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Introduction: Couples’ relationships defined by a complex interaction between the
two partners and their intrapersonal traits. Romantic; relationships and love are
associated with marital satisfaction and stability, as well as couples’ happiness and
health. Personality traits influence romantic relationships and, personality influenced
by genetical and non-genetically factors. The roles of non-genetically factors such as
socioeconomic position and external appearance have revealed in determining the
quality of romantic relationships.

Methods: We; performed a scoping systematic review to assess the association
between genetics and epigenetic factors and romantic relationship. Relevant articles
were identified by PubMed, EMBASE, Web of Science, Scopus, and the APA PsycInfo
searching between inception and 4 June 2022.

Results: Different studies evaluated the associated polymorphisms in 15 different
genes or chromosomal regions. In the first step; we classified them into four groups:
(1) Oxytocin-related signaling pathway (OXTR, CD38, and AVPR1A); (2) Serotonin-
related signaling pathway (SLC6A4, HTR1A, and HTR2A); (3) Dopamine and
catecholamine-related signaling pathway (DRD1, DRD2, DRD4, ANKK1, and
COMT); and (4) other genes (HLA, GABRA2, OPRM1, and Y-DNA haplogroup D-
M55). Then, we evaluated and extracted significant polymorphisms that affect couple
adjustment and romantic relationships.

Discussion:Overall, the findings suggest that genetic and epigenetics variants play a
key role in marital adjustment and romantic relationships over time.
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Introduction

Personality neuroscience as a research discipline has focused on
understanding individual differences in such important psychological
areas of motivation, emotion, cognition, and behavior (Braver et al.,
2014). An essential part of personality neuroscience seeks to find the
molecular genetics behind individual differences. Based on the “first
law” of behavior genetics science, all human behavioral traits are
heritable (Chabris et al., 2015). Genetic influences on personality
differences are ubiquitous, but their nature is not well-understood
(Penke et al., 2007). By adopting this approach and law, researchers in
different fields, such as genetics, psychology, sociology, politics, and
other sciences, have attempted to find a link between behaviors and
specific genes.

Couple adjustment is a process that expresses the degree of
satisfaction between couples and their level of cohesion, consensus,
and troublesome differences. It also reflects interpersonal tensions and
anxiety. Studies have found that adjusted-happy couples experience
higher levels of sexual satisfaction and less distress in their marriages.
Distress in marriage is linked to an increased risk for mental and
physical health problems, including depression and anxiety (Spanier,
1976; Fisher et al., 2015; Stokes, 2017;Whisman et al., 2018). Fletcher, G.
J. and their colleagues proposed that pair bonding is a coupling
formation in which males and females live together for a relatively
lasting time. This manner is related to monogamous mating
arrangement. They claimed that romantic love is an essential
fundamental motivating energy supporting monogamy and long-
term couple bonding in humans (Fletcher et al., 2015). The
formation of romantic attachment is a developmental process with
changes over time, such as a slow consolidation of intimacy between
partners as the relationship progresses (Aron et al., 2005). Attachment is
a theoretical framework that includes aspects of a person’s life
throughout his/her life. From the point of view of the scientists
studying mental health, this theory is considered a beneficial model
for analyzing close relationships and individual differences in the
regulation of emotions. According to attachment theory, the desire
to establish close emotional relationships with specific people, called
“attachment figures,” is an important part of human nature that exists
from infancy and is observed consistently throughout a person’s life.
This theory suggests that the desire of humans to create stable emotional
bonds and maintain them is innate. The attachment term in this theory
referred to the emotional, cognitive, and behavioral processes involved
in the formation and maintenance of relationships (Bowlby, 1973;
Bowlby, 1982; Sroufe, 1986; Rholes and Simpson, 2004).

Romantic relationships are characterized by a specific intensity,
precise expressions of affection, and initiation into sexual encounters
(Collins et al., 2009). Romantic love is correlated with marital
satisfaction and stability and couples’ happiness and health.
Individuals who are involved in long-term love partnerships revel
in healthier and longer lives (Hatfield et al., 2008; Diamond et al.,
2010). Couples’ relationships are defined by an intricate interaction
between partners and their intrapersonal traits (Lazaridès et al., 2010).
Marital disruption is an acute life stressor. Divorce represents a
gradual process that encompasses affective, cognitive, behavioral,
social, and socioeconomic changes from marriage to divorce
(Zeigler-Hill and Shackelford, 2020). Genetic components affect the
chance of divorce, which can be passed from generation to generation
(McGue and Lykken, 1992; Salvatore et al., 2018). One of the
determinants of the quality of marriage is personality.

Personality traits affect romantic relationships. From a scientific
point of view, personality is defined as particular and specific patterns
of thinking, feeling, and behavior in a person (Roberts, 2009).
Individual personality differences are often measured by using the
five-factor model (FFM), also known as the “Big Five.” It uses five
broad dimensions (extroversion, agreeableness, conscientiousness,
neuroticism, and openness) to model personality (Judge et al.,
1999; Cobb-Clark and Schurer, 2012). Different studies offer robust
proof of human personality heritability. Many genes are expected to
influence the heritability and development of personality in concert,
rather than separately (Judge et al., 1999; Zwir et al., 2020).
Understanding romantic relationship outcomes has improved due
to research examining gene–environment correlations and gene-by-
environment interactions (Whisman and South, 2017). GWAS
(genome-wide association studies) revealed a significant association
between SNPs or chromosomal locations and the FFM. For example,
more excellent scores of neuroticism, extraversion, and agreeableness
are identified in the 5q34–q35, 3p24, and 3q13 regions (Luciano et al.,
2012; Kim et al., 2013; De Moor et al., 2015). New tools such as next-
generation sequencing allow us to search and analyze connections
between genes and personality traits (Zmorzyński et al., 2021).

In this systematic review, we argue about genetic and epigenetic
factors that can influence couple adjustment and romantic
relationships over time.

Materials and methods

Search strategy

We followed the Preferred Ideal Reporting Items for Systematic
Review and Meta-Analyses (PRISMA) indications in the study
indication and selection (Figure 1) (Moher et al., 2009). Relevant
article identification for this study was performed by searches of
PubMed, EMBASE, Web of Science, Scopus, and the APA PsycInfo
register between inception and 4 June 2022. The PubMed search was
as follows: (genetics [title/abstract] OR polymorphism [title/abstract]
OR genome-wide [title/abstract] OR genome-wide [title/abstract] OR
Epigenetics [title/abstract]) AND (“romantic relationship” [title/
abstract] OR “romantic love” [title/abstract]) and (genetics [title/
abstract] OR polymorphism [title/abstract] OR genome-wide [title/
abstract] OR genome-wide [title/abstract] OR Epigenetics [title/
abstract]) AND (“couple adjustment” [title/abstract] OR “couple
attachment” [title/abstract] OR “marital adjustment”). This was
adapted according to each database’s needs. We also studied the
reference lists of original reports and reviews. Place (the country)
of research was not a limiting factor in this search strategy, and papers
published in English were reviewed.

Inclusion and exclusion criteria

We included studies that meet the following criteria: 1) molecular
and genetic basis of couple adjustment and its impact on the romantic
relationship or romantic love and 2) full articles published in English.
In this study, we excluded 1) the studies that were solely related to
psychological aspects of a romantic relationship, 2) studies that were
reviews or abstracts, and 3) studies whose information was
inaccessible.
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Data collection and synthesis

Three authors (PKH, MR, and FN) independently reviewed and
extracted the data from identified eligible studies, and disagreements were
resolved by consulting a third author (ST, SA, or FS). The following data
were extracted: the first author’s name, year of publication, genes
inspected, experimental techniques used, and sample size (Table 1).
We classified the findings of these studies according to the following
subjects (Table 2): 1) the oxytocin-related signaling pathway; 2) the
serotonin-related signaling pathway; 3) the dopamine- and
catecholamine-related signaling pathway; and 4) other genes. We did
not carry out a meta-analysis because we were not able to classify studies
based on their appropriate similarity in study design and experimental
techniques used, genetic variants that were examined, or the manner in
which the results were presented. Finally, we used the Newcastle–Ottawa
scale (NOS) to assess the methodological quality of the included studies.
The universities of Newcastle, Australia, and Ottawa, Canada, collaborate
on the Newcastle–Ottawa scale (NOS) on a regular basis. It was created
with the goal of assessing the quality of non-randomized studies, with its
design, content, and ease of use directed toward incorporating the quality
assessments in the interpretation of meta-analytic results. A “star system”

has been developed in which studies are judged based on three broad
perspectives: study group selection, group comparability, and
ascertainment of either the exposure or outcome of interest for case-

control or cohort studies. This project’s objective is to create a tool that will
make it simple and practical to evaluate the quality of non-randomized
studies for inclusion in a systematic review (Wells et al., 2000).

Results

A total of 2075 studies were found in the preliminary search. After
a comprehensive assessment comprising the removal of duplicates,
exclusion based on title or abstract, and exclusion based on certain
reasons such as reachability to their data, 24 studies were finally
included in this review. Different studies evaluated the associated
polymorphisms in 16 diverse genes or chromosomal regions. After
collecting a list of these genes, we classified them into four groups,
namely, 1) the oxytocin-related signaling pathway Figure 2; 2) the
serotonin-related signaling pathway Figure 3; (Penke et al., 2007) the
dopamine- and catecholamine-related signaling pathway (Figure 3);
and 4) other genes Table 2.

Oxytocin-related signaling pathway

Oxytocin (OT) and arginine vasopressin (AVP) are typically
produced in specific neurons in the hypothalamus in the

FIGURE 1
PRISMA flow diagram of study identification.
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TABLE 1 Features of the included studies.

First author Year Gene Evaluated polymorphism(s) Studied population/ancestry Experimental technique Sample
size

NOS References

Masahiro
Matsunaga

2021 Y-chromosomal (Y-DNA)
haplogroup D ancestor

Y-DNA haplogroup D-M55 Japanese Taqman SNP genotyping assays 623 8 Matsunaga et al.
(2021)

Anastasia
Makhanova

2021 CD38 rs3796863 United States (White/Caucasian) Taqman SNP genotyping assay 142 8 Makhanova
et al. (2021)

Gentiana Sadikaj 2020 CD38 rs3796863 Canadian PCR 222 8 Sadikaj et al.
(2020)

Bianca P. Acevedo 2020 AVPR1A, OXTR, COMT, and
DRD4

AVPR1a rs3, rs53576, rs4680, and DRD4-7R United States (California, New York) Fragment analysis and
MassARRAY Compact system

19 7 Acevedo et al.
(2020)

Joan K. Monin 2019 OXTR rs53576 United States (New Haven) Taqman SNP genotyping assays 356 8 Monin et al.
(2019)

Steven M. Kogan 2019 OXTR OXTR methylation African–American men (resided in 11 rural
counties in South Georgia)

Bisulfite 309 7 Kogan et al.
(2019)

Kristina Tchalova 2019 OPRM1 C77G in primates and A118G in humans Canada (Montreal) Sequencing 184 8 Tchalova et al.
(2021)

Eiluned Pearce 2018 OXTR, AVPR1A, OPRM1, AR,
DRD1, DRD2, ANKK1,HTR1A,
and HTR2A

10 OXTR SNPs, two AVPR1A SNPs, five
OPRM1 SNPs, one AR SNP, 1 DRD1 SNP, two
DRD2 SNPs, one ANKK1 SNP, one HTR1A
SNP, and one HTR2A SNP

Three types of samples: a healthy Caucasian
sample, a subclinical sample (Caucasian
individuals with histories of mental illness),
and a non-White sample (four Black African,
12 Chinese, 20 Indian subcontinent, six other
Asian, 16 mixed Black Caribbean, and eight
others)

NA 206 8 Pearce et al.
(2018a)

Eiluned Pearce 2018 AR, OXTR, AVPR1A, OPRM1,
DRD1/2, ANKK1, and
5HTR1A/2A

Associations between 2D:4D and single-
nucleotide polymorphisms (SNPs) in nine
neurochemical receptor genes

Caucasians with no history of
psychopathology

NA 474 8 Pearce et al.
(2018b)

Eiluned Pearce 2017 OXTR, AVPR1a, OPRM1,
DRD1, DRD2, ANKK1,HTR1A,
HTR2A, and AR

33 candidate SNPs from nine genes: 11 candidate
SNPs for OXTR (oxytocin), three SNPs for
AVPR1a (vasopressin), six SNPs for OPRM1 (β-
endorphins), three SNPs for DRD1, three for
DRD2, one SNP for ANKK1 (located
downstream from DRD2) (dopamine), one SNP
for HTR1A, two SNPs for HTR2A (serotonin),
and one SNP for AR (testosterone)

Caucasians with no history of
psychopathology

NA 757 8 Pearce et al.
(2017)

Man-Kit Lei 2017 SLC6A4 5-HTTLPR African–American families PCR 270 8 Lei et al. (2016)

Ronald L. Simons 2017 OXTR OXTR methylation African–American women Illumina 450 K Human
Methylation Beadchip

100 8 Simons et al.
(2017)

J. Kromer 2016 HLA HLA class I/II German Next-generation sequencing 508 8 Kromer et al.
(2016)

(Continued on following page)
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TABLE 1 (Continued) Features of the included studies.

First author Year Gene Evaluated polymorphism(s) Studied population/ancestry Experimental technique Sample
size

NOS References

Lisa R. Starr 2016 SLC6A4 5-HTTLPR Australia (Caucasian ancestry and other racial
groups (Asian–Australian, Maori/Islander,
and Australian Aborigine)

PCR 381 7 Starr and
Hammen (2016)

Siyang Luo 2015 SLC6A4 5-HTTLPR Chinese PCR 1,532 8 Luo et al. (2016)

Sara B. Algoe 2014 CD38 rs6449182 and rs3796863 United States (North Carolina) Taqman SNP genotyping assays 128 8 Algoe and Way
(2014)

Jinting Liu 2014 5-HT1A rs6295 Chinese PCR 579 8 Liu et al. (2014)

Pingyuan Gong 2014 5-HT1A rs6295 Chinese PCR-SSCP 504 8 Gong et al.
(2014)

April S. Masarik and
Rand D. Conger

2014 5-HTT (SLC6A4), ANKK1,
DRD2, DRD4, and COMT

5-HTTLPR, A1 allele of the Taq1A
polymorphism in ANKK1/DRD2, 7R allele of
exon 3 VNTR in DRD4, and Met allele of the
Vall58Met polymorphism in COMT

— PCR, Taqman real-time PCR 352 8 Masarik et al.
(2014)

Inna Schneiderman 2014 OXTR rs13316193, rs2254298, rs1042778, rs2268494,
and rs2268490

Caucasians, who are healthy and completed at
least 12 years of education

SNaPshot method and High
Resolution Melt (HRM)

120 8 Schneiderman
et al. (2014)

Claudia M. Haase 2013 SLC6A4 Serotonin transporter promoter polymorphism
(5-HTTLPR)

United States (San Francisco Bay Area) PCR 125 8 Haase et al.
(2013)

Ronald L. Simons 2013 GABRA2 Block 1: rs531460, rs567926, and rs279858; block
2: rs1440130 and rs279837

African–American Taqman MGB assays 549 8 Simons et al.
(2013)

Hasse Walum 2012 OXTR rs75775, rs1488467, rs4564970, rs53576,
rs237897, rs237887, rs11720238, rs4686302,
rs2254298, rs2268493, rs1042778, and rs7632287

Sweden KBioscience using the KASPar
chemistry, Taqman SNP

genotyping assays

1,240 8 Walum et al.
(2012)

Hasse Walum 2008 AVPR1A GT25 repeat polymorphism, RS3 repeat
polymorphism, and RS1 repeat polymorphism

Sweden Fragment analysis 1,899 8 Walum et al.
(2008)

Garver-Apgar CE 2006 MHC MHC alleles at the A, B, and DRB loci New Mexico Allele-specific primers to amplify
PCR products

48 7 Garver-Apgar
et al. (2006)

NOS, Newcastle–Ottawa scale; NA, not available.
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TABLE 2 Different evaluated genes or chromosomal regions.

Signaling pathway Gene Description Location

Oxytocin-related signaling pathway OXTR Oxytocin receptor 3p25.3

CD38 CD38 molecule 4p15.32

AVPR1A Arginine vasopressin receptor 1A 12q14.2

Dopamine- and catecholamine-related signaling pathway DRD1 Dopamine receptor D1 5q35.2

DRD2 Dopamine receptor D2 11q23.2

DRD4 Dopamine receptor D4 11p15.5

ANKK1 Ankyrin repeat and kinase domain containing 1 11q23.2

COMT Catechol-O-methyltransferase 22q11.21

Serotonin-related signaling pathway SLC6A4 (5-HTT) Solute carrier family 6 member 4 17q11.2

HTR1A (5-HT1A) (5-HTR1A) 5-Hydroxytryptamine receptor 1A 5q12.3

HTR2A (5-HTR2A) 5-Hydroxytryptamine receptor 2A 13q14.2

Other genes MHC Class I and II major histocompatibility complex 6p21

GABRA2 Gamma-aminobutyric acid type A receptor subunit alpha-2 4p12

ORPM1 Opioid receptor Mu 1 6q25.2

Y-DNA Y-DNA haplogroup D-M55 Y chromosome

FIGURE 2
Oxytocin- related signaling pathway. Oxytocin receptors (OTR) stimulated byOxytocin (OT; green circles). Then, the Gq/11 type GTP-binding protein and
phospholipase C (PLC) are activated, leading to creation of inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This results in Ca2+ mobilization
activation from IP3-sensitive Ca2+ pools. CD38 activated by stimulated protein kinase C (PKC) and increases cADPR creation from β-NAD+ inside or outside
cells. cADPR using a mechanism mentioned as Ca2+-induced Ca2+ release, mobilizes Ca2+ via cADPR-sensitive Ca2+ pools. cADPR triggers Ca2+ influx
TRPM2 cation channels. TRPM2 channels can inhibit by 2-Aminoethoxydiphenyl borate (2-APB). TRPM2 facilitates Ca2+ influx, which also trigger Ca2+

mobilization through ryanodine receptor Ca2+ release channels as a cofactor together with cADPR. These Ca2+ intensificationmechanisms increase Ca2+ ions
and Ca2+ ions trigger OT release into the brain, which is an important factor for social memory and social behavior.
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supraoptic and paraventricular nuclei (Hoyle, 1998; Gainer, 2012).
They have multiple physiological roles in peripheral organs such as the
uterus and kidneys (Leng et al., 2015). These two hormones and their

receptors are present in the brain both in women (pregnant and non-
pregnant) and men (Leng and Russell, 2002; Brunton and Russell,
2010). Research has shown that in addition to classical hormonal

FIGURE 3
Serotonin-related signaling pathway; Dopamine and catecholamine-related signaling pathway. (A) Dopamine synthesis and signal transduction. The
main metabolic pathway for dopamine synthesis has two steps. First, tyrosine hydroxylase can convert tyrosine to L-dopa and then L-dopa transforms to
dopamine (not shown). Dopamine is transported by themonoamine transporter (VMAT2) from the cytosol to the vesicles in synaptic vesicles and is stored until
it is released into the synaptic cleft. Dopamine degradation pathway involves monoamine oxidase (MAO) in the outer mitochondrial membrane.
Dopamine receptors are present in both postsynaptic and presynaptic neurons (including dopamine transporters, DAT). Dopamine receptors belong to the
GPCR superfamily associated with various types of G proteins. D1- and d2-like receptors are important receptors for dopamine signaling. These receptors are
also crosstalks with other signaling pathways such as Gαq, Gβγ, DAG, IP3, CAMP, andMAPK-MEK-ERK. (B) 5-HT Synthesis and signal transduction. Tryptophan
is the essential amino acid involved in the synthesis of 5-HT. In CNS l-tryptophan is hydroxylated to 5-hydroxytryptophan (5-HTP) by the enzyme tryptophan
hydroxylase type 2 (TPH2). This is followed by subsequent decarboxylation THAT transforms 5-hydroxytryptophan into 5-hydroxytryptamine. 5-HT is
transported by the monoamine transporter) VMAT2) into vesicles and storage. Like dopamine 5-HT can be degraded by monoamine oxidase (MAO) in the
outer mitochondrial membrane. After released 5-HT it can engage with receptors. All 5-HTRs are heteroreceptors and postsynaptically expressed on non-
serotonergic neurons and autoreceptors located presynaptically on the serotonergic neurons. 5-HT1A, B, D, E, F, 5-HT2A, B, C, 5-HT4, 5-HT5A, B, 5-HT6, and
5-HT7 receptors are classified as G protein-coupled receptors (GPCRs), while 5-HT3A, B, C, D, E receptors are ligand-gated ion channels. Upon ligand
binding, the intracellular loop and C-terminal tail interact with specificG protein families, including Gαs, Gαi/o, Gαq/11, and leading to activatedmany signaling
pathways such as DAG, IP3, CAMP, and MAPK-MEK-ERK.
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functions, these hormones play an essential role in the processes of
human social cognition and social behavior (Donaldson and Young,
2008).

The OT receptor is a seven-transmembrane protein coupled with
the Gq/11-type GTP-binding protein (Figure 2). OT receptor
stimulation leads to inositol-1,4,5-trisphosphate (IP3) and
diacylglycerol (DAG) production by the activation of
phospholipase C (PLC) (Gimpl and Fahrenholz, 2001). This results
in Ca2+ mobilization stimulation from IP3-sensitive Ca2+ pools
(Lopatina et al., 2010). On the other hand, the cyclic ADP-ribose
(cADPR) Ca2+ signaling pathway has been recognized downstream of
OT receptors (Higashida et al., 2010; Lee, 2012). cADPR, using a
mechanism mentioned as Ca2+-induced Ca2+ release, mobilizes Ca2+

via cADPR-sensitive Ca2+ pools. In this process, cADPR has a key role
in mobilizing Ca2+-utilizing ryanodine receptors (Lambert et al., 1994;
Fill and Copello, 2002; Endo, 2009). Several different ways are known
for regulation of intracellular cADPR concentrations comprising
ADP-ribosylcyclase or CD38 activation or the G protein-coupled
receptor phosphorylation as downstream signaling pathways
(Boittin et al., 2003; Sternfeld et al., 2003; Higashida et al., 2007). It
has been suggested that internalization of produced cADPR in
extracellular space via CD38 into fibroblasts and astrocytes leads to
stimulation of intracellular ryanodine receptors (Franco et al., 2001;
De Flora et al., 2004).

Oxytocin receptor gene (OXTR)

The oxytocin (OT) pathway system is actively involved in
socialization and regulation of interpersonal interaction (Donaldson
and Young, 2008; Meyer-Lindenberg et al., 2011). Numerous studies
have shown an association of OT with an increase in emotionally
colored social contacts and increased trust in the communication
process (Grewen et al., 2005; Kosfeld et al., 2005). Intranasal
administration of OT resulted in a more remarkable ability to
absorb social information and a greater expression of altruistic
personality traits (Kosfeld et al., 2005; Rimmele et al., 2009; De
Dreu et al., 2010). Because of the conservation of the neuropeptide
oxytocin in different mammalian species and the inheritability of
human sociality, variations in genes encoding oxytocin may explain
personal differences in sociality (De Dreu et al., 2010; Meyer-
Lindenberg et al., 2011). It has been suggested that the oxytocin
receptor gene (OXTR) (on 3p25 ) could potentially be an
important candidate for sociality behaviors (Rodrigues et al., 2009).

In recent years, the genetic aspects affecting the production and
receptivity of OT have engrossed the attention of psychopathology
researchers. The main focus of this research has been on the study of
single-nucleotide polymorphisms of the OXTR gene (rs53576 and
rs2254298); the OXT gene (rs2740210, rs4813627, and rs4813625); and
the CD38 gene (rs3796863 and rs6449197) (Feldman et al., 2016). Some
genetic variants have been associated with increased aggressiveness (Shao
et al., 2018), sociality (Parris et al., 2018), significant problems in
interpersonal relationships (Andreou et al., 2018), and hyperactivity
(Ayaz et al., 2015). A detailed review of the association of OT pathway
genes is presented by Feldman et al. (2016) and Cataldo et al. (2018).

It has been found that OXTR rs53576 can play a role in pair bonding
(Poulin et al., 2012; Acevedo et al., 2019). Studies have shown that people
withmoreG alleles have higher levels of sociability, empathy, and altruism
with their emotional partner (Uzefovsky et al., 2016; Gong et al., 2017).

Acevedo et al. (2020) reported that some genetic polymorphisms,
including OXTR rs53576, correlate with romantic love maintenance
among first-time newlyweds. The simulated interaction model for
OXTR rs53576 with sustaining romantic love appeared in the septum
(bilaterally) and left VTA (L). Activation of L VTA is frequently found in
studies on facial attractiveness, which revealed that L VTA specifically
reacted to smiling and supportive faces (Vrtička et al., 2008). A similar
study showed that menwho received the OT hormone through intranasal
administration experienced L VTA activation in response to seeing their
partner’s image (Scheele et al., 2013). Various findings show that the
effects created by theOT hormone are specifically related to the emotional
partner, which can strengthen and improve attachment and pair bonding.
The point to be made is that sex may influence the effects of OT on mate
choice and pair bonding. Individual variances such as personality and
adjustment style can affect the relationship of OT with couples’ bonding
choices (Pearce et al., 2019; Xu et al., 2020). The other study reported
greater marital satisfaction in individuals with the GG genotype inOXTR
rs53576 (compared with AA or AG genotypes) (Monin et al., 2019).

However, a meta-analysis study in 2015 reported conflicting findings
about the OXTR rs53576 variation (Li et al., 2015). This meta-analysis
showed that homozygous individuals for the G allelemostly had increased
social behavior than the carriers of the A allele. In addition, they did not
find a significant difference in close relationship measures between
homozygous individuals for the G allele and the carriers of the A
allele. In summary, this study suggested that OXTR rs53576 can
forecast how an individual reacts to other people, but it might not be
linked to individual variances in forming a close relationship
(i.e., parent–child or romantic/marital) (Li et al., 2015).

Pearce et al. (2017), in a preliminary study, showed that for dyadic
relationships, twoOXTR SNPs (rs2268490 and rs4686302) had significant
effects on Relationship Assessment Scale (RAS) scores of relationship
quality, whereas rs2254298 showed a trend toward significance. Also,
seven OXTR SNPs significantly correlate with Sociosexual Orientation
Inventory-Revised (SOI-R) scores: rs237887, rs2268490, rs2254298,
rs13316193, rs53576, rs237897, and rs4686302. In terms of personal
network size, there was a significant correlation withOXTR rs237887. For
connection feelings to their local community, OXTR rs53576 showed a
significant correlation (Pearce et al., 2017). In another replicate study, it
was shown that OXTR rs237897, rs53576 (the lower anxiety in more
minor allele carriers), and rs2228485 variations correlated with anxiety
adjustment. Dispositional empathy is outstandingly correlated with three
OXTR SNPs: rs2228284, rs1042778 (lower scores in carriers of the minor
allele), and rs53576. Also, it was found that OXTR rs53576 variation was
also associated with IOS scores (heterozygote carriers showed lower mean
scores) and rs2228485 (Pearce et al., 2018a).

Couple empathic communication paves the way for improving
better and more intimate emotional relationships. In contrast, the
existence of problems with effective empathy in couples’ relationships
often results in the weakening of the relationship and emotional
distress (Anderson and Saunders, 2003). Schneiderman et al.
(2014), regarding the correlation between the OXTR gene and
empathic connection problems at the beginning of romantic love
formation, found that having alleles with a higher risk in the OXTR
gene can have supportive effects on the problems of establishing
empathic relationships at the beginning of the romantic love
formation. It was also found that individuals who have higher-risk
alleles in the OXTR gene (rs1042778, rs2254298, rs13316193,
rs2268494, and rs226849) showed less empathy for their partner’s
distress, less emotional congruence, presented less social reciprocity,
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and paid less attention to their partners’ communication while
maintaining focus on support provision (Schneiderman et al., 2014).

Sex differences in the functioning of the OT pathway are currently
under active discussion. Data on the effect of sex hormones on the
function of the oxytocinergic system are limited (Van Anders et al., 2011;
MacDonald, 2013); however, it is known from animal studies that
estrogens stimulate OT production and testosterone acts through the
vasopressin pathway (Gabor et al., 2012). Women have been shown to
respond to problems in couples with increase in the OT concentration,
whereas men respond to vasopressin (Taylor et al., 2010). Some
researchers believe that gender variances in the production and uptake
of OT can principally regulate the general pathways of stress response in
individuals of different sexes, from support-seeking behavior in women
(tend-and-befriend behavior) to “fight or flight” strategies in men (Olff
et al., 2013; Torres et al., 2018). It is known that the size of the amygdala,
where numerousOXTRs are localized, is larger inmen than in women. At
the same time, the larger size of the amygdala is related to less prosocial
behavior. It was shown that only in men, a homozygote G allele of the
OXTR rs53576 gene was correlated to smaller amygdala size (Tost et al.,
2010), poorer stress tolerance (Lucas-Thompson andHolman, 2013), and
augmented sympathetic response to stress (Norman et al., 2012). At the
same time, Japanese male GG of rs53576 carriers (but not females) are
characterized by a higher level of confidence (Nishina et al., 2015).

DNA methylation, as an important process, has an essential role in
gene expression silencing (Meloni, 2014). Some studies propose that close
relationships are impacted by experiencing stressful situations (Baker
et al., 2017); in this condition, DNAmethylation at theOXTR gene can be
considered an essential mechanism. In a study by Steven M. Kogan et al.
(2019), the possible role of OXTR DNA methylation in relationship
alterations was evaluated in response to adversity in childhood and
socioeconomic instability. Their findings indicated that OXTR
methylation was associated with these situations throughout a 1.5-year
period (Kogan et al., 2019). In another study, Ronald L. Simons et al.
(2017) suggested that the epigenetic mechanisms involved in the
regulation of the oxytocin pathway may be a biological path involved
in the negative cognitions central to depression.

CD38 molecule (CD38)

CD38 is a transmembrane protein involved in the regulation of OT
production, cell differentiation, and migration; the prominent expression
of CB38 was recorded in hypothalamic neurons and lymphocytes (Jin
et al., 2007; Higashida et al., 2019).CD38 knockout mice are characterized
by markedly reduced OT production and impaired social functions (Liu
et al., 2008). An allele variant of rs3796863 in the CD38 gene
(4p15 chromosomal region) is associated with high OT production
and socialization (Malavasi et al., 2008; Feldman et al., 2012).
Makhanova et al. (2021) evaluated the association between SNP
rs3796863 and bonding-relevant cognition and relationship satisfaction
over the first 3 years of marriage. They exploited data from a longitudinal
study of newlywed couples to scrutinize whether variation in
rs3796863 was related to relationship processes and consequences in
newlywed couples. The CC genotype (vs. AC/AA) correlated with
increased partner appreciation, trust, and forgiveness. Furthermore,
contributors with the CC genotype (vs. AC/AA) had higher levels of
relationship satisfaction. Finally, considering the higher level of
satisfaction among individuals with the CC genotype (versus AC/AA)
after 3 years of marriage and the initiation of romantic relationships, they

suggested that the rs3796863 variant may have persistent effects. In
another study, Gentiana Sadikaj et al. (2020) showed that CD38
rs3796863 was associated with an individual’s interpersonal
communication behavior, such as expressing love to a romantic and
emotional partner (a personwith the CC genotype has amore cooperative
behavior than a person who has the A allele). In conclusion, CD38
rs3796863 is related to relationship adjustment so that a person with the
CC genotype has higher levels of global relationship adjustment than
those with other genotypes (Sadikaj et al., 2020).

Arginine vasopressin receptor 1A (AVPR1A)

Two related neuropeptides, the arginine vasopressin and oxytocin
hormone, are well-conserved during evolution and have been shown
to play a role in various social behaviors, memory, and learning (Van
Kesteren et al., 1995; Donaldson and Young, 2008; Veenema and
Neumann, 2008). The AVPR1A gene encodes a receptor that mediates
the effects of the AVP hormone in the central nervous system (brain)
(Wassink et al., 2004; Fink et al., 2007). It has been exposed that
AVPR1A plays a role in regulating and modulating social cognitive
processes and behaviors such as adaptation, social bonds, and altruism
(Donaldson and Young, 2008).

The study of Pearce et al. (2018a) showed that AVPR1A variation
could have significant effects only on disposition, dyadic, and
network-level relationships. Also, in a previous study, they found
that repeat length polymorphisms in the AVPR1A gene can have a
meaningful relationship with differences in sexual behavior (Prichard
et al., 2007; Walum et al., 2008; Pearce et al., 2018a). In a study of twins
and their romantic relationships with their partners, Walum et al.
(2008) showed that AVPR1a rs3 was associated with higher rates of
partner bonding, fewer relationship difficulties, greater obligation, and
better quality of their romantic relationship (only in men). Another
study revealed that this variant correlated with a higher level of sexual
satisfaction and sexual activity frequency (Acevedo et al., 2019).
Furthermore, AVPR1a rs3 can play a role in complex social
cognitive processes like empathy, emotional facial reaction, and
altruism (Volbrecht et al., 2007; Meyer-Lindenberg, 2008;
Brunnlieb et al., 2016). Interestingly, it has been proposed that
there is a significant interaction with this polymorphism and
romantic love continuation in the right VTA, the PAG, the
posterior hippocampus, the occipital cortex, and the superior
temporal gyrus (STG; a critical region for the prize, adaptation,
memory, and visual and sensory processing) (Schultz et al., 2003;
Nagy et al., 2012; Acevedo et al., 2020). These regions are typically seen
in the background of long-term romantic love (Acevedo et al., 2012).

Serotonin-related signaling pathway

Serotonin [5-hydroxytryptamine (5-HT)], a neurotransmitter, has
many physiological roles, such as regulating the transcription of many
genes and the activity of neurotrophic factors and steroids. Therefore,
this neurotransmitter can profoundly affect various brain activities,
such as cognitive control, learning and sensory processing, regulation
of emotions and feelings, autonomic nervous system responses,
memory and sleep, and motor function (Palacios, 2016).

5HT is released from the end of the axons of presynaptic neurons
into the synaptic space to bind to their receptors. These receptors are
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divided into seven subfamilies based on their structural features and
conserved domain and their signaling pathway (ionotropic receptor 5-
HT3 and G protein-coupled receptors including 5-HT1, 5-HT2, 5-
HT5, and 5-HT4/6/7) (Millan et al., 2008; Palacios, 2016) (Figure 3).
The number of receptors is strongly influenced by alternative splicing
and the RNA editing process. For example, there are 10 splicing
variants for the 5-HT4 receptor. 5-HT1 and 5-HT5A receptors
negatively inhibit adenylyl cyclase (AC), which ultimately inhibits
cAMP repletion. Also, the 5-HT1 receptor activates the phospholipase
C (PLC), inositol-1,4,5-triphosphate (IP3), and diacylglycerol (DAG)
signaling pathways. Activation of this pathway causes the release of
calcium from the endoplasmic reticulum and the activation of protein
kinase C (PKC) (calcium/calmodulin-dependent kinases) (Figure 3).
Presynaptic localization of 5-HT1B is assumed to repress excessive 5-
HT secretion (Nichols and Sanders-Bush, 2001; Millan et al., 2008;
Masson et al., 2012).

Solute carrier family 6 member 4 (SLC6A4)

5-HTTLPR (5-HTT-related polymorphic) is a polymorphic region
in the promoter of the serotonin transporter gene (SLC6A4). The
chromosomal location of 5-HTTLPR is 17p13, and its genomic region
includes a single promoter and 14 exons. The genomic region of the
promoter of the gene (5-HTTLPR) contains two alleles: the short allele
(s) (12 copies) and the long allele (l) (14 copies). The difference
between these two alleles is the number of copies of a 22-bp repetitive
sequence. However, a significant proportion of African–Americans
have a longer 16-copy variant. The length of the repeat is related to the
amount of 5HTT production so that the “s” variant is associated with
less production and a decrease in the efficiency of 5-HT uptake. The
consequences of this reduction are depression or development of
impulsive aggression, which are essentially related to the serotonin
signaling pathway (Carver et al., 2008; Vijayendran et al., 2012). It has
been shown that 5-HTT variation can affect marital interactions
toward improvement or worsening (Schoebi et al., 2012). In
response to marital impulses (whether positive or negative), the
level of marital satisfaction in s allele carriers is more affected.
These individuals are strongly influenced by positive or negative
feelings and emotions (Haase et al., 2013). Similarly, Man-Kit Lei
et al. (2016) showed that the “s” allele could be considered a
“susceptibility” allele in the process of the impact of underlying
stress on romantic relationship satisfaction; thus, 5-HTTLPR
variation can increase the sensitivity to environmental influences of
stressful factors on a romantic relationship (Lei et al., 2016). In another
study, Starr and Hammen (2016) proposed that the “s” allele of 5-
HTTLPR has a strong linear relationship with the degree of romantic
relationships and depressive symptoms. The “s” allele is associated
with a higher susceptibility to depression after a romantic relationship,
which can be provoked by chronic stress and exacerbated by higher
levels of family conflicts. Siyang Luo et al. (Starr and Hammen, 2016)
examined the theory that 5-HTTLPR is associated with individuals’
romantic relationship satisfaction (RRS). By using the fMRI
(functional MRI) technique and comparison of homozygote (s/s)
and (l/l) individuals throughout a Cyberball game that led to
deprivation of social actions, they also investigated the effect of 5-
HTTLPR on neural activity that could be related to RRS. Compared to
s/s homozygotes, l/l homozygotes had higher levels of RRS, lower levels
of social interaction anxiety, stronger activity in the right ventral

prefrontal cortex (RVPFC), and stronger functional connectivity
between the dorsal and rostral ACC at game withdrawal time. It
was shown that RVPFC activity is involved in the association of 5-
HTTLPR with RRS. In contrast, the correlation of 5-HTTLPR with
social interaction anxiety is moderated by both dorso-rostral ACC
connectivity and RVPFC activity (Starr and Hammen, 2016).

5-Hydroxytryptamine receptor 1A & 2A (5-
HTR1A and 5-HTR2A)

Along with the serotonin transporter, the serotonin receptor
regulates serotonin levels in the brain (Le François et al., 2008;
Trueta and Cercós, 2012). The 5-hydroxytryptamine 1A receptor is
one of the key receptors expressed in pre- and post-synaptic neurons
of mammalian brain (Drago et al., 2008); their stimulation on the
dendritic terminals of neurons (in the cortex and hippocampus)
creates a negative feedback loop for secretion of serotonin (Sprouse
and Aghajanian, 1987). 5-HT1A receptor expression is regulated by
the 5-HT1A gene. A single-nucleotide polymorphism (C-1019G) in
this gene regulates the expression of 5-HT1A receptors (Lemonde
et al., 2003; Albert and Lemonde, 2004; Le François et al., 2008). The G
allele (compared to the C allele) is associated with reduced levels of
serotonin in the synaptic space (Drago et al., 2008; Le François et al.,
2008; Trueta and Cercós, 2012) and a higher risk for depression
(Lemonde et al., 2003; Albert and Lemonde, 2004; Czesak et al., 2012).
In another study, it was shown that GG homozygotes (compared to
CC homozygotes) had higher scores on the Toronto alexithymia scale
(TAS-20). Also, it was found that people with the CG/GG genotype
(compared to C/C genotype carriers) feel less comfortable and
intimate with being in a close relationship (Gong et al., 2014).
Additionally, the results of Jinting Liu’s (Gong et al., 2014) study
regarding the effect of this polymorphism on romantic relationships
confirmed that individuals with the CG/GG genotype (compared to
C/C genotype carriers) prefer to be single. Indeed, individuals with the
CG/GG genotype are more likely to have a higher degree of
neuroticism (Strobel et al., 2003) and may also have a range of
psychiatric problems such as major depression (Lemonde et al.,
2003; Kishi et al., 2013) and borderline personality disorder (Joyce
et al., 2014). Considering that neuroticism canmake it difficult to form
a close relationship, especially romantic relationships, and affect its
quality (Lehnart and Neyer, 2006; Assad et al., 2007), the presence of
the G allele may increase the chances of finding an emotional partner
or affect maintaining a romantic relationship.

In humans, “loving styles” and variations in DRD2 and HTR2A
genes are somehow linked together (Miller et al., 1999), so it can be
assumed that the HTR1A variation is associated with the formation of
romantic relationships (Emanuele et al., 2007) and OPRM1 and
HTR2A with differences in mate selection success differentially
across sexes in “speed-dating” circumstances (Wu et al., 2016).
Pearce et al. (2017) indicated that HTR1A gene variation was
associated with a more comprehensive social network (network
size). Furthermore, in another study, they showed that there is a
correlation between HTR2A variation and individual differences in
social interaction (including others in the self-scale (IOS) and network
size) (Pearce et al., 2017). Additionally, in another research, they
showed thatHTR2A variation was associated with SOI-R ( Sociosexual
Orientation Index-Revised) scores (Pearce et al., 2018a). Interestingly,
it has been identified that an OPRM1 SNP predicts speed-dating
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success in women, while the HTR2A variant is associated with dating
success in men (Wu et al., 2016).

Dopamine- and catecholamine-related
signaling pathway

The dopaminergic system is a fundamental pathway for
controlling voluntary movements, control of pleasure circuitry,
regulation of mood, attention, cognitive functions, sleep, appetite,
sense of smell, vision, and erections (Beaulieu et al., 2015).
Dysfunction of the dopaminergic system is associated with a
variety of neuropsychiatric disorders, including schizophrenia,
Parkinson’s disease, and addictive, anxiety-depressive, obsessive-
compulsive, attention deficit hyperactivity, and eating disorders
(Asl et al., 2019; Klein et al., 2019; Yu et al., 2022).

Five types of dopamine receptors in humans are encoded by the
DRD1, DRD2, DRD3, DRD4, and DRD5 genes. Dopamine receptors
are a member of the of G protein-coupled receptor superfamily, and
they include two subfamilies; D1-like (comprising D1 and D5;
stimulating secondary messenger and binding to canonical Gs/olf
proteins) and D2-like (comprising D2, D3, and D4; inhibiting
secondary messenger and binding to Gi/Go proteins) (Figure 3)
(Neve et al., 2004; Beaulieu and Gainetdinov, 2011).

The COMT gene encodes the enzyme catechol-O-
methyltransferase (COMT), which cleaves dopamine in the
prefrontal cortex. The rare “A” allele alters the structure of the
resulting enzyme so that its activity is only 25% of that of the wild
type. As a result, carriers of the A allele have more dopamine in the
prefrontal cortex compared to a carrier of the wild-type G allele, which
may cause many neuropsychological associations (Tunbridge and
Harrison, 2010).

Studies have shown that ANKK1 (ankyrin repeat and kinase
domain containing 1) gene variants may be involved in the
formation of addictive behavior, possibly by influencing the
development and function of the dopaminergic system (Koeneke
et al., 2020). A recent study showed a likely functional link
between ANKK1 and DRD2 (Leggieri et al., 2022).

Little is known about the role of the dopaminergic signaling
pathway in establishing and maintaining romantic and emotional
relationships in humans. However, animal studies provide strong
evidence for such a relationship (Acevedo et al., 2012). For
example, Young and Wang considered a special worth for the
function of brain structures that implement the production and
reception of dopamine for pair bonding, revealing sex differences
in the relationship at the same time (Young and Wang, 2004).
Subsequently, these findings were partially confirmed in a
neuroimaging study in humans: the passionate stage of romantic
love is accompanied by a pronounced activation of the
dopaminergic system in two regions, the medial orbitofrontal
cortex and medial prefrontal cortex (Takahashi et al., 2015).
Accumulated empirical evidence has led to the “dopamine
hypothesis of romantic love,” according to which romantic love is
based on amotivational drive resulting from “natural addiction,” given
that the role of dopamine in the formation of pathological addictions is
well-established (Fisher et al., 2006; Frascella et al., 2010; Fisher et al.,
2016; Wang et al., 2020). According to our search strategy, we found
six studies on the link between dopamine receptors and couple
adjustment in the context of romantic relationships. Two articles

investigated the role of the DRD4 gene, and four articles investigated
the role of DRD1 and DRD2.

A series of articles by Pearce et al. (2017), Pearce et al. (2018a), and
Pearce et al. (2018b) showed that the DRD1 rs265981 and DRD2
rs1076560 polymorphisms are associated with reduced receptor
ligand-binding capacity (Bertolino et al., 2010) and are prone to
enhance social connections in seeking a partner and a higher
sociosexuality index, suggesting higher levels of short-term
romantic relationships. The indicated associative relationship was
observed in both pilot (Pearce et al., 2017) and replicative (Pearce
et al., 2018a) studies, increasing the evidentiary strength of the authors’
findings. At the same time, the authors showed that DRD2
rs4648317 is not associated with sociosexual traits and relationship
quality (Pearce et al., 2018b). In the mentioned study, no relationship
was found between positive parental involvement in adolescents’ lives,
strength of romantic relationships, and Taq1 A polymorphism in
ANKK1/DRD2 rs1800497 (Masarik et al., 2014). However, an
association of ANKK1/DRD2 rs1800497 with an index of
sociosexuality (Pearce et al., 2017; Pearce et al., 2018a) was found.

Acevedo et al. (2020) showed that the presence and maintenance of
romantic involvement over time positively correlated with numerous 7R
alleles of theDRD4 gene (Acevedo et al., 2020). Similar results obtained by
Masarik et al. (2014) show the relationship between positive parental
involvement in adolescents’ lives and the DRD4-7R polymorphism was
statistically significant (in a regression model, ß = .447, p < .05), which
subsequently has a positive effect on romantic relationships. The 7R allele
is thought to be associated with a reduced ability of DRD4 to bind
dopamine and a greater need for risk-taking behaviors, more diverse
sexual behaviors, a greater desire for children early in love relationships,
and novelty-seeking (He et al., 2018; Acevedo et al., 2020). It seems
possible that individuals with a higher number of 7R alleles of the DRD4
gene tend to be more romantically intense in short-term relationships but
less able to maintain relationships in the longer term (Minkov and Bond,
2015).

Two studies assessed the associative relationship of COMT gene
polymorphisms. In the study mentioned previously, carriers of the
COMT rs4680 allele “A” were found to have higher levels of romantic
love maintenance and response to a partner (Acevedo et al., 2020). As
previously indicated, carriers of the COMT rs4680 allele “A” were
characterized by higher levels of dopamine in the prefrontal cortex.
Masarik et al. (2014) found no relationship of sufficient significance
between COMT rs4680 and the studied parameters of parental
involvement in adolescents and romantic relationships in adulthood.

Thus, the results of the studies included in the review provide
moderate evidence for the involvement of genetically programmed
features of the dopaminergic system in the establishment and
maintenance of romantic relationships. Genotypes associated with
low dopamine receptor binding capacity (DRD1 rs265981, DRD2
rs1076560, ANKK1/DRD2 rs1800497, and DRD4-7R) may
contribute to a stronger romantic relationship, at least in the short
term (for example, in the initial period of the marriage).
Characteristically, these same genotypes are associated with various
types of pathological addiction, which, in a way, confirms the
“dopamine hypothesis of romantic love” in terms of the
molecular–genetic basis. However, to confirm such associations,
more extensive studies with larger numbers of participants, a
prospective design, and consideration of gender differences are
required. Studies of COMT gene involvement are presented as
single studies and do not allow for drawing unequivocal conclusions.
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Other genes related to romantic
relationships

Major histocompatibility complex (MHC)

The major histocompatibility complex (MHC) or human leukocyte
antigen gene set is located on human chromosome 6, which encodes cell
surface markers and has critical roles in cell immunity function
(Migalska et al., 2019). MHC loci are highly polymorphic (Bertaina
and Andreani, 2018), and this variation is pivotal owing to the diversity
of the major histocompatibility complex (MHC) and is important for
health and fitness. MHC genotypes can predict the quality or
compatibility of an individual as a competitor, ally, or partner, which
might be because MHC products can affect the components of the
body’s secretions. In addition, human body odor indicates the MHC
composition and can affect spouse identification and selection (Havlíček
et al., 2020). Christine E. and colleagues show that MHC molecules can
also play a role in mate selection and sexual satisfaction. It has been
reported that mate choice in vertebrates can be related to the association
between MHC and smell; for example, mice, by smell, choose a mate
that has a different MHC genotype (Garver-Apgar et al., 2006). The
evidence for this preference among humans is generally positive but
mixed. Three of four studies of women who are normally ovulating
demonstrated a preference for positive scents from opposite-sex
individuals with dissimilar MHC genotypes. Based on the results of
studies, MHC sharing adversely affects women’s sexual responsiveness
and sexual satisfaction with partners. Moreover, women tend to have
extra-pair partners (solely in their present relationship) and are more
attracted to extra-pair men apart from their main partner, which is
particularly aggravated during the fertile days of the menstrual cycle
(Garver-Apgar et al., 2006; Havlíček et al., 2020). Current studies from
J. Kromer and colleagues have shown that immunological compatibility
is important in a relation, relationship and sexual satisfaction, and the
desire to have a child. Therefore, in a romantic relationship, if the
emotional partners have different HLA, the level of relationship
satisfaction increases. This effect was evident only with the HLA
class I allele but not with the class II allele (Kromer et al., 2016).

Y-DNA haplogroup D-M55

It has been shown that spermatogenic failure is associated with
Y-DNA haplogroup D-M55, and sperm count is negatively associated
with body mass index (BMI). It may be indirectly concluded that BMI
and Y-DNA haplogroup D-M55 may be related. Considering the
relationship between BMI and psychological or social parameters, it
was suggested that they might be related to haplogroup D-M55
(Sermondade et al., 2012; Sato et al., 2013; Mchiza et al., 2019).
Matsunaga et al. (2021) studied the psychological (behavioral
indicators, number of near companions, and feelings of happiness
and loneliness) and physiological (BMI) parameters’ impacts of the
haplogroup D-M55 in Japanese people. The results showed that men
with the haplogroup D-M55 genotype (compared to non-carrier men
or women) had a higher bodymass index and a greater number of near
companions. In contrast, they did not show a significant difference in
the level of happiness or loneliness. Considering that DRD2
rs1800497 is associated with BMI and individual behavior and
communication, it was determined that they are related to each
other through gene–gene interactions.

Gamma-aminobutyric acid type A receptor
subunit alpha-2 (GABRA2)

GABA is a neurotransmitter that functions as an inhibitory
neurotransmitter in the central nervous system, reducing neuronal
excitability (Edenberg et al., 2004). GABA-A receptors can be found all
over the brain. GABA-A receptors are composed of at least 16 different
subunits. GABRA2 is a GABA heteropentameric receptor component
that is a ligand-gated chloride channel. GABRA2 is involved in the
formation of functional inhibitory GABAergic synapses. Because
GABRA2 affects GABA, there is a good possibility that variations
in this gene alter vulnerability to social–environmental events. The
role of the GABRA2 minor (G) allele in adulthood behavior is
supported by replicated previous findings (Covault et al., 2004;
Edenberg et al., 2004). Several studies have found that being
subjected to harsh parenting as a child increases the likelihood of
developing hostility toward adult marital partners. The gene
GABRA2 influences this association (Carr and VanDeusen, 2004;
Black et al., 2010). Ronald L.Simons et al. (2013) studied how
GABRA2 gene variations interact with parental behavior in the
way the differential susceptibility perspective predicts. They found
that individuals with the GABRA2 minor (G) allele genotype
(compared to major allele carriers) were more verbally and
physically aggressive toward their romantic partner during a
romantic relationship if they were exposed to parental violence as
children. However, if they have been subjected to the supportive
behavior of their parents, they will show a lower level of
aggression. GABRA2 may also be a plasticity gene according to
their findings. Carriers of minor alleles are likely sensitive to many
problematic behaviors in reaction to bad circumstances, not just
relationship aggression. However, when environmental conditions
are perfect, they are likely to succeed in comparison to other
genotypes (Simons et al., 2013).

μ-Opioid receptor gene (OPRM1)

The brain opioid theory of social attachment suggests that changes
in the activity of opioids created in the endogenous pathways may
make a person feel closer andmore intimate in social relationships and
experience less suffering caused by loneliness and social separation
(Panksepp, 2004). One study found that when women recalled the
memory of the loss of a loved one, they showed reduced μ-opioid
receptor-mediated neurotransmission. It also observed that
inactivation of the μ-opioid receptor was straightly related to self-
reported negative affective experiences (Zubieta et al., 2003). One of
the most studied variants is OPRM1 A118G (rs1799971) (Bond et al.,
1998), the genotype with the G allele that has been associated with
decreased gene expression and consequently lower receptor protein
translation (Zhang et al., 2005), followed by reduced (brain region-
dependent) opioid signaling efficiency (Oertel et al., 2009). Tchalova
et al. (2021) showed that G allele carriers (compared to AA
homozygotes) experience more insecurity during an emotional
relationship mixed with violence. They also proposed that men
carrying the G allele genotype (compared to men homozygous for
the A allele) experience less security feeling in all occurrences of their
relationships, whereas the partners of these men also experience
similar feelings (Tchalova et al., 2021). In research by Pearce et al.
(2017), Pearce et al. (2018a), and Pearce et al. (2018b), they showed
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that OPRM1 variants correlated with anxious attachment, empathy,
EQ (emotional intelligence), quality of the emotional and romantic
relationships, sexual tendency or activities, and the ability to
empathize (Pearce et al., 2017; Pearce et al., 2018a; Pearce et al.,
2018b). Dopamine and endorphin signaling pathways may be related
and interact because OPRM1 and DRD2 gene variants are inevitably
associated with community integrity (Devine et al., 1993; Pecina et al.,
2015).

Discussion

To our knowledge, this is one of the few studies in human
behavioral genetics considering the impact of single-nucleotide
variations on the individual’s conduct in close relationships. It
should be noted that the evidence for genetic influences on
romantic relationships does not suggest the absolute, immutable
effect of genes on relationships (Whisman and South, 2017).
Research investigating gene–environment correlations and
gene–environment interactions that take into account psychopathic
states, social welfare, and physical healthiness could have
consequential outcomes on romantic relationships (Pearce et al.,
2018a). It can be considered that the intricate interactions between
various polymorphisms in different genes and the collection of
environmental features such as educational strategy, social
stressors, economic situations, and cultural conditions can involve
in the determination of an individual’s behavior in a romantic
relationship (Whisman and South, 2017; South, 2021). For
example, low income or incoming stress is considered a significant
threat to marital quality and stability (Lichter and Carmalt, 2009). It
has been found that the religiosity of couples has a positive effect on
marital satisfaction and marriage survival (Marks, 2005). Collectivistic
and individualistic cultures have different effects on marriage
satisfaction in people. For example, fulfilling familial responsibility
may enhance marital satisfaction in traditional Chinese marriage
(Wang, 1994), whereas fulfilling the hedonistic goals of partners
seems to be beneficial for marital satisfaction in Western countries
(Lalonde et al., 2004; Sorokowski et al., 2017).

The genotype, environmental background, and psychological state
of the partner play an effective role in a romantic relationship and
mutual satisfaction (Harden, 2012; Schneiderman et al., 2014;
Shpigelman and Vorobioff, 2021). For instance, it has been found
that an individual’s outcome in a romantic relationship is related to
the rs3796863 SNP in the CD38 gene of the partner. Data revealed that
the CD38 rs3796863 genotype can display a “partner effects,” which
means the partner’s CD38 rs3796863 genotype is associated with the
individual’s satisfaction in romantic love (Sadikaj et al., 2020). In other
words, the outcome of the relationship depended as much on her
genotype as on her partner’s genotype (Sadikaj et al., 2020).Moreover, it
has been reported that individuals who had a spouse with the GG
genotype in OXTR rs53576 had higher satisfaction in marriage (Monin
et al., 2019). In this way, to evaluate the impact of single-nucleotide
polymorphisms on romantic relationships, the partner’s genome has an
important role. Thus, it should be examined (Monin et al., 2019).

There is sufficient empirical support for the critical role of the
dopaminergic system in the formation and maintenance of romantic
relationships. For example, the receptor variantDRD4-7R is associated
with features of sexual behavior, the desire for more diverse sexual
experiences, higher levels of promiscuity, and a higher intensity of

romantic relationships in the short term, such as the initial period of
relationship formation (Halley et al., 2016; He et al., 2018; Acevedo
et al., 2020). Regarding the dopamine- and catecholamine-related
signaling pathway, the studies analyzed in this review focused on three
dopamine receptor genes (DRD1,DRD2, andDRD4) and the catechol-
O-methyltransferase (COMT) gene. The analysis showed variants that
reduce the binding capacity of the receptor to dopamine (DRD1
rs265981, DRD2 rs1076560, ANKK1/DRD2 rs1800497, and DRD4-
7R) could affect the romantic relationship in couples. In contrast, for
the COMT gene, the results were inconsistent.

However, the described genomic correlations require further
studies. For example, the need to examine the role of genes in
emotional relationships by considering the differences between the
two genders and designing a long-term study to evaluate the role of
identified correlations not only in the short-term period of
relationship formation but also in the long-term maintenance of
the relationship seems to be important in future studies. Cimbalo
and Novell (1993) reported sex differences in romantic love attitudes
among college students. They concluded that in relationships, women
would consider marriage and family, traditional romantic behavior,
routine activities, and religion desirable, whereas men would consider
sexual behavior, aberrant sex, and drugs more desirable

A significant amount of research has shown critical behavioral
differences between the early and later stages of a romantic
relationship (Eastwick and Finkel, 2008; Acevedo and Aron, 2009).
In this regard, it is reasonable to assume that carriers of DRD4-7R
(Acevedo et al., 2020), DRD1 rs265981, and DRD2 rs1076560 (Pearce
et al., 2018a) will have a greater propensity to seek new partners after a
high-intensity “honeymoon” relationship, which will affect the quality
of the established marriage. In addition, limited findings on the
involvement of the dopaminergic system in shaping romantic
relationships may also be due to the ethnic and sociocultural
heterogeneity of the samples (Pearce et al., 2018a).

Implications

The results of this review may have practical applications,
suggesting that educational and therapeutic programs in early
marriage can focus on strengthening the romantic side of the
relationship to increase marital satisfaction, as indicated by some
researchers (Acevedo and Aron, 2009). For example, findings
(Acevedo et al., 2012; Acevedo et al., 2020) indicate that romantic
love is associated with greater involvement, less alternative partner
attraction, and long-term marital satisfaction and is associated with a
neurogenetic basis for sustained reward, which may be a target of
psychological techniques. In addition, as the included studies suggest,
some genetic variants positively correlated with the strength of
romantic relationships (e.g., DRD1 rs265981 and DRD2 rs1076560)
(Pearce et al., 2018a) are also associated with enhanced social
connections, which may be used to shape therapeutic programs.

Painful/rejected romantic infatuation can also have negative
consequences, including heartbreak, which can provoke family
violence, depression, and even suicide. The neurobiological
similarities of romantic desire with other substance and non-
substance addictive disorders (including those confirmed by the cited
neurogenetic studies in this review) may help use already known drug
and non-drug addiction treatment techniques to overcome the possible
negative consequences of painful/rejected romantic infatuation (Fisher
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et al., 2016; Zou et al., 2016). In particular, group techniques that
positively influence the reward system and exercise that increases
dopamine secretion can be used. The neurogenetic predisposition to
intense romantic infatuation and chemical addiction shown in this
review may have implications for forming groups at risk for substance
abuse as a reaction to rejected love.

The neurogenetic correlates described in this review can be used to
find new drug therapies for pathologic jealousy as an extreme
manifestation of intense romantic infatuation. In particular, the use
of intranasal oxytocin (Samad et al., 2019; Zheng and Kendrick, 2021)
and antipsychotics with dopaminergic activity (Samad et al., 2019) has
already been proposed for this purpose.

The concept of “social connection” can be defined as the feeling
that you belong to a social relationship and generally feel close to other
people. Sociality is a core psychological need for humans. The
tendency to associate in a social network is embedded in our
biology and evolutionary history. The size and quality of social
networks are increasingly being linked to mental and physical
health, happiness, longevity, faster recovery from illness, and lower
odds of engaging in anti-social behavior or experiencing
psychopathology (Schindler and Sack, 2015; Delvecchio et al.,
2016). For example, according to findings, across all three types of
samples (a healthy Caucasian sample, a subclinical sample (Caucasian
individuals with histories of mental illness), and a non-White sample),
dopamine-related gene variation was linked to engagement in the large
network beyond the dyadic bonds (in romantic relationships). DRD1
showed significant relationships with both personal network size and
intimacy to the local community scores in the non-Caucasian sample;
in contrast, DRD2 did so in the other two samples (Pearce et al.,
2018a). Polymorphisms in the oxytocin receptor (OXTR) gene can
influence the social skills that are important for building and
maintaining social connections. OXTR rs53576 is an intensively
examined polymorphism in the oxytocin receptor (OXTR) gene in
relation to individual differences in social cognition. It has been
indicated that the scores of interpersonal adaptability and
dispositional forgiveness are increased in individuals who have the
G allele ofOXTR rs53576 (Aspé-Sánchez et al., 2015). Moreover, the G
allele of OXTR rs53576 is indeed associated with better empathic
ability (Gong et al., 2017). Another polymorphism, OXTR rs2254298,
can affect limbic system structure and function (Tost et al., 2011), and
C carriers of this polymorphism displayed more cognitive empathy
than those with the TT genotype (Wu et al., 2012). An association
between emotional empathy and OXTR polymorphism at the
rs237887 SNP (with A allele subjects displaying higher than those
with the G allele) and the rs4686302 SNP (with T allele subjects
displaying higher than those with the C allele) was reported, whereas
cognitive empathy and the ability to understand another’s perspective
or mental situation showed associations with SNP polymorphisms
rs2268491 (with T/T and C/T genotypes displayed higher than those
of the C/C) and rs2254298 (with CC and C/T genotypes displayed
higher than those of T/T genotypes) (Wu et al., 2012). Studying these
polymorphisms in the context of romantic relationships may pave the
way to shaping therapeutic programs.

Personality traits such as extraversion and neuroticism are often
associated with diverse areas of sexual activity and sexual healthiness.
Data regarding the sexual behavior of patients affected bymajor psychiatric
disorders reported various derangements in sexual behavior and sexual
performance (Kurpisz et al., 2016; Decaro et al., 2021). Psychiatric patients
rarely speak of their sexual life spontaneously. It has been found that there is

a positive link between the Big Five personality dimensions and sexual
function, risky sexual behavior, sexual disorders, sexual satisfaction,
emotional experiences in sex, attitude toward sex, and sexual
unfaithfulness (Kurpisz et al., 2016). Lower levels of sexual performance
and physical and emotional satisfaction are shown in schizophrenia
patients (Long et al., 2022; Ludwig et al., 2022). Research on finding the
association between affecting SNPs on the development of pathobiology of
psychiatric disorders such as schizophrenia, depression, and bipolar
disorder and formation and maintenance of couple romantic
relationships could be helpful to pave the way to reveal the role of
these variants in the sexual and emotional life of the population.

Limitations and future research

The studies included in the review tend to have very small sample
sizes and require verification in replicative and GWAS projects. At
the same time, highly evidence-based GWAS projects require very
large sample sizes and significant funding (Landefeld et al., 2018).
Other important genetic variants could also be investigated in future
studies. For example, the 5-HTTLPR VNTR of the serotonin
transporter gene is involved in the degree of risk tolerance in
marital relationships and may influence the longevity of romantic
relationships in a couple (Minkov and Bond, 2015). Also, given the
available neurobiological background, opioid receptors,
testosterone, and cortisol genes may be investigated (Ponzi and
Dandy, 2019; Meyer and Sledge, 2020).

It is essential to consider the effect of cultural conditions in society
besides the genetic investigations on marriage satisfaction. Cultural
values and beliefs affect the individuals’ self-construal and knowledge
of love and relationship (Dion and Dion, 1993). Individualism and
collectivism are cultural values that influence the relationship between
the person and society (Dion and Dion, 1993). Romantic love and
psychological intimacy play more important roles in marriages in
individualistic cultures (compared with collectivistic cultures). In
collectivistic cultures, relationship with other family members (e.g.,
parents, siblings, and in-laws) has an important position (Wong and
Goodwin, 2009; Chiu and Hong, 2013; Carollo et al., 2021). Cross-
cultural studies of love and intimacy have reported differences
between individualistic and collectivistic cultures. For instance, the
husband’s income is associated with marital satisfaction in
collectivistic cultures but not in individualistic culture (Kamo,
1993). In contrast, the same level of education increases marriage
satisfaction in individualistic cultures (Groot et al., 2002).

The ancestry of the target population as a limitation must be
considered. Population stratification refers to allele frequency
differences between case and control groups due to systematic
differences in ancestry (rather than the association of genes with
disease) (Freedman et al., 2004). Population stratification is one source
of false-positive associations (Knowler et al., 1988; Kittles et al., 2002). It
has been proposed that genotyping several unrelated genetic markers may
reduce the number of false-positive associations caused by stratification.
However, there has been much debate but limited data about the impact
of population stratification on case-control association studies (Thomas
and Witte, 2002; Wacholder et al., 2002; Cardon and Palmer, 2003;
Hoggart et al., 2003). It has been proposed that the stratification effects
may be successfully ignored by precisely matching patients and controls
based on their own ancestry and geographical origin (Wacholder et al.,
2002). Thus, due to the allele frequency differences among dissimilar
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populations, the establishment of population-specific studies is needed,
and these findings may not be generalizable to other populations.

Future research should focus more on assessing gene–environment
correlations and gene-by-environment (GxE) interactions in the context
of romantic relationships (Whisman and South, 2017). Evaluating genetic
factors on relationship aspects at times of important changes in a couple’s
life, such as offspring emergence, career development, and possible
personal and financial micro-crises, also seems extremely important.
The formation of samples with established homogeneity according to
age, ethnicity, social, cultural, and financial status is also of undeniable
importance (Karney and Bradbury, 1995). As mentioned previously,
ethnicity is very important for assessing the role of the dopaminergic
system (Pearce et al., 2018a). Young and Wang (2004) emphasized the
critical role of the function of brain structures that implement
neurotransmitter production and reception for pair bonding, while
emphasizing the sex differences simultaneously. At the same time,
overly restricted samples invariably lead to limited conclusions that are
valid only for narrow social groups (Lavner and Bradbury, 2010). Thus, a
larger sample size with the ability to stratify by likely trajectories of couple
relationships, many other intervening factors, and a longitudinal project
design is critical for future research. In addition, the articles cited in the
review deal exclusively with heterosexual relationships, and research on
homosexual couples may also be of interest in this aspect.

Conclusion

In conclusion, romantic love can change the development,
dimensions, stability, and feeling of satisfaction in a
relationship. Due to the significant advances in biological sciences,
especially genetics, there is a need to understand what biological
mechanisms are involved in the formation and maintenance of
romantic love. In this systematic review, we investigated genetic and
epigenetic factors that can influence couple adjustment, romantic love
formation, and maintenance over time. Study results show that
romantic love can be regulated by processes that are associated with
individual genetics in response to rewards, emotions, etc. Findings
suggest that genetic polymorphisms mediate variability in behaviors
associated with the maintenance of romantic love and pair bonding

during marriage. These findings about the genetic variations involved in
romantic love can be valuable in couple therapy and counseling for
forming and maintaining a romantic relationship.
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