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Atherosclerosis (AS) is themain cause of death in individuals with cardiovascular

and cerebrovascular diseases. A growing body of evidence suggests that

oxidative stress plays an essential role in Atherosclerosis pathology. The aim

of this study was to determine genetic mechanisms associated with

Atherosclerosis and oxidative stress, as well as to construct a diagnostic

model and to investigate its immune microenvironment. Seventeen oxidative

stress-related genes were identified. A four-gene diagnostic model was

constructed using the least absolute shrinkage and selection operator

(LASSO) algorithm based on these 17 genes. The area under the Receiver

Operating Characteristic (ROC) curve (AUC) was 0.967. Based on the GO

analysis, cell-substrate adherens junction and focal adhesion were the most

enriched terms. KEGG analysis revealed that these overlapping genes were

enriched in pathways associated with Alzheimer’s disease and Parkinson’s

disease, as well as with prion disease pathways and ribosomes. Immune cell

infiltration correlation analysis showed that the immune cells with significant

differences were CD4 memory activated T cells and follicular helper T cells in

the GSE43292 dataset and CD4 naïve T cells and CD4memory resting T cells in

the GSE57691 dataset. We identified 17 hub genes that were closely associated

with oxidative stress in AS and constructed a four-gene (aldehyde

dehydrogenase six family member A1 (ALDH6A1), eukaryotic elongation

factor 2 kinase (EEF2K), glutaredoxin (GLRX) and L-lactate dehydrogenase B

(LDHB)) diagnostic model with good accuracy. The four-gene diagnosticmodel

was also found to have good discriminatory efficacy for the immune cell

infiltration microenvironment of AS. Overall, these findings provide valuable

information and directions for future research into Atherosclerosis diagnosis

and aid in the discovery of biological mechanisms underlying AS with oxidative

stress.
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Introduction

Atherosclerosis (AS) is the main cause of death in individuals

with cardiovascular and cerebrovascular diseases. Approximately

19 million deaths were estimated to be attributed to

cardiovascular disease globally in 2020, with an increase of

18.7% from 2007 (Tsao et al., 2022). Several studies have

demonstrated that oxidative stress plays a significant role in

the pathophysiology of atherosclerosis (Kattoor et al., 2017;

Khosravi et al., 2019; Yang et al., 2017). However, the

biological mechanisms underlying AS with oxidative stress

remain unclear.

Oxidative stress occurs when there is an imbalance favoring

the increased generation of reactive oxygen species (ROS) or

suppression of the antioxidant defense system in the body (Elahi

et al., 2009). ROS are involved in inflammatory responses,

apoptosis, cell growth, and alterations in the blood vessel

tone. The production of ROS in vessel walls is increased

under all conditions considered risk factors for atherosclerotic

cardiovascular disease, including hypertension, diabetes, obesity

and dyslipidemia (Bryk et al., 2017). Increasingly, research has

shown that oxidative stress plays an important role in AS (Ridker

et al., 2018; Tibaut et al., 2018; Libby, 2021). Atherosclerosis is

now thought to be caused by inflammation in addition to

dyslipidemia and other risk factors. As an example, C-reactive

protein, a biomarker of inflammation, is demonstrated to be

correlated with remnant lipoprotein concentrations (Ridker,

2016; Hansen et al., 2019). The role of inflammation in

hypertension is also well established (Xiao and Harrison,

2020). However, the underlying mechanisms of genetic and

epigenetics factors in the pathogenesis of atherosclerosis

caused by oxidative stress is still unclear. As of now, genome-

wide association studies have identified more than

50 independent loci associated with cardiovascular diseases

that collectively account for 13.3% of their heritability (Nikpay

et al., 2015). One study investigated the role of oxidative stress

ROM O 1 gene polymorphism and showed that subjects carrying

the C allele were at a more than three folds increased risk of

developing cardiovascular diseases (Tibaut et al., 2020).

Therefore, an in-depth exploration of oxidative stress will help

us understand how this disease develops and will also provide

new ideas for its prevention and treatment.

Currently, studies on oxidative stress and AS focus on two

topics; the first is the role of oxidative stress in the pathological

process of AS, analyzing how oxidative stress is involved in AS

(Yin et al., 2022) and the second is whether oxidative stress

can be effectively targeted as a treatment for AS, specifically to

slow down its progression, through clinical trials

(Smolyaninov et al., 2022; Xu et al., 2022; Zhao et al.,

2022). The purpose of this study was to examine the

association between oxidative stress-related genes and AS at

the gene level, as well as to construct a diagnostic model and to

investigate its immune microenvironment.

Materials and methods

Acquisition of data and analysis of variance

Two microarray datasets (GSE57691 (Biros et al., 2015) and

GSE43292 (Ayari and Bricca, 2013) related to AS were obtained

from the Gene Expression Omnibus (GEO) (http://www.ncbi.

nlm.nih.gov/geo/). The GSE57691 and GSE43292 platforms were

derived from GPL10558 and GPL6244, respectively. In total,

32 samples from patients with AS and 32 controls from

GSE43292 and 58 samples from patients with AS and

10 controls from GSE57691 were analyzed in this study. The

flow diagram of the study is shown in Figure 1.

Acquisition of oxidative stress gene-
related genes

The GeneCards database (Safran et al., 2010) provides

comprehensive annotation information on human genes. We

collected the oxidative stress genes from the GeneCards database

(https://www.genecards.org/).

Analysis of DEGs of oxidative stress genes

We used the R package “limma” to perform differential gene

analysis between normal and disease samples in the datasets. To

analyze the expression of genes encoding oxidative stress-related

genes in all samples, we first used the R package pheatmap to plot

a heat map of the expression of these genes in all samples and

FIGURE 1
Analysis flow chart.
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then grouped box plots based on two samples, namely normal

and those from patients with AS.

Correlation analysis between genes

To further dissect the correlation between the expression of

related genes in all patients with AS, Pearson correlation values

between two genes were calculated, and correlation coefficients

with an absolute value greater than 0.5 and a p-value <0.05 were
considered correlated. Scatter plots of correlations between

eligible gene pairs were plotted, and correlation curves were

fitted using the R package ggplot2.

Construction of the diagnostic model

LASSO regression (Vasquez et al., 2016) was used to select

features, reduce dimensionality, and create disease profiles

associated with genes related to oxidative stress. Columnar

line plots were used to identify disease-associated risk factors.

To validate the predictive efficacy of the diagnostic model, single-

gene ROC curves were plotted using the R package pROC, and

the AUC was calculated. To illustrate the validity of the

nomogram, validation was performed using an in-house

dataset and the decision curve analysis (DCA) curves.

Construction of PPI network

To analyze protein interactions, PPIs were established and

hub genes were identified using an online tool (Search Tools for

Retrieval of Interacting Genes, STRING) (Mering et al., 2003).

The PPI network was visualized using Cytoscape (Shannon et al.,

2003) software. CytoHubba (Rongbin et al., 2019) was utilized to

calculate three indicators to evaluate the importance of each

node, and the top 10 nodes were chosen. Hub genes served as the

common nodes. We then conducted further prediction studies

on hub nodes based on the TarBase (Wang et al., 2013),

miRecords (Fornes et al., 2020), and miRTarBase (Huang

et al., 2020) databases for miRNAs and transcription factors

of hub nodes. We used the ENCODE database (Wang et al.,

2013), JASPAR database (Fornes et al., 2020), and the ChEA

database (Lachmann et al., 2010) for prediction.

Unsupervised clustering of samples

The R package “ConsensusClusterPlus” (Wilkerson and

Hayes, 2010) was used to perform unsupervised clustering of

samples based on oxidative stress gene regulators. The

resampling method disrupts the original dataset such that

each resampled sample is clustered, and then, the results of

multiple clustering analyses are evaluated together to provide

a consensus assessment.

Functional enrichment analysis

We conducted Kyoto Encyclopedia of Gene and Genome

(KEGG) (Kanehisa and Goto, 2000)and gene ontology (GO)

(Ashburner et al., 2000) analyses to understand the functions of

these hub genes. To determine the biological activities of the

genes and linked pathways, the clusterProfiler (Wilkerson and

Hayes, 2010) R package was used to conduct an enrichment

analysis. Using the reference gene set “c2. cp.kegg.v7.4. Entrez.

gmt” from the MSigDB database (Liberzon et al., 2015), we

compared the biological processes between the two samples and

used the GSEA (Subramanian et al., 2005) and Gene Set

Variation Analysis (GSVA) (Hänzelmann et al., 2013)

methods included in the R package “clusterProfiler” for

enrichment analysis and visualization of the dataset.

Immune infiltration analysis

To compare the levels of immune cell infiltration between the

two groups of samples, immune cell infiltration was assessed

using the R package GSVA based on ssGSEA (Subramanian et al.,

2005). To maximize the accuracy of the results, the level of

immune cell infiltration was assessed using the R package

CIBERSORT (Steen et al., 2020).

Statistical analysis

All data processing and analyses were performed using R

software (version 4.0.2). Student’s paired t-tests were used to

analyze data when comparing the two groups, and p < 0.05 was

considered statistically significant.

Results

Data preprocessing and identification of
differentially expressed genes (DEGs)

In Figures 2A–D, the expression distribution characteristics

of the two datasets before and after data pretreatment are

presented. Almost all median values were on a straight line,

proving that they were normalized. Among the DEGs, the

upregulated and downregulated genes were identified with a

False Discovery Rate <0.05 and a |log2FC| > 0.58. After data

processing, 758 DEGs were identified, with 515 upregulated and

243 downregulated genes. The information summary of the two

datasets was showed in Table 1.
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We analyzed the differences in the expression of oxidative

stress-related genes between normal and diseased samples in the

GSE43292 and GSE57691 datasets, which are presented as

volcano plots (Figures 3A–C) and heat maps (Figures 3B–D).

In GSE43292, the expression of 221 differential genes was

upregulated and that of 181 was downregulated. The DEGs in

GSE57691 included 231 upregulated and 1,219 downregulated

genes. A Venn diagram showing DEGs in GSE57691 and

GSE43292 is shown in Figure 3E. In total, 67 intersecting

differential oxidative stress-related genes were obtained in the

GSE57691 and GSE43292 datasets (Additional file 1).

Construction of protein–protein
interaction (PPI) network

We first analyzed the interactions among 67 intersecting

differentially expressed oxidative stress-related genes in the

GSE57691 and GSE43292 datasets and constructed PPI

networks of differentially expressed oxidative stress-related

genes for the 67 intersecting genes using the STRING

database. The highest confidence interaction score was set to

0.4 (Figure 4A). The top 20 closely linked genes were screened

using the CytoHubba plugin (Figures 4B, C). The intersection of

FIGURE 2
Dataset merging, standardization and normalization. (A) Box plots of the expression spectrum matrix of GSE57691 and GSE43292 data sets
before calibration; (B) Box plots of the expression spectrum matrix of GSE57691 and GSE43292 data sets after calibration; (C) Density plots of the
expression spectrum matrix of GSE57691 and GSE43292 data sets before calibration; (D) Density plots of the expression spectrum matrix of
GSE57691 and GSE43292 data sets after calibration.

TABLE 1 Dataset information summary.

Dataset Normal Atherosclerosis Platform Organism Tissue

GSE43292 32 32 GPL6244 Human atheroma plaque

GSE57691 10 58 GPL10558 full thickness aortic wall
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FIGURE 3
Differential expression of oxidative stress-related genes. (A,B) Volcano plot of DEGs in GSE43292 and GSE57691; (C,D) Heat map of DEGs in
GSE43292 and GSE57691; (E) Venn diagram of DEGs in the two datasets.
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FIGURE 4
Construction of molecular interaction network of DEGs and screening of co-expressed hub gene. (A) STRING database for 67 intersection of
DEGs; (B) CytoHubba plug-in screening of top-20 hub genes; (C) Cytoscape’s MCODE analysis of hub genes; (D) Venn diagram showing the
intersection of two methods to obtain 17 closely related co-expressed genes; (E) TF and miRNA prediction of the 17-gene diagnostic model, the
yellow color located in the middle represents the 17-gene oxidative stress-related diagnostic model, the middle purple layer represents its
associated TF; the outer blue layer represents its targeted miRNA.
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the two approaches was demonstrated using a Venn diagram to

identify 17 closely related differential oxidative stress-related

genes (Figure 4D), including acetyl-CoA acetyltransferase 1

(ACAT1), acetyl-coenzyme A carboxylase beta (ACACB),

alcohol dehydrogenase 1A (ADH1A), aldehyde dehydrogenase

six family member A1 (ALDH6A1), alcohol oxidase 1 (AOX1),

FIGURE 5
Diagnostic model. (A) LASSO logistic regression algorithm screening diagnostic marker lambda value visualization; (B) LASSO logistic regression
algorithm screening diagnostic marker min value visualization; (C) Forest plot of seven meaningful oxidative stress-related arterial disease risk genes
with significant biological significance; (D)Column line graph of a 4-gene diagnosticmarkermodel composed of ALDH6A1, EEF2K,GLRX, and LDHB;
(E) Calibration curve of non-correlated nomogram; (F) Decision curve analysis of the diagnostic model.
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eukaryotic elongation factor 2 kinase (EEF2), eukaryotic

elongation factor 2 kinase (EEF2K), glutaredoxin (GLRX), heat

shock protein family A member 9 (HSPA9), L-lactate

dehydrogenase B (LDHB), mitochondrial ribosomal protein L1

(MRPL1), mitochondrial ribosomal protein S11 (MRPS11),

mitochondrial Ribosomal Protein S18C (MRPS18C), NADH:

ubiquinone oxidoreductase subunit B7 (NDUFB7), nop seven-

associated 2 (NSA2), periodic tryptophan protein 1 (PWP1) and

thioredoxin reductase 1 (TXNRD1). We predicted 17 closely

related differential oxidative stress-related miRNAs or

transcription factor (TF) -regulated genes targeted by the

diagnostic model. In total, 179 associated TF-regulated genes

and 285 miRNAs were obtained, and the network was

constructed (Figure 4E).

Molecular subtype construction and
analysis based on oxidative stress

We used the least absolute shrinkage and selection operator

(LASSO) algorithm for these 17 genes for further gene diagnostic

model construction for closely related expression (Figures 5A, B).

We identified seven genes, ALDH6A1, EEF2K, GLRX, LDHB,

MRPL1, MRPS18C, and NSA2, which are biologically significant

for oxidative stress, in the risk forest plot of 17 genes (Figure 5C).

For validation, column line plots of the atherosclerosis diagnostic

biomarkers (oxidative stress-related genes) screened in the dataset

were plotted to demonstrate the discriminatory efficacy of these

predictive diagnostic markers for AS (Figure 5D). The calibration

curves of the non-correlated nomogram predictions were further

analyzed and plotted in the cohort (Figure 5E). Calibration curves

showed that four genes (aldehyde dehydrogenase six family

member A1 (ALDH6A1), eukaryotic elongation factor 2 kinase

(EEF2K), glutaredoxin (GLRX) and L-lactate dehydrogenase B

(LDHB)) could serve as diagnostic markers for AS.

Validation of oxidative stress-related DEGs
and diagnostic efficacy

The area under the curve (AUC) values of the ROC curves were

used to reflect the discriminatory efficacy, and an

AUC >0.7 indicated high diagnostic efficacy. Figures 6A–C

showed the independent expression of ALDH6A1, EEF2K, GLRX,

FIGURE 6
Validation of the diagnostic efficacy of 4-gene diagnostic model. (A) ROC curves of the diagnostic efficacy in the GSE43292 dataset
(independent index); (B) ROC curves of the diagnostic efficacy in the GSE43292 dataset (joint index); (C) ROC curves of the diagnostic efficacy in the
GSE57691 dataset (independent index); (D) ROC curves of the diagnostic efficacy in the GSE57691 dataset (joint index).
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and LDHB in the GSE43292 and GSE57691 datasets. The results

revealed that the AUC of ALDH6A1 equals 0.816, EEF2K equals

0.748, GLRX equals 0.766, and LDHB equals 0.818 in the

GSE43292 dataset. The AUC values were also good in

GSE57691 datasets. Figures 6B–D show the combined diagnostic

efficacy of the expression ofALDH6A1,EEF2K,GLRX, and LDHB in

GSE43292 and GSE57691 datasets (Figure 6B, AUC: 0.852, CI:

0.755–0.948 for the four-gene diagnostic model of the

GSE43292 dataset; Figure 6D, AUC: 0.967, CI: 0.911–1.000 in

GSE57691 datasets) based on the ROC curves.

Subsequently, we analyzed the differences in the expression

of diagnostic models in the GSE43292, GSE57691 dataset,

presented as box plots (Figures 7A, B), and Figures 7C, D

shows the correlation analysis for the expression of the four

FIGURE 7
Differential expression in diagnostic models. (A) Box plots of differential expression of diagnostic models in the GSE43292; (B) Box plots of
differential expression of diagnostic models in theGSE57691; (C)Correlation network plots between 4-gene diagnosticmodels in the GSE43292; (D)
Correlation network plots between 4-gene diagnostic models in the GSE57691; (E) PCA clustering plot of differential oxidative stress genes between
atherosclerosis and normal groups in the GSE43292 dataset; (F) PCA clustering plots. * is less than 0.05, ** is 0.01, *** is 0.001, **** is 0.0001,
and no symbol means the difference is not significant.
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FIGURE 8
Molecular typing of the 4-gene diagnostic model of atherosclerosis associated with oxidative stress in GSE57691 vs. GSE43292. (A) CDF plot of
consistent clustering; (B)Delta plot of consistent clustering, reflecting the optimal number of classifications; (C)Heat map of the difference between
2-classification clustering groups; (D) Fractal plot of consistent clustering samples (E,F) Consistent clustering grouping of 4-gene diagnostic model,
Volcano plot and heat map.
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genes in the atherosclerosis group. Figures 7E, F shows the

differentiation of oxidative stress-related genes in the mRNA

expression profile matrix of the GSE43292, GSE57691 dataset by

PCA clustering plot for atherosclerotic and normal samples.

Molecular typing analysis of four-gene
diagnostic model

Unsupervised consensus clustering was performed on the

four-gene diagnostic model with GSE57691 and GSE43292. The

expression of these genes was further assessed by cluster analysis

of the samples in the two sets according to the different

subclasses. The resulting clustering of samples within a class

was more stable relative to the sampling variance and could

represent a true subclass structure. The best k value of two was

selected based on the delta plot. The grouped cases contained

atherosclerotic samples classified as A (n = 64) and B (n = 68)

(Figures 8A–D). Furthermore, we explored oxidative stress-

related gene diagnostic models obtained using the training set

LASSO regression algorithm (Figures 8E, F).

Functional enrichment analysis

Gene ontology (GO) (Ashburner M et al., 2000) enrichment

results demonstrated that focal adhesion, cell-substrate adherens

junction, cell-substrate junction, cadherin binding, et al. were

significantly enriched (Table 2). Alzheimer’s disease, Parkinson’s

disease, prion disease, ribosome, and human T cell leukemia virus

one infection pathways were significantly enriched based on KEGG

analysis (Figure 9 and Table 3). The Gene Set Enrichment Analysis

(GSEA) results suggested that therewere no significant differences in

JAK/STAT, BCR, PRC2, MTOR 4, TCR, TGF β, TP53, Notch, and
NOD-like receptor signaling pathways, but that spliceosome-related

pathways were significantly enriched (Figure 10).

The ssGSEA enrichment analysis for
immune cell infiltration

The results of ssGSEA immune gene collection pathway

enrichment analysis between the groups showed significant

differences in the degree of infiltration (Figure 11A). The

HALLMARK pooled clustering group showed significant

differences between the two clustering groups in KRAS,

TNFA/NFKB, P53, and TGFβ signaling pathways

(Figure 11B). The KEGG pooled clustering group also showed

significant differences between the two clustering groups in

arrhythmia, ventricular cardiomyopathy, viral myocarditis,

and other pathways (Figure 11C).

Construction of immune signature
subtypes and assessment of immune cell
infiltration

The results of CIBERSORT deconvolution analysis of the two

datasets revealed that the immune cells with significant differences

in the GSE43292 dataset were CD4 memory activated T cells,

follicular helper cells, M2 macrophages, activated dendritic cells,

and neutrophils (Figure 12A). Immune cells with significant

differences in the GSE57691 dataset were CD4 naïve T cells,

CD4 memory resting T cells, regulatory T cells (Tregs), activated

TABLE 2 Results of GO enrichment analysis of 106 co-expressed genes for 4-gene diagnostic marker model.

Ontology Id Description p.Adjust Qvalue

CC GO:0005925 focal adhesion 2.02e-05 1.80e-05

CC GO:0005924 cell-substrate adherens junction 2.02e-05 1.80e-05

CC GO:0030055 cell-substrate junction 2.02e-05 1.80e-05

MF GO:0045296 cadherin binding 5.92e-04 5.69e-04

MF GO:0050839 cell adhesion molecule binding 0.007 0.006

BP GO:0006413 translational initiation 4.59e-04 4.36e-04

CC GO:0101002 ficolin-1-rich granule 2.02e-05 1.80e-05

BP GO:0070972 protein localization to endoplasmic reticulum 4.59e-04 4.36e-04

BP GO:0045047 protein targeting to ER 6.34e-04 6.02e-04

BP GO:0006614 SRP-dependent cotranslational protein targeting to membrane 6.34e-04 6.02e-04

MF GO:0003743 translation initiation factor activity 0.031 0.029

MF GO:0050699 WW domain binding 0.031 0.029
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FIGURE 9
GO/KEGG enrichment analysis of the 4-gene diagnostic marker model in GSE57691 vs. GSE43292. (A,B) Bubble plot of GO/KEGG enrichment
analysis; (C,D) Bar graph of GO/KEGG enrichment analysis; (E,F) String plot of GO enrichment analysis; circle plot of GO/KEGG enrichment analysis.
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FIGURE 10
GSEA enrichment analysis of 4-gene diagnostic model. (A) KEGG_JAK_STAT_SIGNALING_PATHWAY; (B) BIOCARTA_PRC2_PATHWAY; (C)
BIOCARTA_BCR_PATHWAY (D) REACTOME_TP53_REGULATES_METABOLIC_GENES; (E) REACTOME_TCR_SIGNALING; (F) PID_MTOR_
4PATHWAY; (G) REACTOME_PTEN_REGULATION; (H) PID_PDGFRB_PATHWAY; (I) KEGG_SPLICEOSOME; (J) KEGG_TGF_BETA_SIGNALING_
PATHWAY; (K) KEGG_NOTCH_SIGNALING_PATHWAY; (L) KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY.
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NK cells, and activated dendritic cells (Figure 12B). Subsequently,

the ssGSEA results suggested that in the GSE43292 dataset, immune

cell infiltration, based on the four-gene diagnostic model clustering

of subgroups for oxidative stress-related AS, was significantly

different in terms of activated CD4 T cells, activated CD8 T cells,

activated dendritic cells, et al. (Figure 12C). Immune cells in the

GSE57691 dataset showed significant differences in infiltration,

based on the four-gene diagnostic model clustering of subgroups

of oxidative stress-related AS, in terms of activated B cells, activated

CD4 T cells, activated CD8 T cells, et al. (Figure 12D).

FIGURE 11
Molecular typing gsva enrichment analysis of consistent clustering of oxidative stress-related genes. (A) Heat map of inter-group
differences in the ssGSEA immune gene set comparison between the consistent clustering subgroups; (B)Heatmap of enrichment differences in
the “h.all.v7.2. symbols.gmt” set; (C) Heat map of enrichment differences in the “c2. cp.v7.2. symbols.gmt” set between the consistent clustering
subgroups.

TABLE 3 Results of KEGG enrichment analysis of 106 co-expressed genes for 4-gene diagnostic marker model.

Ontology Id Description p.Adjust Qvalue

KEGG hsa05010 Alzheimer disease 0.044 0.042

KEGG hsa05012 Parkinson disease 0.014 0.013

KEGG hsa05020 Prion disease 0.032 0.031

KEGG hsa03010 Ribosome 0.032 0.031

KEGG hsa05166 Human T-cell leukemia virus 1 infection 0.044 0.042
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Correlation analysis of the four genes in
the oxidative stress-related AS diagnostic
model

To further understand the degree of correlation among the four

genes in the diagnostic model of oxidative stress-related AS and the

differences in correlations in the four genes between theGSE43292 and

GSE57691 datasets, we presented the results in the form of scatter plots

with correlation coefficients |R| > 0.6, which were statistically

significant in the GSE57691 dataset. The results with a correlation

coefficient |R| > 0.6 in the GSE57691 and GSE43292 dataset with

statistical significance are presented in the form of scatter plots

(Table 4). The results of ALDH6A1 and EEF2K (r = 0.614, p =

2.56E-08), EEF2K and LDHB (r = 0.697, p = 4.21E-11), andGLRX and

LDHB (r = 0.704, p = 2.07E-11) in the GSE57691 dataset were present

in Figures 13A–C. The result of DALDH6A1 and GLRX (r = −0.453,

p = 0.00017) was showed in Figure 13D.

Immune cell infiltration correlation
analysis

The immune cell infiltration correlation analysis showed the

results of our investigation of its immune microenvironment. The

FIGURE 12
Construction of immune signature subtypes and analysis of immune cell infiltration assessment. (A) Box plots of differential immune cell
infiltration between normal and atherosclerotic samples in theGSE43292 dataset by the CIBERSORTmethod; (B) box plots of immune cell infiltration
in the GSE57691 dataset by the CIBERSORT method; (C) ssGSEA analysis box plots of the differential infiltration of immune cells in the 4-gene
diagnostic model clustering subgroups among samples from the GSE43292 dataset; (D) ssGSEA analysis of the box plots of the differential
infiltration of immune cells in the GSE57691 dataset.

TABLE 4 Correlation analysis of the four genes in the diagnostic model

GSE57691

Gene Cor adj.p

ALDH6A1 EEF2K 0.614 2.56E-08

EEF2K LDHB 0.697 4.21E-11

GLRX LDHB 0.704 2.07E-11

GSE43292

ALDH6A1 GLRX -0.453 0.00017
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four-gene diagnostic models in the GSE57691 dataset correlated with

infiltrating immune cells, including that LDHB was positively

correlated with activated CD8 T cells (r = 0.601, p = 6.09E-08),

CD56bright natural killer cells (r = 0.624, p = 1.35E-08), et al. EEF2K

was positively correlated with monocytes (r = 0.651, p = 1.90E-09)

and plasmacytoid dendritic cells (r = 0.653, p = 1.59E-09).GLRXwas

positively correlated with natural killer cells (r = 0.712, p = 1.01E-11)

and plasmacytoid dendritic cells (r = 0.633, p = 7.16E-09) (Figure 14

and Table 5). In the other dataset GSE43292, the four genetic

diagnostic markers correlated with many infiltrating immune cells,

including LDHB with naïve B cells (r = 0.402, p = 0.000983), resting

dendritic cells (r = 0.402, p = 0.000983) and CD4 memory resting

T cells (r = 0.403, p = 0.000951) et al. (Figure 15 and Table 6).

Discussion

AS, which includes coronary heart disease and stroke, is the

leading cause of death worldwide (Iso, 2021). Coronary heart

disease is estimated to affect 126 million people (1,655 per

100,000), accounting for approximately 1.72% of the global

population (Khan et al., 2020). Mounting evidence links

oxidative stress to the pathophysiology of AS, which is a

chronic inflammatory disease characterized by lipid

accumulation and swelling of the walls of medium and large

arteries (Elahi et al., 2009; Yuan et al., 2019; Yin et al., 2022).

However, the biological mechanisms underlying AS with

oxidative stress remain unclear.

In this study, a bioinformatics analysis of the GSE57691 and

GSE43292 databases was carried out, key genes were identified, and

a four gene diagnostic model was constructed. The common DEGs

were included after the comparison between the extracted module

and the other dataset. Then, 17 hub genes based on the degree of

connectivity were selected for further analysis. After LASSO logistic

regressionwas performed andROC curvewas calculated, fourDEGs

(ALDH6A1, EEF2K, GLRX, and LDHB) with potential diagnostic

value were identified as diagnostic markers. Furthermore, our data

showed that these four genes were enriched in the following

functional pathways: focal adhesion, cell-substrate adherens

junction, cell-substrate junction on GO analysis; Alzheimer’s

FIGURE 13
Correlation analysis between 4-gene diagnostic models of oxidative stress-related atherosclerosis in the GSE43292 and GSE57691 datasets
(A–C) ALDH6A1 and EEF2K (r = 0.614, p = 2.56E-08); EEF2K and LDHB (r = 0.697, p = 4.21E-11); GLRX and LDHB (r = 0.704, p = 2.07E-11) in the
GSE57691 dataset (D) ALDH6A1 and GLRX (r = -0.453, p = 0.00017) in the GSE43292 dataset.
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disease, Parkinson’s disease, prion disease pathways on KEGG

analysis. The four-gene diagnostic model constructed in the

present study included ALDH6A1, EEF2K, GLRX, and LDHB.

ALDH6A1 is a member of the ALDH superfamily, which is

highly involved in ROS production which increases dramatically in

atherosclerosis (Ajoe et al., 2017; Yang et al., 2017). Studies (Calleja

et al., 2021) have shown that aldehyde dehydrogenases (ALDHs)

detoxify these aldehydes and protect cells from damage. And

ALDH6A1 is found in the liver, kidneys, heart, brain, and

muscle (Kedishvili et al., 1992) and its deficiency results in

developmental delay, which might play a role in the process of

AS (Roe et al., 1998). In addition, in the present study, we found

that ALDH6A1 had relatively high diagnostic performance, with

an AUC of 0.0.816 for AS in the GSE43292 analysis and anAUC of

0.845 for AS in the GSE57691 analysis.

EEF2K is also demonstrated to be responsible for

atherosclerosis in one study (Beretta et al., 2020). Similarly,

some tests had been performed to induce AS in mice with

inactivating mutations in the EEF2K gene (Zhang et al., 2014).

Usui et al. demonstrated that EEF2K controls the proliferation

and migration of vascular smooth muscle cells, which mediate

hypertension in tested rats via vascular inflammation (Usui et al.,

2015). All these studies showed that EEF2K may be highly

associated with inflammation and AS.

GLRX is another essential gene demonstrated in a previous

study that its primary role is to control protein GSylation during

oxidative stress (Burns et al., 2020). GLRX regulates GSylation of

many proteins involved in signal transduction, such as

phosphatases, kinases, and transcription factors, which

contribute to the maintenance of cellular homeostasis. GLRX

is associated with a wide variety of diseases such as Parkinson’s

disease, non-alcoholic fatty liver disease, lung disease, and AS.

There is evidence that GLRX expression increases in

atherosclerotic coronary arteries (Okuda et al., 2001) and

patients with type 2 diabetes (Du et al., 2014), suggesting that

the upregulation of GLRX expression might contribute to

inflammation and oxidative stress. Thus, GLRX plays an

important role in oxidative stress associated AS.

LDHB, which catalyzes lactate conversion, is a glycolytic

enzyme. LDHB deficiency plays an important role in diseases

resulting from oxidative stress, as reported by Park et al. (Park

et al., 2022). In addition, Wu et al. demonstrated that the knockout

of LDHB significantly reduces H2O2 production, showing a direct

correlation between LDHB and oxidative stress (Wu et al., 2021).

Based on these findings, LDHB may be involved in the

development of AS associated with oxidative stress.

Our study showed that the four-gene diagnostic model based

on the combined expression of the four genes had good

diagnostic performance based on GSE43292 and

GSE57691 datasets. The AUC was 0.852 for GSE43292 and

0.967 for GSE57691. Therefore, this diagnostic model is likely

to be used to evaluate patients with oxidative stress associated AS.

Besides construction of a diagnostic model, this study made

an investigation the immune microenvironment of the four

genes, considering that the immune microenvironment may

further aggravate the progress of AS associated with oxidative

stress. Based on our analysis by CIBERSORT and ssGSEA, it was

found that the immune cells exhibiting significant differences in

the two datasets included CD4 memory activated T cells,

follicular helper cells, M2 macrophages, et al. The role and

mechanism of T-cells, monocytes, and lymphocytes in AS are

not clear, but the genes related to the immune system have

become an potential target in the treating of AS. Emerging studies

(Xu and Yang, 2020; Zhao et al., 2020) have revealed that

immune cells participate in AS progression. Several

experimental studies (Yin et al., 2021) have demonstrated that

T cells play a key role in the immune response observed during

atherogenesis. As cholesterol accumulates in the arteries and

inflammation occurs, naïve CD4 T cells differentiate into

adaptive cells, and the adaptive T cell response is induced.

Atherogenesis increases memory CD4 T cell expansion and

the generation of antigen-experienced T cells, which could be

the result of re-exposure to antigens, and memory CD4 T cells

will further elicit stronger and more sustained immune

responses. Recent studies have demonstrated that immature

dendritic cells are present in the endothelium of healthy

arteries (Gao et al., 2016; Worbs et al., 2017). However,

TABLE 5 Correlation analysis of genetic models and immune cell infiltration
in the GSE57691 dataset.

Gene Immune cell Cor P-value

LDHB Activated.CD8.T.cell 0.601 6.09E-08

CD56bright.tural.killer.cell 0.624 1.35E-08

Gamma.delta.T.cell 0.651 1.92E-09

Immature.dendritic.cell 0.687 9.57E-11

Monocyte 0.693 6.01E-11

Natural.killer.cell 0.732 1.30E-12

Plasmacytoid.dendritic.cell 0.733 1.23E-12

Type.1.T.helper.cell 0.662 8.09E-10

Type.17.T.helper.cell -0.619 1.79E-08

GLRX Natural.killer.cell 0.712 1.01E-11

Plasmacytoid.dendritic.cell 0.633 7.16E-09

EEF2K Monocyte 0.651 1.90E-09

Plasmacytoid.dendritic.cell 0.653 1.59E-09

Type.1.T.helper.cell 0.659 9.64E-10

CD56bright.tural.killer.cell 0.725 2.82E-12

Gamma.delta.T.cell 0.732 1.38E-12

Immature.dendritic.cell 0.776 7.63E-15
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during the progression of atherosclerotic lesions, most dendritic

cell populations appear to be activated and expand rapidly

(Koltsova and Ley, 2011; Alberts-Grill et al., 2013). In the

subendothelial space of the aorta, dendritic cells can

accumulate lipids within the subendothelial space in the aorta

and thus facilitate disease initiation and progression (Taghavie-

Moghadam et al., 2014). Furthermore, activated dendritic cells

are capable of producing proinflammatory molecules. As

previous studies (Xu and Yang, 2020; Simões and Riley, 2022)

have shown, CD8 T cells also contribute to the development of

atherogenesis, as their numbers significantly increase

as human lesions progress and become more vulnerable to

ruptures.

This study has several limitations. First, the potential

genes associated with oxidative stress identified in this

study need further literature support and laboratory proof.

Second, the genes associated with oxidative stress were

derived from the GeneCards database, which is

FIGURE 14
Scatter plot of the correlation between gene models and immune cell infiltration in the GSE57691 dataset.
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continuously being updated, and more genes need to be

discovered. Third, to determine the diagnostic accuracy of

the four-gene diagnostic model, larger sample sizes would be

helpful for further external validation. Fourth, because AS is

heterogeneous and clinical data are lacking, we were unable to

evaluate the associations between risk indicators and the

stratification of patients based on AS severity. Finally,

experimental evidence, such as that obtained by real-time

PCR, western blotting, and immunohistochemistry assays,

is still required to fully understand the hub genes and

underlying mechanisms of AS associated with oxidative stress.

Conclusion

We identified 17 hub genes that were closely associated with

oxidative stress in AS and constructed a four-gene (ALDH6A1,

EEF2K, GLRX, and LDHB) diagnostic model with good accuracy.

This model was also found to have good discriminatory efficacy

for the immune cell infiltration microenvironment of AS.

Overall, these findings provide valuable information and

directions for future research into AS diagnosis and could aid

in the discovery of the biological mechanisms underlying AS with

oxidative stress.

FIGURE 15
Scatter plot of the correlation between gene models and immune cell infiltration in the GSE43292 dataset.

TABLE 6 Correlation analysis of genetic models and immune cell infiltration
in the GSE43292 dataset.

Gene Immune cell Cor P-value

LDHB Activated.B.cell -0.512 1.51E-05

CD56bright.tural.killer.cell -0.491 3.72E-05

Type.2.T.helper.cell -0.481 5.65E-05

CD56dim.tural.killer.cell -0.449 0.0002

Neutrophil -0.415 0.000643

Natural.killer.cell -0.405 0.000887

B cells naive 0.402 0.000983

Dendritic cells resting 0.402 0.000983

T cells CD4 memory resting 0.403 0.000951

Dendritic cells activated 0.404 0.000934

T cells regulatory (Tregs) 0.474 7.66E-05

MDSC 0.476 6.95E-05

T.follicular.helper.cell 0.496 3.09E-05

Activated.dendritic.cell 0.501 2.52E-05

T cells CD8 0.506 1.99E-05

Frontiers in Genetics frontiersin.org19

Tang et al. 10.3389/fgene.2022.998954

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.998954


Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/

Supplementary Material.

Author contributions

Conceptualization, CT; methodology, LD, QL, and GH;

software, QL; validation, LD, QL, and GH;

writing—original draft preparation, CT and GH;

writing—review and editing, CT; visualization, LD and QL;

supervision, CT. All authors have read and agreed to the

published version of the manuscript.

Acknowledgments

We sincerely thank for the support from the Third People’s

Hospital of Chengdu.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.998954/full#supplementary-material

References

Ajoe, J. K., Naga, V. K., Deepak, P., and Mehta, J. L. (2017). Oxidative stress in
atherosclerosis. Curr. Atheroscler. Rep. 19 (11), 42. doi:10.1007/s11883-017-0678-6

Alberts-Grill, N., Denning, T., Rezvan, A., and Jo, H. (2013). The role of the
vascular dendritic cell network in atherosclerosis. Am. J. Physiol. Cell Physiol. 305
(1), 1–21. doi:10.1152/ajpcell.00017.2013

Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., et al. (2000).
Gene ontology: Tool for the unification of biology. The gene ontology consortium.
Nat. Genet. 25 (1), 25–29. doi:10.1038/75556

Ayari, H., and Bricca, G. (2013). Identification of two genes potentially associated
in iron-heme homeostasis in human carotid plaque using microarray analysis.
J. Biosci. 38 (2), 311–315. doi:10.1007/s12038-013-9310-2

Beretta, S., Gritti, L., Verpelli, C., and Sala, C. (2020). Eukaryotic elongation factor
2 kinase a pharmacological target to regulate protein translation dysfunction in
neurological diseases. Neuroscience 445, 42–49. doi:10.1016/j.neuroscience.2020.02.015

Biros, E., Gäbel, G., Moran, C., Schreurs, C., Lindeman, J., Walker, P., et al. (2015).
Differential gene expression in human abdominal aortic aneurysm and aortic
occlusive disease. Oncotarget 6 (15), 12984–12996. doi:10.18632/oncotarget.3848

Bryk, D., Olejarz, W., and Zapolska-Downar, D. (2017). The role of oxidative
stress and NADPH oxidase in the pathogenesis of atherosclerosis. Postepy Hig. Med.
Dosw. 71, 57–68. doi:10.5604/17322693.1229823

Burns, M., Rizvi, S. H. M., Tsukahara, Y., Pimentel, D. R., Luptak, I., Hamburg, N.
M., et al. (2020). Role of glutaredoxin-1 and glutathionylation in cardiovascular
diseases. Int. J. Mol. Sci. 21 (18), 6803. doi:10.3390/ijms21186803

Calleja, L., Yoval-Sánchez, B., Hernández-Esquivel, L., Gallardo-Pérez, J., Sosa-
Garrocho, M., Marín-Hernández, Á., et al. (2021). Activation of ALDH1A1 by
omeprazole reduces cell oxidative stress damage. FEBS J. 288 (13), 4064–4080.
doi:10.1111/febs.15698

Du, Y., Zhang, H., Montano, S., Hegestam, J., Ekberg, N., Holmgren, A., et al.
(2014). Plasma glutaredoxin activity in healthy subjects and patients with abnormal
glucose levels or overt type 2 diabetes. Acta Diabetol. 51 (2), 225–232. doi:10.1007/
s00592-013-0498-2

Elahi,M., Kong, Y., andMatata, B. (2009).Oxidative stress as amediator of cardiovascular
disease. Oxid. Med. Cell. Longev. 2 (5), 259–269. doi:10.4161/oxim.2.5.9441

Fornes, O., Castro-Mondragon, J., Khan, A., van der Lee, R., Zhang, X.,
Richmond, P., et al. (2020). Jaspar 2020: Update of the open-access database of

transcription factor binding profiles. Nucleic Acids Res. 48 (D1), D87–D92. doi:10.
1093/nar/gkz1001

Gao, W., Liu, H., Yuan, J., Wu, C., Huang, D., Ma, Y., et al. (2016). Exosomes
derived from mature dendritic cells increase endothelial inflammation and
atherosclerosis via membrane TNF-α mediated NF-κB pathway. J. Cell. Mol.
Med. 20 (12), 2318–2327. doi:10.1111/jcmm.12923

Hansen, S., Madsen, C., Varbo, A., and Nordestgaard, B. (2019). Low-grade
inflammation in the association between mild-to-moderate hypertriglyceridemia
and risk of acute pancreatitis: A study of more than 115000 individuals from the
general population. Clin. Chem. 65 (2), 321–332. doi:10.1373/clinchem.2018.
294926

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). Gsva: Gene set variation
analysis for microarray and RNA-seq data. BMC Bioinforma. 14 (7), 7. doi:10.1186/
1471-2105-14-7

Huang, H., Lin, Y., Li, J., Huang, K., Shrestha, S., Hong, H., et al. (2020).
miRTarBase 2020: updates to the experimentally validated microRNA-target
interaction database. Nucleic Acids Res. 48 (D1), D148–D154. doi:10.1093/nar/
gkz896

Iso, H. (2021). Cardiovascular disease, a major global burden: Epidemiology of
stroke and ischemic heart disease in Japan.Glob. HealthMed. 3 (6), 358–364. doi:10.
35772/ghm.2020.01113

Kanehisa, M., and Goto, S. (2000). Kegg: Kyoto encyclopedia of genes and
genomes. Nucleic Acids Res. 28 (1), 27–30. doi:10.1093/nar/28.1.27

Kedishvili, N., Popov, K., Rougraff, P., Zhao, Y., Crabb, D., and Harris, R. (1992).
CoA-dependent methylmalonate-semialdehyde dehydrogenase, a unique member
of the aldehyde dehydrogenase superfamily. cDNA cloning, evolutionary
relationships, and tissue distribution. J. Biol. Chem. 267 (27), 19724–19729.
doi:10.1016/s0021-9258(18)41835-2

Khan, M., Hashim, M., Mustafa, H., Baniyas, My., Al, S. S., AlKatheeri, R., et al.
(2020). Global epidemiology of ischemic heart disease: Results from the global
burden of disease study. Cureus 12 (7), e9349. doi:10.7759/cureus.9349

Khosravi, M., Poursaleh, A., Ghasempour, G., Farhad, S., and Najafi, M. (2019).
The effects of oxidative stress on the development of atherosclerosis. Biol. Chem.
400 (6), 711–732. doi:10.1515/hsz-2018-0397

Koltsova, E., and Ley, K. (2011). How dendritic cells shape atherosclerosis. Trends
Immunol. 32 (11), 540–547. doi:10.1016/j.it.2011.07.001

Frontiers in Genetics frontiersin.org20

Tang et al. 10.3389/fgene.2022.998954

https://www.frontiersin.org/articles/10.3389/fgene.2022.998954/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.998954/full#supplementary-material
https://doi.org/10.1007/s11883-017-0678-6
https://doi.org/10.1152/ajpcell.00017.2013
https://doi.org/10.1038/75556
https://doi.org/10.1007/s12038-013-9310-2
https://doi.org/10.1016/j.neuroscience.2020.02.015
https://doi.org/10.18632/oncotarget.3848
https://doi.org/10.5604/17322693.1229823
https://doi.org/10.3390/ijms21186803
https://doi.org/10.1111/febs.15698
https://doi.org/10.1007/s00592-013-0498-2
https://doi.org/10.1007/s00592-013-0498-2
https://doi.org/10.4161/oxim.2.5.9441
https://doi.org/10.1093/nar/gkz1001
https://doi.org/10.1093/nar/gkz1001
https://doi.org/10.1111/jcmm.12923
https://doi.org/10.1373/clinchem.2018.294926
https://doi.org/10.1373/clinchem.2018.294926
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1093/nar/gkz896
https://doi.org/10.1093/nar/gkz896
https://doi.org/10.35772/ghm.2020.01113
https://doi.org/10.35772/ghm.2020.01113
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1016/s0021-9258(18)41835-2
https://doi.org/10.7759/cureus.9349
https://doi.org/10.1515/hsz-2018-0397
https://doi.org/10.1016/j.it.2011.07.001
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.998954


Lachmann, A., Xu, H., Krishnan, J., Berger, S., Mazloom, A., and Ma’ayan, A.
(2010). ChEA: Transcription factor regulation inferred from integrating genome-
wide ChIP-X experiments. Bioinforma. Oxf. Engl. 26 (19), 2438–2444. doi:10.1093/
bioinformatics/btq466

Libby, P. (2021). The changing nature of atherosclerosis: What we thought we
knew, what we think we know, and what we have to learn. Eur. Heart J. 42 (47),
4781–4782. doi:10.1093/eurheartj/ehab438

Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J., and
Tamayo, P. (2015). The Molecular Signatures Database (MSigDB) hallmark
gene set collection. Cell Syst. 1 (6), 417–425. doi:10.1016/j.cels.2015.12.004

Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., and Snel, B. (2003).
String: A database of predicted functional associations between proteins. Nucleic
Acids Res. 31 (1), 258–261. doi:10.1093/nar/gkg034

Nikpay, M., Goel, A., Won, H., Hall, L., Willenborg, C., Kanoni, S., et al. (2015). A
comprehensive 1, 000 Genomes-based genome-wide association meta-analysis of
coronary artery disease. Nat. Genet. 47 (10), 1121–1130. doi:10.1038/ng.3396

Okuda, M., Inoue, N., Azumi, H., Seno, T., Sumi, Y., Hirata, K. N., et al. (2001).
Expression of glutaredoxin in human coronary arteries: Its potential role in
antioxidant protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol.
21 (9), 1483–1487. doi:10.1161/hq0901.095550

Park, J., Saeed, K., Jo, M., Kim, M., Lee, H., Park, C., et al. (2022). LDHB deficiency
promotes mitochondrial dysfunction mediated oxidative stress and neurodegeneration
in adult mouse brain. Antioxidants 11 (2), 261. doi:10.3390/antiox11020261

Ridker, P. (2016). A test in context: High-sensitivity C-reactive protein. J. Am.
Coll. Cardiol. 67 (6), 712–723. doi:10.1016/j.jacc.2015.11.037

Ridker, P., Koenig, W., Kastelein, J., Mach, F., and Lüscher, T. (2018). Has the time
finally come to measure hsCRP universally in primary and secondary cardiovascular
prevention? Eur. Heart J. 39 (46), 4109–4111. doi:10.1093/eurheartj/ehy723

Roe, C., Struys, E., Kok, R., Roe, D., Harris, R., and Jakobs, C. (1998).
Methylmalonic semialdehyde dehydrogenase deficiency: Psychomotor delay and
methylmalonic aciduria without metabolic decompensation.Mol. Genet. Metab. 65
(1), 35–43. doi:10.1006/mgme.1998.2737

Rongbin, Z., Changxin, W., Shenglin, M., Qian, Q., Qiu, W., Hanfei, S., et al.
(2019). Cistrome data browser: Expanded datasets and new tools for gene regulatory
analysis. Nucleic Acids Res. 47 (1), D729–D735. doi:10.1093/nar/gky1094

Safran, M., Dalah, I., Alexander, J., Rosen, N., Iny, S, T., Shmoish, M., et al. (2010).
GeneCards version 3: The human gene integrator. Database 2010, baq020. doi:10.
1093/database/baq020

Shannon, P., Markiel, A., Ozier, O., Baliga, N., Wang, J., Ramage, D., et al. (2003).
Cytoscape: A software environment for integrated models of biomolecular
interaction networks. Genome Res. 13 (11), 2498–2504. doi:10.1101/gr.1239303

Simões, F., and Riley, P. (2022). Immune cells in cardiac repair and regeneration.
Dev. Camb. Engl. 149 (8), dev199906. doi:10.1242/dev.199906

Smolyaninov, I., Burmistrova, D., Arsenyev, M., Polovinkina, M., Pomortseva, N.,
Fukin, G., et al. (2022). Synthesis and antioxidant activity of new catechol thioethers with
the methylene linker. Mol. (Basel, Switz. 27 (10), 3169. doi:10.3390/molecules27103169

Steen, C., Liu, C., Alizadeh, A., and Newman, A. (2020). Profiling cell type
abundance and expression in bulk tissues with CIBERSORTx. Methods Mol. Biol.
2117, 135–157. doi:10.1007/978-1-0716-0301-7_7

Subramanian, A., Tamayo, P., Mootha, V., Mukherjee, S., Ebert, B., Gillette, M.,
et al. (2005). Gene set enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102
(43), 15545–15550. doi:10.1073/pnas.0506580102

Taghavie-Moghadam, P., Butcher, M., and Galkina, E. (2014). The dynamic lives
of macrophage and dendritic cell subsets in atherosclerosis. Ann. N. Y. Acad. Sci.
1319 (1), 19–37. doi:10.1111/nyas.12392

Tibaut, M., Caprnda, M., Kubatka, P., Sinkovič, A., Valentova, V., Filipova, S.,
et al. (2018). Markers of atherosclerosis: Part 2 - genetic and imaging markers.Heart
Lung Circ. 28 (5), 678–689. doi:10.1016/j.hlc.2018.09.006

Tibaut, M., Ramuš, S. M., and Petrovič, D. (2020). The C allele of the reactive
oxygen species modulator 1 (ROMO1) polymorphism rs6060566 is a
biomarker predicting coronary artery stenosis in Slovenian subjects with

type 2 diabetes mellitus. BMC Med. Genomics 13 (1), 184. doi:10.1186/
s12920-020-00845-3

Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Alonso, A., Beaton, A. Z., Bittencourt,
M. S., et al. (2022). Heart disease and stroke statistics—2022 update: A report from
the American heart association. Circulation 145 (8), e153–e639. doi:10.1161/CIR.
0000000000001052

Usui, T., Nijima, R., Sakatsume, T., Otani, K., Kameshima, S., Okada, M., et al.
(2015). Eukaryotic elongation factor 2 kinase controls proliferation and migration
of vascular smooth muscle cells. Acta Physiol. 213 (2), 472–480. doi:10.1111/apha.
12354

Vasquez, M. M., Hu, C., Roe, D. J., Chen, Z., Halonen, M., and Guerra, S. (2016).
Least absolute shrinkage and selection operator type methods for the identification
of serum biomarkers of overweight and obesity: Simulation and application. BMC
Med. Res. Methodol. 16 (1), 154. doi:10.1186/s12874-016-0254-8

Wang, S., Sun, H., Ma, J., Zang, C., Wang, C., Wang, J., et al. (2013). Target
analysis by integration of transcriptome and ChIP-seq data with BETA.Nat. Protoc.
8 (12), 2502–2515. doi:10.1038/nprot.2013.150

Wilkerson, M., and Hayes, D. (2010). ConsensusClusterPlus: A class discovery
tool with confidence assessments and item tracking. Bioinformatics 26 (12),
1572–1573. doi:10.1093/bioinformatics/btq170

Worbs, T., Hammerschmidt, S., and Förster, R. (2017). Dendritic cell migration in
health and disease. Nat. Rev. Immunol. 17 (1), 30–48. doi:10.1038/nri.2016.116

Wu, H., Wang, Y., Ying, M., Jin, C., Li, J., and Hu, X. (2021). Lactate
dehydrogenases amplify reactive oxygen species in cancer cells in response to
oxidative stimuli. Signal Transduct. Target. Ther. 6 (1), 242. doi:10.1038/s41392-
021-00595-3

Xiao, L., and Harrison, D. (2020). Inflammation in hypertension. Can. J. Cardiol.
36 (5), 635–647. doi:10.1016/j.cjca.2020.01.013

Xu, J., and Yang, Y. (2020). Potential genes and pathways along with immune cells
infiltration in the progression of atherosclerosis identified via microarray gene
expression dataset re-analysis. Vascular 28 (5), 643–654. doi:10.1177/
1708538120922700

Xu, Y., Wei, Z., Xue, C., and Huang, Q. (2022). Covalent modification of zein with
polyphenols: A feasible strategy to improve antioxidant activity and solubility.
J. Food Sci. 87 (7), 2965–2979. doi:10.1111/1750-3841.16203

Yang, X., Li, Y., Li, Y., Ren, X., Zhang, X., Hu, D., et al. (2017). Oxidative stress-
mediated atherosclerosis: Mechanisms and therapies. Front. Physiol. 8, 600. doi:10.
3389/fphys.2017.00600

Yin, X., Wang, X., Wang, S., Xia, Y., Chen, H., Yin, L., et al. (2022). Screening for
regulatory network of miRNA-inflammation, oxidative stress and prognosis-related
mRNA in acute myocardial infarction: An in silico and validation study. Int. J. Gen.
Med. 15, 1715–1731. doi:10.2147/IJGM.S354359

Yin, Y., Zou, Y., Xiao, Y., Wang, T., Wang, Y., Dong, Z., et al. (2021).
Identification of potential hub genes of atherosclerosis through bioinformatic
analysis. J. Comput. Biol. 28 (1), 60–78. doi:10.1089/cmb.2019.0334

Yuan, T., Yang, T., Chen, H., Fu, D., Hu, Y., Wang, J., et al. (2019). New
insights into oxidative stress and inflammation during diabetes mellitus-
accelerated atherosclerosis. Redox Biol. 20, 247–260. doi:10.1016/j.redox.
2018.09.025

Zhang, P., Riazy, M., Gold, M., Tsai, S., McNagny, K., Proud, C., et al. (2014).
Impairing eukaryotic elongation factor 2 kinase activity decreases
atherosclerotic plaque formation. Can. J. Cardiol. 30 (12), 1684–1688.
doi:10.1016/j.cjca.2014.09.019

Zhao, B., Wang, D., Liu, Y., Zhang, X., Wan, Z., Wang, J., et al. (2020). Six-gene
signature associated with immune cells in the progression of atherosclerosis
discovered by comprehensive bioinformatics analyses. Cardiovasc. Ther. 2020,
1230513. doi:10.1155/2020/1230513

Zhao, X., He, Y., Zhang, Y., Wan, H., Wan, H., and Yang, J. (2022). Inhibition
of oxidative stress: An important molecular mechanism of Chinese herbal
medicine (Astragalus membranaceus, Carthamus tinctorius L., radix salvia
miltiorrhizae, etc.) in the treatment of ischemic stroke by regulating the
antioxidant system. Oxid. Med. Cell. Longev. 2022, 1425369. doi:10.1155/
2022/1425369

Frontiers in Genetics frontiersin.org21

Tang et al. 10.3389/fgene.2022.998954

https://doi.org/10.1093/bioinformatics/btq466
https://doi.org/10.1093/bioinformatics/btq466
https://doi.org/10.1093/eurheartj/ehab438
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1093/nar/gkg034
https://doi.org/10.1038/ng.3396
https://doi.org/10.1161/hq0901.095550
https://doi.org/10.3390/antiox11020261
https://doi.org/10.1016/j.jacc.2015.11.037
https://doi.org/10.1093/eurheartj/ehy723
https://doi.org/10.1006/mgme.1998.2737
https://doi.org/10.1093/nar/gky1094
https://doi.org/10.1093/database/baq020
https://doi.org/10.1093/database/baq020
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1242/dev.199906
https://doi.org/10.3390/molecules27103169
https://doi.org/10.1007/978-1-0716-0301-7_7
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1111/nyas.12392
https://doi.org/10.1016/j.hlc.2018.09.006
https://doi.org/10.1186/s12920-020-00845-3
https://doi.org/10.1186/s12920-020-00845-3
https://doi.org/10.1161/CIR.0000000000001052
https://doi.org/10.1161/CIR.0000000000001052
https://doi.org/10.1111/apha.12354
https://doi.org/10.1111/apha.12354
https://doi.org/10.1186/s12874-016-0254-8
https://doi.org/10.1038/nprot.2013.150
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1038/nri.2016.116
https://doi.org/10.1038/s41392-021-00595-3
https://doi.org/10.1038/s41392-021-00595-3
https://doi.org/10.1016/j.cjca.2020.01.013
https://doi.org/10.1177/1708538120922700
https://doi.org/10.1177/1708538120922700
https://doi.org/10.1111/1750-3841.16203
https://doi.org/10.3389/fphys.2017.00600
https://doi.org/10.3389/fphys.2017.00600
https://doi.org/10.2147/IJGM.S354359
https://doi.org/10.1089/cmb.2019.0334
https://doi.org/10.1016/j.redox.2018.09.025
https://doi.org/10.1016/j.redox.2018.09.025
https://doi.org/10.1016/j.cjca.2014.09.019
https://doi.org/10.1155/2020/1230513
https://doi.org/10.1155/2022/1425369
https://doi.org/10.1155/2022/1425369
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.998954

	Identification of oxidative stress-related genes and potential mechanisms in atherosclerosis
	Introduction
	Materials and methods
	Acquisition of data and analysis of variance
	Acquisition of oxidative stress gene-related genes
	Analysis of DEGs of oxidative stress genes
	Correlation analysis between genes
	Construction of the diagnostic model
	Construction of PPI network
	Unsupervised clustering of samples
	Functional enrichment analysis
	Immune infiltration analysis
	Statistical analysis

	Results
	Data preprocessing and identification of differentially expressed genes (DEGs)
	Construction of protein–protein interaction (PPI) network
	Molecular subtype construction and analysis based on oxidative stress
	Validation of oxidative stress-related DEGs and diagnostic efficacy
	Molecular typing analysis of four-gene diagnostic model
	Functional enrichment analysis
	The ssGSEA enrichment analysis for immune cell infiltration
	Construction of immune signature subtypes and assessment of immune cell infiltration
	Correlation analysis of the four genes in the oxidative stress-related AS diagnostic model
	Immune cell infiltration correlation analysis

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


