higher
diagnostic value (Ning et al., 2021). Xie et al. (2018) constructed an
expression detection system based on the GeXP system for nine genes:
GPC3, HGF, ANXA1, FOS, SPAG9, HSPA1B, CXCR4, PFN1, and
CALR. The teamdeveloped amulti-parametric gene expression analysis
method by combining logistic regression analysis, discriminant analysis,
classification trees, andDNNs tomodel the diagnosis of groups of early-
stage HCC patients and healthy controls by routinizing the area under
the curve (AUC), sensitivity, and specificity. The specificity was used as
the target function and as the final diagnostic index. The results showed
that the ANN detection system was most valuable for the diagnosis of
HCC with a high AUC (0.94), sensitivity (98%), and specificity (85%).

Combined with these research results, ANNs, as a major branch
of machine learning, have excellent experimental feedback in both
single- and multi-factor analysis, which provides confidence to
researchers concerning the future cross-section of liver cancer
treatment and diagnosis in the context of AI-medicine.

3.1.2 Imaging
Ultrasound (US), magnetic resonance imaging (MRI), computed

tomography (CT), positron emission tomography (PET), and other
imaging techniques play an important role in the diagnosis and
therapeutic effect assessment of HCC. Radiomics combined with AI
has gradually verified to be a promising breakthrough in clinical
analysis, for the precise quantitative information it provides and
therefore the extra discriminatory options still unknown, gives aid
professionals with a lot of correct predictions for identification
pathological lesions within the liver (Feng et al., 2021). However, the
abilities of CT and MRI with extracellular agents to differentiate
cirrhotic nodules, dysplastic nodules, and early HCC is limited
(Choi et al., 2014). Fortunately, the two-dimensional attribute and
digitization trend of medical image are approved to appropriately fit an
AI application. Because cancer is heterogeneous in both space and
events, this limits the use of invasive biopsies based on molecular
detection, but offers great potential for medical imaging. Over the past
decade, innovations in medical imaging and advances in radiomics
research have led to significant breakthroughs in the development of
quantitative imaging. In 2012, radiomics was proposed and well
adapted for use in oncology research (Lambin et al., 2012). A high-
throughput extraction of a large number of image features from
radiological images has solved the problems of extracting more

information from image-based features, reproducible analysis
methods, etc. However, further validation is required in a
multicenter setting and in real clinical trials (Mokrane et al., 2020).

The aim of radiomics is to provide precise risk stratification by
incorporating imaging traits into predictive models for treatment
outcomes. This high-throughput approach extracts a large amount
of imaging data using computer-aided engineering and creates a
variety of image-based, quantifiable features to establish a
connection between different characteristics and diagnosis,
therapy, and prognosis (Lambin et al., 2017).

3.1.3 CT
Liver segmentation in CT imaging is of great importance to assess

liver lesions and plan the ideal treatment. Several studies have shown
that the application of AI combined with traditional CT examination
improves the diagnostic accuracy of HCC. Computed tomography
texture analysis (CTTA) is a method of quantifying lesion
heterogeneity to distinguish different lesions. A study compared
CTTA software involving an RF model against two radiologists in
the accuracy of analyzing 17 cases of focal nodular hyperplasia,
19 hepatic adenomas, 25 HCC, and 19 cases of normal liver
parenchyma, demonstrating the model had a significantly higher
prediction accuracy (> 90% vs. 72.2% and 65.6%) (Raman et al., 2015).

In addition, Ouhmich et al. (Ouhmich et al., 2019) used a DL
cascaded convolutional neural network (CNN) based on U-Net
architecture to differentiate normal liver tissue from HCC on
multiphase CT images automatically, and their proposed method
was comparable to state-of-the-art methods for automatic MR
image segmentation and significantly outperformed traditional
interactive CT image segmentation techniques, thereby allowing
for the effective assessment of the necrosis rate of tumor tissue.

Furthermore, Yamada et al. (Yamada et al., 2019) determined that
the diagnostic performance of transfer learning (TL) using a
pretrained CNN was robust to the error registration of multiphase
HCC images (Cao et al., 2020), and they retrospectively evaluated over
200 consecutive patients with actual primary liver cancer. Their results
indicated that the CNN combined with a DCE-CT graphics
processing model has good effects for liver cancer prevention
diagnosis by observing the diagnostic work of another research
team (Yasaka et al., 2018) using DL methods and CNN to
differentiate liver masses in dynamic CT scans by building a CNN
model with six convolutional, three maximumpooling, and three fully
connected layers to achieve a median AUC of 0.84. According to these
studies, we know that the DL model deployment in CT diagnosis
provides good performance results for both preventive diagnosis and
error tolerance. Balagourouchetty et al. (Lakshmipriya et al., 2018)
extracted the deep features of CT images with a TL method and built
an integrated FCNET classifier, which could accurately classify six
types of liver CT images: normal, HCC, hemangioma, cyst, abscess,
and liver metastases. They reported that, based on ML techniques,
using quantitative imaging features extracted from triphasic CT scans
can enhance the diagnostic accuracy of HCC in cirrhotic patients with
indeterminate liver nodules.

3.1.4 MRI
Compared with other imaging methods, MRI is more complex

owing to each irreplaceable sequence in the tissue comparison
mechanism (Zhao et al., 2022). The salient appearance features in
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MRI and changes between different phasic images are vital clues for
HCC detection, segmentation, and grading. Because of its higher
resolution and contrast-enhanced function compared with
ultrasound and CT, MRI is currently recommended as the preferred
imaging method for diagnosing liver cancer. However, bypassing the
challenge of imbalance is difficult with HCC training samples for
models built based on the methods of excellent imaging tools such
as MRI, because the classification performance of classification models,
such as CNN, based on imbalanced samples tend to fit more sample
classes, which is not conducive for obtaining generalized and effective
models. The proposed relay backpropagation method can effectively
retain relevant information and suppress the negative effects of less
relevant information. Owing to the gradient flow of information in
backpropagation and by introducing one or more intermediate output
modules in the intermediate segment, a significant improvement in
accuracy can be achieved (Shen et al., 2016). Based on the breakthrough
of this work, Yang et al. (Yang et al., 2019b) proposed anMCF-3DCNN
model that consists of five 3DCNNs with the same structure, and the
collected HCC samples were reorganized into different three classes for
model training to achieve a strong differentiation and diagnosis
performance for wilson disease (WD) HCC, with an average AUC,
accuracy, and sensitivity reaching 0.96, 91%, and 97%, respectively.

In addition, unlike classifying HCC pathologies and categories.
Grading the degree of HCC is an important tool for the diagnosis
and prevention of HCC using DL models, and a deeply supervised
loss function to further improve the performance of lesion features
was designed by the research team in (Zhou et al., 2019) by
augmenting the training set with a resampling method. In
particular, their study performed a 3.0 T MR scan using the
diffusion-weighted image (DWI) conventional medical
treatment combined with the breath-holding MRI method and
a b-value log-transformation with three different levels set to
obtain logarithmic maps, logb0, logb100, and logb600. Finally, a
quadruple cross-validation with multiple validations of the
training and test sets was performed to obtain the HCC grading
results. The deep supervised loss function of this experiment
yielded the highest HCC grading accuracy at the time, that is,
80%, and a relatively excellent AUC value of 0.83 for deep feature
fusion. Similar to the application of DWIs on MRIs, a three-
dimensional CNN was proposed (Trivizakis et al., 2018) to solve a
high b-value, that is, logb1000 images for the diffusion comparison
to reflect its higher diagnostic value in clinical medicine. Using
different manners of classification validation, we determined that
using softmax instead of an SVM can produce slightly higher
accuracy results of 3%, and the deep learning architecture of a 3D
network can improve the accuracy from 69% to 83%. This study
also partly shows that 3D CNNs for HCC diagnosis is promising
but requires further large-scale dataset validation. However, unlike
the 3D MRI imaging work adopted in this study (Le et al., 2016),
the ANN developed in this study was used to differentiate tumor
voxels from non-tumor voxels by initially presenting a raw 3D
image through MRI imaging and then using an anisotropic
diffusion algorithm to extract the 3D-region of interest (ROI)
from the raw 3D image. Finally, the edge potential images are used
to mark those that respond to the threshold filter for the regional
training of Single Hidden-layer Feedforward Neural Networks
(SLFN), and the performance of the model was evaluated. It
illustrated a significant improvement in accuracy and AUC

comparing with the combined 2D structure of the DL model
and conventional MRI diagnosis.

3.1.5 Ultrasound (US) and PET-CT
US has been widely used as one of the most appropriate tools for

evaluating liver disease and detecting new lesions. However, the lack
of visual quality from various sources may result in increased errors
in US diagnosis. For example, speckle noise and visual blurring
complicate the automatic diagnosis of hepatic steatosis with US
images, and interobserver variation in image interpretation may
occur, and nodules with subtle lengths (< 1 cm) may prevent US
from automatically diagnosing the image (Farinati et al., 2009;
Rhyou and Yoo, 2021). Although a weighted variance-based
approach to decompose the self-contained arithmetic mean and
determine the wavelet threshold was proposed in 2009 and 2011,
which can be used to reduce speckle noise in US images or a non-
local (NL) mean filter to reduce scatter in US images and preserve
structural details and image edges, the challenge remains severe
owing to the gradual increase in the requirement for diagnostic
accuracy and diversity of pathological changes (Coupe et al., 2009;
Rahman et al., 2011). The research team in (Rhyou and Yoo, 2021)
developed a predictive model for fully automated liver pathological
degeneration using three DL neural networks. The model applies
migration learning to semantically segment the liver and kidney,
and, as the neural network involves moral semantic segmentation,
the liver and kidney (L-K) region is cropped from the original US
image by the environment typically located around the liver and
scores the severity of liver disease. The results of this experiment
were comparable to those of medical experts, which showed a
superior sensitivity of 99.8%, diagnostic accuracy of 99.91%, and
specificity of 100%. Therefore, AI technology can increase the
accuracy, sensitivity, and specificity of US for diagnosing HCC.

Fukuda et al. (Fukuda et al., 2010) established an image
analyzing system based on neural networks to numerically
calculate a coarse score (CS) that can serve as a useful predictor
for developments against HCC. Time-intensity curve (TIC)
analysis in the neural network analysis of contrast-enhanced
ultrasonography (CEUS) provided fast and reliable diagnostic
aid for classification of HCC (Streba et al., 2012). In recent
studies, SVM and deep CNN (DCNN) technologies have been
applied in the background of USs to classify benign and malignant
liver focal lesions (FLL), which can significantly improve the
diagnostic accuracy of imaging doctors. Kondo et al. (Kondo
et al., 2017) constructed an automatic classification method
based on ML in the CEUS of focal liver lesions. The results of
98 subjects indicated that the accuracy of the classification of
benign, HCC, and metastatic liver tumors was 84.4%, 87.7%, and
85.7%, respectively, which were consistent with the CEUS
guidelines for the diagnosis of FLL. Similarly, using ANNs to
analyze liver uptake of fluorine 18 fluorodeoxyglucose (FDG) with
patients’ laboratory data achieved a high sensitivity and specificity
for detecting HCC (Preis et al., 2011).

3.2 Biological data and information

This section reviews the contribution of AI tools and
applications to the prevention and diagnosis of HCC in the field
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of bioinformatics, which primarily focuses on three sections:
histopathology, proteomics, and genomics.

3.2.1 Histopathology
Histopathology diagnosis is the gold standard in diagnosing

HCC with clearer features than other examinations. Formulating a
treatment strategy is important; however, high standards in clinical
experience and the professional skills of pathologists are required
(Rajpurkar et al., 2018) (Esteva et al., 2017). AI has many advantages
over human beings; AI can compute entire sections, specific tissue,
and different cell types via intelligent algorithm. This makes
establishing predictive biomarkers based on an accurate
quantitative histological model possible, providing a new
detection tool for oncologists and pathologists to determine the
prognosis and treatment effect of patients (Coudray et al., 2018).
Moreover, AI can detect imperceptible details missed by humans
because of its strong objective analysis ability, particularly in the
molecular characteristics of pathological sections. A research on a
targeted feature model for differentiating HCC from adjacent
normal tissue and predicting the prognostic response of HCC
patients after surgery was presented in 2020 (Liao et al., 2020b).
The targeted feature model is based on histopathological images and
its main approach is to train the features extracted from tissue
sections, obtain a statistical model for classification, improve it, and
optimize it with the original researcher’s ML approach (Liao et al.,
2020a) to predict the patient’s diagnosis and postoperative response.
An AUC of 0.886 was verified in the test and external validation sets.
Unlike some cancers such as lung cancer subtypes, distinguishing
between, for example, adenocarcinoma (LUAD) and squamous cell
carcinoma (LUSC) requires a considerably experienced pathologist
to visually inspect the data. In 2018, Coudray et al. (Coudray et al.,
2018) trained a DCNN using histopathological images of lung
cancer obtained as full-slide images for image analysis (inception
v3). Their model slightly outperformed the pathologist’s diagnosis
with an AUC of 0.97. Furthermore, recent research has claimed that

a CNN combined with an extreme learning machine, the CNN-ELM
model, can score HCC effectively (Li S. et al., 2017). Other studies
have proposed applying fractal dimensions (FDs) to HCC diagnosis
based on ANNs that have demonstrated decision systems capable of
differentiating the histological images of normal parenchyma from
malignant parenchyma and classifying HCC and liver metastases
(Gheonea et al., 2014).

3.2.2 Proteomics
Proteomic analysis for the prediction and diagnosis of HCC has

been studied for over 50 years: from the discovery of alpha-
fetoprotein (AFP) as the first serum biomarker for HCC in 1963
(De Mees et al., 2006) to the help of ML algorithms as tools,
including RF algorithms, SVMs, logistic regression, and MLP
algorithms to cluster proteomes for HCC detection. This
illustrates the value of studying the proteomes of these
biomarkers and integrating multi-omics techniques with
proteomic distribution patterns to diagnose HCC with a higher
accuracy, sensitivity, and specificity (Kimhofer et al., 2015)
(Moldogazieva et al., 2021) (Feng et al., 2022).

3.2.3 Genomics
AI has been used to address problems in clinical genomic analysis,

including variant classification and the correspondence between
genotype and phenotype (Dias and Torkamani, 2019). AI
applications in the genomics of HCC have been able to correctly
identify the most suitable gene by training the gene expression
profile to predict prognosis and recurrence. Chaudhary et al.
(Chaudhary et al., 2017) built a DL-based, survival-sensitive model
using RNA sequencing,miRNA sequencing, andmethylation data from
The Cancer Genome Atlas (TCGA). Their model could accurately and
effectively predict lesions in HCC patients as well as postoperative
recurrence problems. Their study used 16,000 genes obtained from
RNA sequencing, 365 miRNAs from miRNA sequencing, and
20,000 genes from DNA methylation data as input features, which

FIGURE 2
The schematic idea of AI application in the diagnosis of HCC.
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TABLE 1 Studies in the field of diagnosis of HCC.

Research ref Aims of the study Diagnostic
techniques

AI
aspects

Algorithms/
Models
adopted

Sample
Size(rounded)

Optimal
performances

Kiani and Amirhossein
et al

Liver cancer
classification

Histopathology Deep
Learning

CNN 70 Accuracy: 0.885

Li et al Early diagnosis of HCC Serology Deep
Learning

ANN 347 AUC: 0.764 Accuracy:
0.81/Specificity: 0.855

Wang et al Early diagnosis of HCC Proteomics Deep
Learning

ANN 106 Sensitivity: 88.2%/
Specificity: 94.6%

Xie et al Early detection of hcc Genomics Deep
Learning

ANN 52 AUC:0.943/Sensitivity:
98%/Specificity: 85%

Raman et al Predicting classification
of HCC

Imaging CT Machine
Learning

Random Forest 80 Accuracy: 98.6%

Ouhmich, Agnus,
Noblet, Heitz and

Pessaux

Prediction by liver
tissue segmentation

Multiphase CT Deep
Learning

CNN 7 Accuracy: 84%

Yamada et al Classification and
differentiation of

primary liver cancers

Dynamic contrast-
enhanced computed

tomography (DCE-CT)

Deep
Learning

CNN 215 Mean DPs for
CNNs: 44.1%

Yasaka, Akai, Abe and
Kiryu

Differentiation of Liver
Masses

CT Deep
Learning

CNN 460 AUC: 0.92/
Accuracy: 0.84

Lakshmipriya,
Pragatheeswaran, Biju

and Ramkumar

Diagnosis of different
classes of liver tumour

CT Machine
Learning

SVM 634 Accuracy: 93%/AUC:
0.9959

Yang et al Pathologic Grading
to HCC

MRI Deep
Learning

MCF-3DCNN 150,000 AUC: 0.96, Accuracy:
91%, Sensitivity: 97%

Zhou, Wang, Xie and
Zhang

Grading to HCC MRI Deep
Learning

CNN 100 AUC: 0.83/
Accuracy: 80%

Trivizakis et al Classification and
diagnosis of HCC

MRI Deep
Learning

3D-CNN 130 Accuracy: 83%

Le et al Classification and
diagnosis of HCC

MRI Deep
Learning

ANN 16 None

Rhyou and Yoo Prediction of HCC
diagnosis

Ultrasound Deep
Learning

ANN 3,200 Sensitivity: 99.8%/
Accuracy: 99.91%/
Specificity: 100%

Fukuda, Ebara,
Kobayashi, Sugiura and

Yahagi

Prediction of HCC
diagnosis

Ultrasound Deep
Learning

ANN 56 None

Kondo et al Classification and
diagnosis of HCC

Ultrasound Machine
Learning

Rondom Forest 98 Sensitivity: 94.0%/
Accuracy: 87.7%/
Specificity: 87.1%

Preis, Blake and Scott Classification and
diagnosis of HCC

PET/CT Deep
Learning

ANN 98 AUC: 0.905

Liao et al Classification and
diagnosis of HCC

Histopathology Machine
Learning

Rondom Forest 1733 AUC: 0.886

Li, Jiang and Pang Classifying and Grading
to HCC

Histopathology Deep
Learning

DCNN 83 AUC: 0.97

Ward et al diagnosis of HCC Proteomics Deep
Learning

ANN 144 Sensitivity: 94%/
Specificity: 86%/

AUC: 0.92

John, Luk and Lam diagnosis of HCC Proteomics Deep
Learning

ANN 66 Sensitivity: 96.97%/
Specificity: 87.88%

Chaudhary, Poirion, Lu
and Garmire

Prediction of HCC
diagnosis

Multi-omics(Genomics/
Proteomics/

Histopathology)

Deep
Learning

ANN 360 None

(Continued on following page)
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were then stacked by the DL framework through the histological
features for self-encoder neural network training. Marsh et al.
(Marsh et al., 2010) evaluated a group of allelic deletion tumor
suppressor genes (1p, 3p, 5q, 7q, 8q, 9p, 10q, 17p, 17q, 18q) using
an ANN model for HCC diagnosis. The combined models predicted
HCC recurrence outcomes with complete accuracy. All of these
technologies found above i shown on Table 1, and we distinguished
these technologies into data and information layer shown in the Table 2.

4 Knowledge and wisdom layers in the
diagnosis of HCC

4.1 Knowledge in four stages

According to the structure of the knowledge andwisdom layers that
we redefined for the DIKW framework, there is a close correlation in
diagnosing HCC. We divide the layers into strictly four types of stages

TABLE 2 Studies of Data and Information in DIKW framework.

Research ref Aims of the study Diagnostic
techniques

AI tools DIKW layer

Li et al Early diagnosis of HCC Serology DL-ANN Information
Layer

De Mees, Bakker, Szpirer and Szpirer Detection of HCC Histopathology Alpha-fetoprotein (AFP)
biomarker

Data Layer

Raman et al Predicting classification of HCC Imaging CT DL-ANN Information
Layer

Ouhmich, Agnus, Noblet, Heitz and Pessaux Prediction by liver tissue segmentation Multiphase CT DL-CNN Information
Layer

Kiani and Amirhossein et al Liver cancer classification Histopathology DL-CNN Information
Layer

Yasaka, Akai, Abe and Kiryu Differentiation of Liver Masses CT DL-CNN Information
Layer

Lakshmipriya, Pragatheeswaran, Biju and
Ramkumar

Diagnosis of different classes of liver
tumour

CT ML-SVM Information
Layer

Zhou, Wang, Xie and Zhang Grading to HCC MRI DL-CNN Information
Layer

Liao et al Classification and diagnosis of HCC Histopathology ML-RF Information
Layer

Le et al Classification and diagnosis of HCC MRI DL-ANN Information
Layer

Rhyou and Yoo Prediction of HCC diagnosis Ultrasound DL-ANN Information
Layer

Fukuda, Ebara, Kobayashi, Sugiura and Yahagi Prediction of HCC diagnosis Ultrasound DL-ANN Information
Layer

Kondo et al Classification and diagnosis of HCC Ultrasound ML-RF Information
Layer

Li, Jiang and Pang Classifying and Grading to HCC Histopathology DL-DCNN Information
Layer

John, Luk and Lam diagnosis of HCC Proteomics DL-ANN Information
Layer

Marsh et al diagnosis of HCC Genomics DL-ANN Information
Layer

TABLE 1 (Continued) Studies in the field of diagnosis of HCC.

Research ref Aims of the study Diagnostic
techniques

AI
aspects

Algorithms/
Models
adopted

Sample
Size(rounded)

Optimal
performances

Marsh et al diagnosis of HCC Genomics Deep
Learning

ANN 103 Accuracy: 88.3%
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based on knowledge extracted from theDIKW framework in the field of
precision medicine on nutritional epidemiologic, nursing, etc. (Gee
et al., 2012; Chen et al., 2017; Yang et al., 2019a). The four stages are
Low, Medium, High, and Ultra-High Risk. At Low Risk, using the
knowledge of simple HBV, fatty liver, and inherited liver disease, we
provide a protocol of regular screening every 12 months. When an
irregular increase of AFP occurs, we advise regular screening every
6 months.We advise this regardless of whether the current risk is in the
low or medium level. At High Risk, with males above 40 years old and
females above 50, enhanced screening every 6–12 months and regular
screening every 3–6 months is advised. The most serious is when the
patient is detected with nodules, it comes to the Ultra-high risk tier in
the knowledge layer, which contains key knowledge involving lesions in
the liver space, low-grade dysplastic nodules (LGDN), high-grade

dysplastic nodules (HGDN), and an AFP index not less than 20 ng/
ml. We then advise regular screening and enhanced screening every
3 and 6 months, respectively.

4.2 Wisdom in screening

According to the high and ultra-high risk stages introduced in
4.1, two different screening tools are mentioned, which is a means to
reflect effective, intelligent decision-making. Regular screening is
performed viaUS and AFP screening for patient cycles ranging from
3 to 12 months, whereas enhanced screening is performed viaMRI +
CT for periodic examinations ranging from 6 to 12 months to
provide optimized decisions and conclusion reports.

FIGURE 3
The overview of knowledge and wisdom in the diagnosis of HCC.

TABLE 3 Studies of Knowledge and Wisdom Layer in DIKW framework.

Research ref Aims of the study Diagnostic techniques AI tools DIKW layer

Yamada et al Classification and differentiation of primary
liver cancers

Dynamic contrast-enhanced computed tomography
(DCE-CT)

DL-CNN Knowledge
Layer

Yang et al Pathologic Grading to HCC MRI DL-MCF-
3DCNN

Knowledge
Layer

Trivizakis et al Classification and diagnosis of HCC MRI DL-3D-CNN Knowledge
Layer

Xie et al Early detection of hcc Genomics DL-ANN Knowledge
Layer

Preis, Blake and Scott Classification and diagnosis of HCC PET/CT DL-ANN Knowledge
Layer

Ward et al diagnosis of HCC Proteomics DL-ANN Knowledge
Layer

Wang et al Early diagnosis of HCC Proteomics DL-ANN Wisdom Layer

Chaudhary, Poirion, Lu and
Garmire

Prediction of HCC diagnosis Multi-omics (Genomics/Proteomics/
Histopathology)

DL-ANN Wisdom Layer
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Evidently, the majority of the experimental methodology used in
the literature and the research results produced by AI tools are
mostly at the level of information and knowledge. The research
output corresponding to the data layer does neither satisfies research
expectations after introducing AI tools nor conforms to the
requirements of synthesizing the research output to respond to
more precise and accurate personalized solutions. Therefore, the
large amount of literature focused on the information and
knowledge layers (Figure 3) has led us to hope that AI should be
applicable to tasks beyond simple feature prediction, such as in
providing more comprehensive reporting output for accurate and
personalized treatment plans.

First, reviewing the literature covered in this review, we found
that the majority of studies were retrospective in nature, but the
same protocols and models were often not adopted in diverse
situations, owing to the high heterogeneity in HCC prevention
and treatment. Moreover, the performance of these prediction
models must be validated on large-scale and multicentered
datasets. Second, we determined that most of the studies
reviewed are not highly reproducible or generalizable and that
solving imaging noise, multi-omics relationships, and
heterogeneity is urgent in the actual medical scenario. However,
the underlying mechanisms are not yet clear. Based on this
discussion, we plan to create highly reusable ML and DL
algorithms and models with the support of existing large-scale
hospital data and then gradually extend to theoretical arguments
and demonstrate the reliability of these models and objective
function optimization to overcome some current limitations.
These technologies of HCC diagnosis filed are matched to the
layers of knowledge and wisdom respectively, see Table 3.

5 Conclusion

Based on the DIKW framework, this paper reviews the latest
progress of AI technology in data, information, knowledge and
wisdom of HCC diagnosis. First, among them, more than 33
related works only stay at the layer of data and information, of
which 16 are related to HCC detection, it makes the inspiration
and potential value of data not be fully explored. Second, the
technology at the level of knowledge and wisdom is relatively rare,
including only 12 cases, while only 8 cases are related to HCC
assistance and detection. It is worth noting that only two cases of
HCC AI auxiliary medical treatment at the level of Wisdom are
included, This shows that there is still a lot of space for further
exploration in the direction of HCC AI assisted medical
treatment. For example, multi-modal AI algorithm can
appropriately apply the fusion of multi-dimensional
information. Information fusion is used to integrate image,

text, gene and other information to better help the knowledge
layer establish a complete knowledge graph. At present, we have
not yet observed the establishment of any knowledge graph about
HCC AI medical assistance information, and the knowledge graph
based on multi-modal information fusion can provide more
comprehensive and accurate diagnosis and decision-making
basis for medical experts in assisting decision-making at
Wisdom level.

However, most of the current artificial intelligence models are
developed using retrospective training data collected from a single
center, makes inappropriate experiment. Therefore, in the era of big
data, multi-group data and next generation sequencing technology
are expected to further improvement of accuracy of HCC AI
diagnosis.
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