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Background: Breast cancer has the highest incidence amongmalignant tumors in
women, and its prevalence ranks first in global cancer morbidity.

Aim: This study aimed to explore the feasibility of a prognostic model for patients
with breast cancer based on the differential expression of genes related to fatty
acid metabolism.

Methods: The mRNA expression matrix of breast cancer and paracancer tissues
was downloaded from The Cancer Genome Atlas database. The differentially
expressed genes related to fatty acid metabolism were screened in R language.
The TRRUST databasewas used to predict transcriptional regulators related to hub
genes and construct an mRNA–transcription factor interaction network. A
consensus clustering approach was used to identify different fatty acid
regulatory patterns. In combination with patient survival data, Lasso and
multivariate Cox proportional risk regression models were used to establish
polygenic prognostic models based on fatty acid metabolism. The median risk
score was used to categorize patients into high- and low-risk groups.
Kaplan–Meier survival curves were used to analyze the survival differences
between both groups. The Cox regression analysis included risk score and
clinicopathological factors to determine whether risk score was an
independent risk factor. Models based on genes associated with fatty acid
metabolism were evaluated using receiver operating characteristic curves. A
comparison was made between risk score levels and the fatty acid
metabolism-associated genes in different subtypes of breast cancer. The
differential gene sets of the Kyoto Encyclopedia of Genes and Genomes for
screening high- and low-risk populations were compared using a gene set
enrichment analysis. Furthermore, we utilized CIBERSORT to examine the
abundance of immune cells in breast cancer in different clustering models.
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Results: High expression levels of ALDH1A1 and UBE2L6 prevented breast cancer,
whereas high RDH16 expression levels increased its risk. Our comprehensive
assessment of the association between prognostic risk scoring models and
tumor microenvironment characteristics showed significant differences in the
abundance of various immune cells between high- and low-risk breast cancer
patients.

Conclusions: By assessing fatty acid metabolism patterns, we gained a better
understanding of the infiltration characteristics of the tumor microenvironment.
Our findings are valuable for prognosis prediction and treatment of patients with
breast cancer based on their clinicopathological characteristics.
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1 Introduction

Breast cancer, a serious health threat to women worldwide,
is the most common malignant tumor among women (Siegel
et al., 2021). As of 2020, breast cancer accounts for 11.7% of all
cancer cases worldwide, surpassing lung cancer as the leading
cause of cancer incidence among women (Sung et al., 2021). A
previous study showed that 416,317 cases of breast cancer were
diagnosed in China in 2020, accounting for approximately 19.9%
of the total number of female cancer patients (Fan et al., 2014).
Breast cancer is a heterogeneous disease with widely varying
molecular subtypes and clinical features. This feature not only
poses a dilemma for the biological study of breast cancer but also a
major challenge for its diagnosis and treatment (Dawson et al.,
2013).

Fatty acid (FA) metabolism is one of the fundamental life
activities in organisms and consists mainly of FA anabolism, FA
β-oxidation, and lipid catabolism, forming an FA cycle (Kagawa
et al., 2019). Part of the fatty acids in the body come from exogenous
pathways, while part of them come from endogenous pathways
involving acetyl CoA, which is produced through carbohydrate
oxidation and proteolytic metabolism. The synthesized fatty acids
can be further converted into triglycerides (TG) and lipid droplets
(LD) for energy storage in addition to being used for membrane lipid
synthesis. It is believed that TG undergoes β-oxidation processes in
order to prevent the accumulation of intracellular lipids and
lipotoxicity and to provide ATP and NADPH under metabolic
stress conditions (Monaco, 2017; Petan et al., 2018; Olzmann and
Carvalho, 2019). A variety of cancers promote rapid tumor growth
by upregulating fat intake, storage, and adipogenesis (Abramson,
2011; Schulze and Harris, 2012; Röhrig and Schulze, 2016;
Viswanathan et al., 2017). As a means of surviving stressful
microenvironment conditions, multiple cancer cells rely on acetyl
CoA to proliferate, metastasize, and resist stress. In addition to
providing energy supply for the tricarboxylic acid cycle, acetyl CoA
upregulates fatty acid synthesis to create favorable conditions for cell
survival, suggesting that lipid metabolism plays a crucial role in
cancer cell survival (Corbet and Feron, 2017). De novo FA synthesis
plays a crucial role in diseases such as cancer, neurogenesis, and
metabolic syndrome (Svensson et al., 2016). For example, deletion of
chromosome 8p in breast cancer activates FA synthesis, suggesting
that FA synthesis is essential for the development and progression
the disease (Cai et al., 2016).

Despite the importance of FAs in tumorigenesis and tumor
progression, lipid metabolic remodeling in breast cancer has not
received the same attention as in other cancers, and reports of
abnormal FA metabolism based on bioinformatics are extremely
limited. Using the publicly available The Cancer Genome Atlas
(TCGA) database, we downloaded mRNA expression matrices from
breast tumor and paracancer tissues. Bioinformatics methods were
used to screen differentially expressed FA metabolism-related genes
and intersections to generate common FA metabolic pathway-
related differentially expressed genes (DEGs).

Oncotype DX, MammaPrint, and Genomic Grade Index are
first-generation prognostic markers for breast cancer; Prosigna,
Endoppredict, and Breast Cancer Index are second-generation
prognostic markers (Győrffy et al., 2015; Saini et al., 2019).
Oncotype DX is one of the most widely used genetic markers for
predicting the prognosis of breast cancer. Through real-time
polymerase chain reaction, Oncotype DX can determine whether
chemotherapy is needed in patients at low risk of relapse and predict
the probability of disease recurrence (Vieira and Schmitt, 2018). The
tumor immune microenvironment has been extensively studied to
identify novel prognostic and predictive biomarkers (Soysal et al.,
2015; Tray et al., 2018; Baxevanis et al., 2019).

Research has identified the tumor microenvironment (TME) as
a major determinant of cancer growth (Li et al., 2007). The TME
comprises several components, including inflammatory cells,
stromal tissue (immune cells, fibroblasts, cytokines), and
extracellular matrix (Witz and Levy-Nissenbaum, 2006). As
cancer progresses from the initial transformation stage to
invasion and metastasis, changes in the TME become
increasingly important (Oudin and Weaver, 2016). It is not only
one of the major factors triggering tumor progression but also one of
the major challenges for effective immunotherapy, as non-
malignant cells can encourage tumor cell proliferation, invasion,
and metastasis within the TME (Jiang et al., 2019; Liu et al., 2019).
An intricate series of pathways leads to tumorigenesis as immune
cells coexist and interact. Approximately 70%–80% of the immune
cells in the breast cancer microenvironment are T lymphocytes, with
the remaining consisting of B lymphocytes, macrophages, natural
killer (NK) cells, and antigen-presenting cells (Schmid et al., 2018;
Adams et al., 2020; Schmid et al., 2020). In the regulation of immune
response, fatty acid metabolism is a key metabolic pathway. Aside
from providing energy to immune cells, it also acts as a precursor
and substrate for the synthesis of cellular components and signaling
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molecules. In comparison to glycolysis and amino acid metabolism,
fatty acid metabolism has been relatively little studied due to the
complexity of fatty acid species, differences in the metabolism of
exogenous and endogenous fatty acids, and insufficient detection
methods (Li and Zhang, 2016).

In this study, using TCGA database, a polygenic prognosis
model based on FA metabolism was developed for breast cancer.
A comprehensive evaluation was also performed on the relationship
between the prognostic risk scoring model and TME characteristics.
Our understanding of the infiltration characteristics of the TME can
be improved by evaluating FA metabolic patterns. The results
suggest that personalized clinical diagnosis and treatment plan
can be presented for high-risk groups based on the
clinicopathological characteristics of patients.

2 Materials and methods

2.1 Data sources

Data from RNA-seq techniques (HTSeq-FPKM and HTSeq-
counts) along with clinical information from 1,109 breast cancers
and 113 normal samples were obtained from TCGA Genomic Data
Commons portal (https://portal.gdc.cancer.gov/). Prognostic data
were obtained from Liu et al. (2018). A total of 158 hallmark genes of
FA metabolism were derived from the Molecular Signatures
database (Liberzon et al., 2015).

2.2 Analysis of genes with differential
expression

For the analysis of DEGs, we used the DESeq2 package (Love et al.,
2014) with |logFC| >1 and adjusted p-value < 0.05 as the threshold. The
results of the variance analysis were visualized on volcano plots and
heatmaps using the ComplexHeatmap package (Gu et al., 2016).

2.3 Construction of molecule–molecule
interaction networks

The STRING database combines experimental data, data generated
from text mining PubMed abstracts, data synthesized from other
databases, and results predicted using bioinformatics (Szklarczyk
et al., 2021). Using the CytoHubba plug-in, the maximum clique
centrality (MTT) values were calculated for DEGs based on the
STRING database (Chin et al., 2014). Genes with the highest
maximum clique centrality values were selected as hub genes. The
GOSemSim package (Yu et al., 2010) was used to perform a Friends
analysis on FA-related DEGs, ranking them in order of their
interactions with genes from other pathways. We defined a set of
parameters to predict miRNAs of hub-genes, including miRNAs with
target sites in the 3′UTR region, a score above 0.95, and the Mirtarbase
platform. TRRUST is a database containing 8,444 and
6,552 transcription factor (TF)–target regulatory relationships for
800 human and 828 mouse TFs, respectively (Han et al., 2018). We
predicted the transcriptional regulators related to hub genes using the
TRRUST data to construct an mRNA–TF interaction network.

2.4 Enrichment analysis

Functional enrichment studies typically use a gene ontology
(GO) analysis approach, which includes determination of
biological processes, molecular functions, and cellular
components (Ashburner et al., 2000). Genomes, biological
pathways, diseases, and drugs were all obtained from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,
2022). The FA-related DEGs were analyzed using ClusterProfiler
(Yu et al., 2012), which includes GO annotation and KEGG
pathway enrichment analyses. A p-value < 0.05 was considered
statistically significant.

2.5 Consensus clustering analysis

Resampling-based consensus clustering identifies each member
and determines the number of subgroups in the cluster. Using the
ConsensusClusterPlus package (Wilkerson and Hayes, 2010), a
consensus clustering approach was used to identify different FA
regulatory patterns based on related DEGs. The number of iterations
in clustering analysis was set to 100.

2.6 Prognostic model construction

Weused Lasso and Cox regressions based on the glmnet (Friedman
et al., 2010) packages to estimate the correlation between FA-related
DEGs and survival status in breast cancer. To calculate the prognostic
value of the Lasso regressionmodel, we plotted time-dependent receiver
operating characteristic curves to calculate the area under the curve,
along with 1,000 cross-validations.

2.7 Gene set enrichment analysis (GSEA)

GSEA is a computational method that analyzes whether genes
are statistically different between two biological states
(Subramanian et al., 2005). We used GSEA to investigate
differences in biological processes between samples with high-
and low-risk prognoses. An expression dataset is commonly used
to estimate pathway and biological process changes. For GSEA
analysis, we downloaded “c2. cp.v7.2. symbols.gmt [Curated]”
from the Molecular Signatures database. A p-value < 0.05 was
considered significant.

2.8 Immune infiltration analysis

By employing CIBERSORT (an R package) (Newman et al.,
2015), we estimated the proportion of 22 tumor immune infiltration
cells in different clustered clustering models using immunoassays:
naïve B cells, memory B cells, plasma cells, CD8+ T cells, naïve CD4+

T cells, resting CD4+ memory T cells, activated CD4+ memory
T cells, T follicular helper cells, regulatory T cells, γδ T cells, resting
and activated NK cells, monocytes, macrophages (M0, M1, andM2),
resting and activated dendritic cells, resting and activated mast cells,
eosinophils, and neutrophils.
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2.9 Statistical analyses

Statistical significance was determined for normally distributed
variables using a t-test and for non-normally distributed variables
using a Mann–Whitney U test (Silverman rank sum test). Statistical
significance was assessed between the two categorical groups using
Fisher’s exact test or chi-square test. p < 0.05 was considered
statistically significant. The flow diagram in Figure 1 illustrates
the overall process.

3 Results

3.1 Analysis of DEGs

The volcano plots of DEGs related to FA metabolism in breast
cancer tissues and normal tissues are shown in Figure 2A. A total of
44 DEGs met the |log2(FC)| >1 threshold with a p < 0.05. Of these
DEGs, 19 were highly expressed in tumors, including BMPR1B,
TDO2, IL4I1, RDH16, and CEL. In normal tissues, CD36, CIDEA,
AQP7, GPD1, and CA4, as well as 25 other genes, were highly
expressed. The gene expression heatmap of the top five high- and
low-expression genes in breast cancer is shown in Figure 2B.
HSD17B7, ACADL, ME1, MAOA, and TDO2 are the five genes
related to FA metabolism with the largest differential expression,
based on Friends analysis (Figure 2C).

3.2 Related regulatory network construction

The protein–protein interaction (PPI) network of FA metabolism-
related DEGs based on the STRING database is shown in Figure 3A.
Based onmaximum clique centrality values, 10 hub genes were identified:
ACSL1, ACADS, ACADL, PPARA,HADH, CRAT,MGLL, ACSL4, ECI1,
and CYP1A1 (Figure 3B). For these genes, miRNAs and transcriptional
regulators were predicted to construct the mRNA–miRNA (Figure 3C)
and mRNA–TF interaction networks (Figure 3D), respectively. Among
them, transcription factors BRCA1, ESR1, VDR, STAT1, RARA, USF1,
RELA were significantly more highly expressed in breast cancer than in
normal tissues, and CREBBP, TP63, AHR, NFKB1, KLF4, NFIC, ARNT,
JUN, PPARA were significantly less expressed in breast cancer than in
normal tissues (Supplementary Figure S1).

3.3 Functional enrichment analysis

In order to identify DEGs related to FAmetabolism in breast cancer,
we conducted GO and KEGG enrichment analyses. GO analysis revealed
that DEGs were mainly involved in small molecule catabolism
(Supplementary Table S1, Figure 4A). Enriched cellular components
included lipid droplets, organelle outer membranes, outer membranes,
microbody parts, peroxisomal parts, peroxisomes, microbodies, and
mitochondrial matrix (Figure 4B). As for the molecular functions,
NAD and NADP were the most prevalent acceptors for

FIGURE 1
Technology roadmap for fatty acid metabolism-related gene prognostic models in breast cancer.
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oxidoreductases, lyases, NAD binding, coenzyme binding, acyl-CoA
ligases, and oxidoreductases acting on CH-NH2 groups of donors
(Figure 4C). Based on KEGG functional analysis, DEGs were mostly
affected by pathways such as FA metabolism and degradation; PPAR
signaling pathway; phenylalanine, tyrosine, and tryptophan metabolism;
retinol metabolism; and butanoate metabolism (Figure 4D,
Supplementery Figure S2, Supplementary Table S2).

3.4 Analysis of FA metabolism-related DEGs
for discovery of molecular isoforms

On the basis of the differential expression of genes related
to FA metabolism in breast cancer samples, we conducted
an unsupervised consensus clustering analysis to examine
regulatory mechanisms and prognosis. The results are shown in

FIGURE 2
Differentially expressed genes (DEGs) related to fatty acid metabolism. (A) Volcano plot of TCGA-BRCA fatty acid metabolism-related genes in
breast cancer and control samples. (B) Heatmaps illustrating differential expression of fatty acid metabolism-related genes from breast cancer and
control samples from the TCGA-BRCA study. (C) Friends-based analysis demonstrating fatty acid metabolism-related DEGs.
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Figures 5A–H. The survival prognosis was further analyzed
using DEGs related to FA metabolism in breast cancer clustered
in two categories; group B had a lower survival prognosis
than that of group A, which had a 10-year survival rate
(Figure 5I, Supplementary Table S5). Figure 6 illustrates the
DEGs involved in FA metabolism among breast cancer subtypes
in groups A and B.

3.5 Prognostic model construction

After Lasso analysis of 44 FA metabolism-related DEGs, the
prognostic risk score model was constructed using 13 genes: IL4I1,

RDH16, CEL, ENO2, UBE2L6, ECI1, GABARAPL1, ALDH3A1,
ALDH1A1, ACSL1, MAOA, ACADL, and GPD1 (Figures 7A–C).
Furthermore, the area under the time-dependent receiver
operating characteristic curve indicated that the accuracy of
this prognostic model increased with increased survival time
(Figures 7D, E). After further analysis of the clinical data
from the included studies (Supplementary Table S3),
Kaplan–Meier survival analysis revealed that high expression
levels of both ALDH1A1 and UBE2L6 were protective
against breast cancer (HR 0.71 and 0.69, respectively, p < 0.05),
whereas high expression levels of RDH16 were associated with
a high risk of developing the disease (HR = 1.39, p < 0.05)
(Figure 8). Univariate and multifactorial Cox results

FIGURE 3
Construction of regulatory networks. (A) Protein–protein interaction network of fatty acid metabolism-related differentially expressed genes
constructed using the STRING database. (B) Ten hub genes selected using the CytoHubba plugin. The color represents the gene MCC score, which
ranges from 8 to 369, where the redder the color the higher the MCC score and the more orange the color the lower the MCC score. (C)mRNA–miRNA
network constructed using the miRWalk database. (D) mRNA–transcription factor network constructed using the TRRUST database.
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(Supplementary Table S4) showed that age (p < 0.001), estrogen
receptor (ER) positive status (p = 0.042), and RDH16 expression
(p = 0.026) were independently associated with poor outcomes for
TCGA-BRCA patients. By combining the results of Cox analysis

and the clinical characteristics, we constructed a prognostic model
and evaluated the risk probabilities (Figure 9). The calibration
curves indicate that the model is predictive for 3-, 5-, and 10-year
prognoses.

FIGURE 4
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. (A) GO biological processes. (B) GO cellular
components. (C) GO molecular functions. (D) KEGG pathways.
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3.6 GSEA

GSEA showed that retinoblastoma, PLK1 pathway, cell cycle
checkpoints, and mitotic spindle checkpoint were significantly
enriched in high-risk breast cancer (Table 1; Figure 10). The
current analysis is a GSEA analysis based on all genes and
corresponding logFCs from the differential analysis of high-risk
vs. low-risk breast cancers, and when the NES is positive, the gene set
is enriched in the high-risk group and vice versa in the low-risk
group. CD22-mediated B-cell receptor (BCR) regulation, initial
triggering of complement, scavenging of heme from plasma, and
immunoregulatory interactions between lymphoid–nonlymphoid
cell pathways were significantly enriched in low-risk breast cancer.

3.7 Immune infiltration analysis

CIBERSORT was used to assess immune cell abundance in
breast cancer samples (Figure 11A), correlations between
immune cell abundance and prognosis- and FA-related DEGs in
breast cancer (Figures 11B, C), and abundance of immune cells in
prognostic high- and low-risk breast cancers (Figure 11D).
ALDH1A1 expression levels correlated significantly with plasma
cells, CD8 T cells, resting and activated CD4 memory T cells, γδ
T cells, M1 macrophages, resting dendritic cells, and resting mast
cells. Infiltrates of T follicular helper cells, resting NK cells, M0 and
M2 macrophages, and dendritic cells were significantly and
negatively correlated with ALDH1A1 expression levels.

FIGURE 5
Determination of the molecular subtypes of breast cancer based on differentially expressed fatty acid metabolism-related genes. (A–H)
Unsupervised consensus clustering analysis of breast cancer samples based on the differential expression of fatty acid metabolism-related genes. (I)
Survival prognosis analysis of samples clustered into 2-class subtypes.
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FIGURE 6
Differential expression of genes involved in fatty acid metabolism in different types of breast cancer. (A) Expression of ADH1C,NMT,MIF,HSD17B11,
MAOA, PPARA, CIDEA, CEL, ECI1, GPD1, and CA4 in breast cancer subtype A and B groups. (B) Expression levels of AQP7, ALDH1A1, H2AZ1, CYP4A22,
UBE2L6, TDO2, ACSL1, ALDOA, CYP1A1, RDH16, andGABARAPL1 in subtype A and B groups of breast cancer. (C) Export ofHADH, BMPR1B,GAD2, CD36,
HSD17B7, AOC3, G0S2, ACADS, ACADL, REEP6, and ENO2 in subtype A and B groups of breast cancer. (D) ALDH3A1, GAPDHS, IL4I1, SMS, CRAT,
MGLL, ACSL4, ME1, NTHL1, RETSAT, and ACSM3 expression in the breast cancer subtype A and B groups. (ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p <
0.001).
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4 Discussion

The incidence rate of breast cancer has exceeded that of lung
cancer, ranking first worldwide, accounting for 11.7% of all new
cancer cases (Sung et al., 2021). Globally, breast cancer is a
serious threat to women’s health and lives (Chen et al., 2018;
Siegel et al., 2021). It is a highly heterogeneous disease with
unique biological characteristics and clinicopathological features
among its molecular subtypes (Ng et al., 2017). Breast cancer has
been classified into four main molecular subtypes based on
microsequencing and gene expression profiling: luminal A,
luminal B, HER2-overexpressing, and basal-like (Sorlie et al.,

2003). This heterogeneity not only poses a challenge to the
biological study of breast cancer but also to its diagnosis and
treatment (Dawson et al., 2013). According to Monaco et al.’s
study of the pathways of fatty acid metabolism in breast cancer,
including the relationship between glucose and glutamine
metabolism, fatty acid metabolism sustains the growth and
survival of breast cancer cells. Compared with receptor-
positive breast cancers (RPBC), triple-negative breast cancers
(TNBC) appear more reliant on exogenous fatty acids uptake and
storage. As well as being more heavily reliant on glucose
(SLC2A1) and glutamine (SLC6A14) uptake, RPBC
significantly upregulates de novo fatty acid synthesis,

FIGURE 7
Modeling prognosis using Lasso analysis. (A)Determination of the Lasso coefficient. (B) Lasso variable trajectory plot. (C) Risk factor plot. (D) Survival
analysis. (E) Receiver operating characteristic curve.Z.
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mobilization, and oxidation (Monaco, 2017). A significant
difference in relative mRNA expression levels of FAM proteins
was also observed using receptor status as well as
PAM50 classification. RPBC primarily synthesized and

oxidized from scratch, whereas quadruple negative breast
cancer (QNBC) predominantly ingested and stored exogenous
fatty acids (Monaco, 2017). There is a growing consensus that
traditional clinical methods that assess breast cancer prognosis

FIGURE 8
Kaplan–Meier survival analysis. Survival curves of ALDH1A1 (A), ACSL1 (B), ALDH1A1 (C), ALDH3A1 (D), CEL (E), ECI1 (F), ENO2 (G), GABARAPL1 (H),
GPD1 (I), IL4I1 (J), MAOA (K), RDH16 (L), and UBE2L6 (M).

FIGURE 9
Construction of a prognostic model. (A) Column line graph. (B) Calibration curve.
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based on patient age, tumor size, histological features, and
number of positive lymph nodes around the axilla are no
longer valid. Cancer development is influenced by genetic
variation. In recent years, gene technology-based therapies
have shown a wide range of potential applications in cancer
treatment. Gene therapy for cancer must be tailored to the
disease-related genetic characteristics or genetic variants of
each individual to be efficient, produce the best results in the
shortest time, and reduce the side effects. The search for novel
therapeutic targets, construction of genetic prediction models for
the prognosis of patients, and improvement of prognosis through
new site-targeted therapies have been hot topics in the field of
breast cancer treatment research.

FA signaling and metabolism are among the most important
pathways in tumor development, as lipids serve as an important
source of energy during tumorigeneses (Kagawa et al., 2019). Recent
research indicates that lipid metabolism is reprogrammed in several
tumors, providing energy storage, intermediates, and even a major
energy source for tumor proliferation, metastasis, and progression
(Koundouros and Poulogiannis, 2020). Menendez and Lupu (2007)
have suggested that tumor cells synthesize FAs autonomously to
maintain their rapid proliferation, providing them with a survival
advantage. An elevated lipid metabolic flux in cancer cells is
associated with altered lipid metabolic pathways, including FA
uptake, synthesis, storage, and release. During cancer cell growth,
elevated lipid flux may supply phospholipid synthesis substrate.
Many cancer cells produce more phosphatidylcholine (PC), and
choline kinases necessary for PC synthesis are expressed and active
in breast, prostate, lung, ovarian, and colon cancers. (Ramírez de
Molina et al., 2002; Iorio et al., 2010). A further finding is that tumor
cells grow when choline kinase is overexpressed (Glunde et al.,
2011). Cell transformation and growth may be limited by PC
synthesis, and increased FA flux provides PC synthesis substrate
(Chen and Li, 2016). Therefore, the study of FA metabolism in
tumor cells and the development of related enzyme inhibitors has
become increasingly important.

Studies on FA metabolism in breast cancer are scarce, and the
related literature is very limited. In this study, using TCGA data,
HSD17B7, ACADL, ME1, MAOA, and TDO2 were identified as the
top five DEGs related to FA metabolism in breast cancer tissues. The
enzyme 17β-hydroxysteroid dehydrogenase type 7 (HSD17B7) is a
32-kDa microsomal protein that catalyzes estradiol synthesis. Shehu
Aurora et al. discovered that HSD17B7 is highly expressed in human
ductal and breast cancer cell lines and that estradiol strongly
upregulates HSD17B7 expression in MCF-7 cells at the mRNA
and protein levels (Shehu et al., 2011). Long-chain acyl coenzyme
A dehydrogenase (ACADL) plays a key role in the catalysis and β-
oxidation of branched-chain FAs (Wanders et al., 1998), as well as in
the β-oxidation of mitochondrial unsaturated FAs (Lea et al., 2000).
Mitochondrial dysfunction caused by ACADL deficiency can lead to
hepatic steatosis and insulin resistance (Zhang et al., 2007). ACADL
promotes prostate cancer cell growth, as well as malignant
transformation, when expressed in prostate cancer tissues, with a
positive correlation between malignancy and metastasis (Xie et al.,
2010; Xie et al., 2011). The role of ACADL in the progression and
development of breast cancer has not been studied. Malic enzyme 1
(ME1) catalyzes the conversion of malate into pyruvate while
generating NADPH from NADP (Merritt et al., 2009; RzezniczakTA
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and Merritt, 2012; Goodman et al., 2018). Studies have shown that
ME1 expression is higher in breast cancer tissues than in adjacent
non-tumor tissues (Liao et al., 2018). In tumor cells, decreasedME1
gene expression or inhibition of ME1 activity results in decreased
cell proliferation, epithelial–mesenchymal transition, and migration
in vitro, which in turn promote oxidative stress, apoptosis, and/or
cellular senescence (Simmen et al., 2020). Monoamine oxidase A
(MAOA) is a mitochondrial enzyme found mainly in
catecholaminergic neurons (Shih et al., 1999). Research has
shown that MAOA promotes tumor invasion, migration, and
epithelial–mesenchymal transition (Wu et al., 2014). Satram-
Maharaj et al. (2014) showed that MAOA expression was
increased in breast cancer cell lines and selective MAOA
inhibitors altered the growth, migration, and invasion of
anchored non-dependent growth of breast cancer cells. Liu et al.
(2020) showed that overexpression of tryptophan 2,3-dioxygenase
(TDO2) was positively correlated with breast cancer malignancy and
tumor grade; the expression of TDO2 was higher in estrogen-
negative and triple-negative breast cancers than in other subtypes
and was associated with poorer prognoses in patients with breast
cancer. Furthermore, they found that TDO2 contributes to the
regulation of the immune microenvironment and tryptophan
metabolism in breast cancer and is associated with poor
prognoses. According to their findings, TDO2 may be a
promising immunotherapeutic target for breast cancer. Our
current study confirms these findings.

The development of tumors is a complex pathophysiological
process regulated by intricate molecular mechanisms. We clarified
how key DEGs in breast cancer contribute to the development of the
disease by building a protein–protein interaction network as well as

mRNA–miRNA and mRNA–TF interaction networks. ACSL1,
ACDS, ACADL, PPARA, HADH, CRAT, MGLL, ACSL4, ECI1,
and CYP1A1 were identified as hub genes.

KEGG pathway enrichment analysis was performed on co-
distinctively expressed genes to understand the molecular mechanisms
of oncogenic effects and related pathways. KEGG pathway maps
represent the current knowledge on molecular interactions and
relationships of various biological processes. Genes in the genome are
linked to gene products (mainly proteins) in pathways throughmolecular
interactions and reactions. Therefore, KEGG pathway analysis can be
used to determine crosstalks between pathways and associated functions
in the genome. GO functional enrichment analysis revealed that co-
upregulated DEGs were highly enriched in catabolic processes involving
small molecules, FAs, lipids, organic acids, and carboxylic acid acids. The
results suggested that key genes for the development of breast cancerwere
directly involved in the biological processes associated with FAs. Li et al.
(2022) demonstrated that elevated fatty acid oxidation (FAO) activates
STAT3 via acetylation of acetyl coenzyme A (CoA). The acetylation of
STAT3 stimulates the expression of long-chain acyl coenzymeA synthase
4 (ACSL4), which increases phospholipid synthesis. Increasing
mitochondrial phospholipid content increases mitochondrial integrity,
which in turn prevents chemotherapy-induced tumor cell apoptosis. A
decrease in mitochondrial membrane phospholipids was observed with
enhanced apoptosis of cancer cells in cultured tumor cells and xenograft
tumors following inhibition of ASCL4 or targeted acetylation of STAT3.
Additionally, Migita et al. (2017) demonstrated that overexpression of
long-chain acyl coenzyme A synthase 3 (ACSL3), which activates
cholesterol synthesis and steroidogenesis, was downregulated in triple-
negative breast cancers but overexpressed in androgen-dependent
cancers (such as prostate tumors). In contrast, KEGG pathway

FIGURE 10
Gene set enrichment analysis. Breast cancer is mainly enriched in WP retinoblastoma gene in cancer (A), PID PLK1 pathway (B), reactome cell cycle
checkpoints (C), reactome mitotic spindle checkpoint Biocarta MCM pathway (D), reactome CD22-mediated BCR regulation (E), reactome initial
triggering of complement (F), reactome scavenging of heme from plasma (G), and reactome immunoregulatory interactions between lymphoid and non-
lymphoid cells (H).
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enrichment analysis identified FA degradation; PPAR signaling pathway;
phenylalanine, tyrosine, and tryptophanmetabolism; retinolmetabolism;
FA metabolism; and butanoate metabolism, among other pathways.

Breast cancer originates from abnormal and rapid growth of mammary
epithelial cells. The above results suggest that the identified DEGs may
regulate FA metabolism in breast cancer cells by affecting the above

FIGURE 11
Immune infiltration analysis. (A) Abundance of immune cells in breast cancer samples. (B) Correlation heatmap of immune cells in breast cancer
samples. (C) Correlation heatmap between differentially expressed fatty acid metabolism-related genes and immune cell infiltration levels. (D)
Abundance of immune cells in high- and low-prognostic risk groups in breast cancer. (ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001).
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pathways, thus regulating the development and progression of breast
cancer.

Unsupervised consensus clustering was conducted on breast
cancer samples based on the expression of DEGs associated with FA
metabolism to investigate the regulatory mechanisms of these genes
and the prognosis. Based on the clustering of FAmetabolism-related
DEGs into two classes, we further analyzed the survival prognosis of
patients. With the aim of investigating the role of 44 DEGs
associated with FA metabolism on breast cancer survival, Lasso,
Kaplan–Meier, and univariate and multivariate Cox regression
analyses were performed. We identified 13 survival-associated
genes involved in differential FA metabolism in this study,
namely IL4I1, RDH16, CEL, ENO2, UBE2L6, ECI1, GABARAPL1,
ACSL1, MAOA, ACADL, and GPD1. In order to test the
independent prognostic value of survival- and FA metabolism-
related DEGs, we performed independent prognostic analysis by
combining clinical factors (such as gender, age, grade, and
pathological stage) with genes and found that high expression
levels of ALDH1A1 and UBE2L6 were protective against breast
cancer. TCGA-BRCA patients with high expression of RDH16
had a worse prognosis due to its independent prognostic value.
The calibration curve revealed a relatively good predictive value for
prognoses at 3, 5, and 10 years based on the model. The correlation
between the results yielded by the model and clinicopathological
factors verified an accurate prediction of prognoses for patients with
breast cancer. In addition to catalyzing C10–C18 fatty acid
oxidation, ACADL is an important enzyme in FA β-mono-
oxidation. According to Zhao et al., ACADL expression is
downregulated in hepatocellular carcinomas; such low levels of
ACADL expression are associated with poor clinical prognoses in
hepatocellular carcinoma (Zhao et al., 2020). Li et al. (2015) showed
that ACADL methylation levels differed significantly among breast
cancer subtypes and were associated with tumor ER status. Our
study corroborates these findings.

We analyzed the abundance of immune cells in breast cancer
samples to investigate the correlation between the presence of
prognosis-related genes that affect FA metabolism and immune
cell infiltration levels in breast cancer and the number of immune
cells in prognostic high- and low-risk breast cancer samples.
Known as epithelial heavy anisotropic hyperplasia, breast cancer
evolves into in situ, invasive, and metastatic carcinomas (Polyak,
2007). Metastasis occurs when breast cancer cells spread to distant
sites due to the loss of the myoepithelial layer and basement
membrane after in situ cancer has progressed to invasive ductal
carcinoma. Various types of cells in the TME play an important
role in tumor progression and, therefore, are potential new
therapeutic targets for breast cancer (Criscitiello et al., 2014;
Bahrami et al., 2018). Low-risk breast cancers had significantly
higher abundance of naïve B cells, plasma cells, CD8 T cells, and
resting CD4 memory T cells and lower abundance of M0, M1, and
M2 macrophages than high-risk breast cancers. CD4+ T cells have
a dynamic role and subpopulation distribution in breast
carcinogenesis and progression. According to a retrospective
study on breast cancer, CD4+ T cells were positively related to
tumor stage, size, and metastasis and negatively related to survival
(Huang et al., 2015). As one of the most important players in the
tumor microenvironment, tumor-infiltrating lymphocytes consist
primarily of CD4 helper cells, CD4 cells, CD25 helper cells,

regulatory T cells of the FOXP3 phenotype (Treg), and effector
cells such as natural killer cells and CD8+ T cells. As Tregs suppress
self-reactive T cells under normal conditions, they exert an
immunosuppressive effect within the tumor microenvironment,
allowing tumor cells to evade the immune system (Allen and
Louise Jones, 2011; Mahmoud et al., 2011). Recent research has
revealed that Treg can produce large amounts of RANKL, which
promotes breast cancer metastasis through RANK expression (Tan
et al., 2011). Accordingly, the above research shows that breast
cancer patients with a high number of Treg have a worse prognosis
(Bohling and Allison, 2008; Ohara et al., 2009). In breast cancer,
tumor-associated macrophages promote tumor growth and
angiogenesis, remodel tissues, and suppress adaptive immunity
(Mantovani et al., 2008; Allen and Louise Jones, 2011). Breast
cancer patients with high tumor-associated macrophage levels
tend to have a poor prognosis, suggesting that depletion or
reprogramming of these macrophages may be a viable
therapeutic strategy (Tsutsui et al., 2005; Zhang et al., 2013),
consistent with the results of our study. It is therefore necessary
to conduct further research to confirm the mechanism of action of
these features in the immune microenvironment.

Our study provides new insights into the role of FA metabolism
in breast cancer; however, it has few limitations. First, patients with
cancer are considerably more numerous than control subjects in
TCGA database. In addition, public databases lack specific details
about patient medications and/or surgical treatments, which can
affect the assessment of their prognosis. Third, this study is mainly
based on bioinformatics analysis of public databases for validation,
and the authors’ team is collecting clinical samples and will use them
for validation in further studies. As a final note, this is a retrospective
study; prospective studies are necessary to compensate for its
limitations.

In summary, breast cancer is a highly heterogeneous
disease with multiple subtypes and different prognostic and
therapeutic responses; these characteristics pose a great
challenge to its treatment. In this study, we identified five
key FA metabolism-related DEGs in breast cancer.
Additionally, we successfully constructed an accurate
prognostic risk score model using 13 DEGs related to FA
metabolism for patients with breast cancer. Using FA
metabolism-related prognostic genes as biomarkers in
patients with breast cancer offers enhanced opportunities for
accurate prognostics and provides a better understanding of
the involved molecular mechanisms.
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