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A large number of colon adenocarcinoma (COAD) patients are already

advanced when diagnosed. In this study, we aimed to further understand

the mechanism of tumor development in early COAD by focusing on

epithelial-mesenchymal transition (EMT) and long non-coding RNAs

(lncRNAs). Expression profiles of early COAD patients were obtained from

public databases. EMT-related lncRNAs were used as a basis for constructing

molecular subtypes through unsupervised consensus clustering. Genomic

features, pathways and tumor microenvironment (TME) were compared

between two subtypes. LncATLAS database was applied to analyze the

relation between lncRNAs and transcription factors (TFs). First order

partial correlation analysis was conducted to identify key EMT-related

lncRNAs.C1 and C2 subtypes with distinct prognosis were constructed.

Oncogenic pathways such as EMT, KRAS signaling, JAK-STAT signaling,

and TGF-β signaling were significantly enriched in C2 subtype. Higher

immune infiltration and expression of immune checkpoints were also

observed in C2 subtype, suggesting the key EMT-related lncRNAs may

play a critical role in the modulation of TME. In addition, JAK-STAT

signaling pathway was obviously enriched in upregulated TFs in

C2 subtype, which indicated a link between key lncRNAs and JAK-STAT

signaling that may regulate TME. The study further expanded the research on

the role of EMT-related lncRNAs in the early COAD. The six identified EMT-

related lncRNAs could serve as biomarkers for early screening COAD.
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Introduction

According to the global cancer statistics, colon adenocarcinoma

(COAD) is the sixth most diagnosed cancer with 1,148,515 new

cases in 2020, contributing 6.0% of all new diagnosed cancer cases

(Sung et al., 2021). Simultaneously, the death cases contribute 5.8%

(576,858) of all deaths by cancer, which is the fifth leading cause of

cancer death in 2020. Although the 5-year overall survival (OS) is

upon 75% of American Joint Committee on Cancer (AJCC) stage Ⅰ
and Ⅱ, a dramatically decreased survival of distant metastasis is

shownwith only less than 20%ofAJCC stageⅣ (Ulanja et al., 2019).

Prognostic difference is shown between right-sided and left-sided

colon cancer, and left-sided colon cancer has a lower death risk than

right-sided colon cancer (Petrelli et al., 2017), whichmay result from

their genetic and immunological differences (Lee et al., 2015).

Screening techniques for colon cancer include invasive and non-

invasive tests. Colonoscopic tests are recommended for high-risk

individuals and non-colonoscopic tests are recommended in

average-risk individuals according to European Society for

Medical Oncology (EMSO) clinical practice guidelines (Argilés

et al., 2020). However, they are not sensitive in the diagnosis of

early colon cancer. Actually, a number of patients are already

advanced when diagnosed as COAD. Therefore, early screening

of COAD is of great value for improving prognosis and releasing

cancer burden worldwide.

To reach accurate screening, comprehensive understanding of

COAD tumorigenesis and development is a basis for identifying

effective biomarkers for COAD screening. Of the hallmarks of

cancers, epithelial-mesenchymal transition (EMT) is one of the

most important features contributing for metastasis (Dongre and

Weinberg, 2019). Tumor microenvironment (TME), another

important component in cancer tissue, has been demonstrated to

have a strong correlation with EMT through the linkages of

proinflammatory factors such as TGF-β, TNF-α, and IL-6 (Jung

et al., 2015). Among these interactions, long non-coding RNAs

(lncRNAs) are considered as critical regulators for modulating

TME and managing EMT (Sun et al., 2018; O’Brien et al., 2020).

Oncogenic pathways involving in EMT such asWNT signaling, JAK-

STAT3 signaling (Xue et al., 2018), mTOR signaling andMAPK/ERK

signaling have been illustrated to be regulated by various lncRNAs

(O’Brien et al., 2020). In colon cancer, lncRNA-HOTAIR associated

with EMT was identified as a predictor of metastasis and prognosis

(Wu et al., 2014).

As lncRNAs are of potential to serve as biomarkers for COAD

prognosis, we consider that lncRNAs involving in EMT process

may also be effective predictors for COAD. Therefore, in this

study, we tried to construct a novel molecular subtyping system

based on EMT-related lncRNAs. Compared to pathological

subtyping or clinical features, molecular subtyping is more

accurate for classifying cancer patients into different classes

with different prognosis. By exploring the mechanisms of

EMT-related lncRNAs in tumorigenesis in COAD, we further

identified six key EMT-related lncRNAs that could serve as

biomarkers for early screening COAD.

Materials and methods

Sample collection

COAD samples were obtained from public databases through

Sangerbox platform (Shen et al., 2022). RNA-seq data with

clinical information was downloaded from The Cancer

Genome Atlas (TCGA) database. GSE17538 with gene

expression profiles was downloaded from Gene Expression

Omnibus (GEO) database. In TCGA-COAD and

GSE17538 cohorts, only samples of stage I and II were

retained, and samples without survival information were

removed. The clinical information of COAD samples was

shown in Table 1.

TABLE 1 The clinical information of COAD samples.

Clinical features TCGA-COAD GSE17538

OS

0 (alive) 199 80

1 (dead) 26 20

T Stage

T1 8

T2 61

T3 145

T4 10

TX 1

N Stage

N0 225

M Stage

M0 204

MX 21

Stage

I 70 28

II 155 72

Gender

Female 99 47

Male 126 53

Age

<=70 117 53

>70 108 47
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Identification of epithelial-mesenchymal
transition-related lncRNAs

EMT-related genes in hallmark EMT pathway were obtained

from Molecular Signatures Database (MSigDB, v7.4, https://www.

gsea-msigdb.org/gsea/msigdb/) (Liberzon et al., 2015). LncRNAs

and mRNAs in TCGA-COAD and GSE17538 cohorts were

annotated by gene transfer format (GTF, v32) file which was

downloaded from GENCODE (https://www.gencodegenes.org/).

EMT score of each sample was calculated by single sample

gene set enrichment analysis (ssGSEA) in GSVA R package

(Hänzelmann et al., 2013). Then Pearson correlation analysis

was employed to calculate correlation coefficients between EMT

score and expression of lncRNAs. EMT-related lncRNAs were

determined by the conditions of |coefficient| > 0.25 and p < 0.05.

Identification ofmolecular subtypes based
on epithelial-mesenchymal transition-
related lncRNAs

Screened EMT-related lncRNAs that were overlapped in

TCGA-COAD and GSE17538 cohorts were used as a basis to

construct molecular subtypes. Unsupervised consensus

clustering in ConsensusClusterPlus R package was

implemented to construct consensus matrix (Wilkerson

and Hayes, 2010). KM algorithm and Euclidean distance

were used to conduct 500 bootstraps with each bootstrap

containing 80% samples. Cluster number k from 2 to 10 was

included to screen the optimal cluster according to

consensus matrix and cumulative distribution

function (CDF).

FIGURE 1
The work flow of this study.
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Gene set enrichment analysis

GSEA is a powerful analytical method for interpreting

biological processes based on gene expression profiles

(Subramanian et al., 2005), which was applied to assess

hallmark pathways for two subtypes. Hallmark pathways

with a series of gene sets were obtained from MSigDB

(Liberzon et al., 2015). The proportion of 28 immune cells

was estimated by GSEA based on gene signatures of different

cell types (Şenbabaoğlu et al., 2016). Estimation of STromal

and Immune cells in MAlignant Tumours using Expression

data (ESTIMATE) (Yoshihara et al., 2013), also based on

GSEA was used to calculate stromal score and immune

score of two subtypes. ClusterProfiler R package was used

to annotate Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways on TFs and EMT-related lncRNAs (Yu

et al., 2012).

Localization of lncRNAs and calculation of
transcription factor activity

Relative concentration index (RCI) based on LncATLAS

database was introduced to measure the localization of

lncRNAs (Mas-Ponte et al., 2017). RCI >0 indicates lncRNAs

localizing in the cytoplasm and RCI <0 indicates the nuclear. The
TF activity was assessed according to the algorithm from Garcia-

Alonso et al. Garcia-Alonso et al. (2018). Pearson correlation

analysis was conducted to analyze the association between EMT-

related lncRNAs and TFs.

Identification of key epithelial-
mesenchymal transition-related lncRNAs

First order partial correlation analysis was used to evaluate

the linkage among EMT-related lncRNAs, EMT score and EMT-

related genes (Reverter and Chan, 2008). The association

between two variables were largely decreased when

eliminating the effect of another variable, and the variable was

considered as key EMT-related lncRNA strongly associated with

EMT score and EMT-related genes.

The identified key EMT-related lncRNAs were used to

construct a prognostic model for predicting OS. Univariate

Cox regression analysis was conducted on these lncRNAs and

coefficients were generated for building the model, defining as:

risk score =Σ (beta i × exp i). Beta represents coefficients and exp

represents the expression of lncRNAs.

Statistical analysis

Statistical analysis was performed in R (4.1.1) software.

Parameters of R packages and software were default if no

FIGURE 2
Construction of molecular subtypes based on EMT-related lncRNAs (A) Venn plot of lncRNAs positively or negatively correlated with EMT
activity. (B) CDF curves of different cluster numbers (k) from 2 to 10 (C) Consensus matrix when cluster number k = 2. (D–E) Kaplan-Meier survival
curves of C1 and C2 subtypes in TCGA-COAD (D) and GSE17538 (E) cohorts. Log-rank test was conducted. (F–G) Differential EMT score of C1 and
C2 subtypes in two cohorts. Wilcoxon test was conducted. ****p < 0.0001.
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introduce. Statistical methods were indicated in the

corresponding figure legends. p < 0.05 was considered as

significant. ns, no sifnificance. *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001.

Results

Constructing two molecular subtypes
based on epithelial-mesenchymal
transition-related lncRNAs

The work flow of this study was shown in Figure 1. To

identify EMT-related lncRNAs, Pearson correlation analysis

was conducted between EMT activity and lncRNA expression.

A total of 756 and 412 EMT-related lncRNAs were identified

in TCGA-COAD and GSE17538 cohorts respectively

(Figure 2A). Then the intersected part of 58 EMT-related

lncRNAs were used as a basis for unsupervised consensus

clustering. The optimal cluster number (k) was determined

according to CDF curve and consensus matrix (Figures 2B,C).

When k = 2, samples were obviously divided into two groups.

Kaplan-Meier survival analysis of two groups showed a

significance of OS in both two cohorts (p = 0.0076 and p =

0.0098 in TCGA-COAD and GSE17538 respectively, Figures

2D,E). Finally, COAD samples were classified into two

molecular subtypes (C1 and C2), with C1 subtype had a

superior OS than C2 subtype. EMT activity shown as EMT

score also varied largely between two subtypes. Not

surprisingly, C2 subtype exhibited a significantly higher

EMT score than C1 subtype, indicating that EMT pathway

was more activated in C2 subtype (p < 0.0001, Figures 2F,G).

FIGURE 3
Mutation patterns of C1 and C2 subtypes (A) Genomic features of two subtypes including aneuploidy, homologous recombination defects,
fraction altered, number of segments and tumor mutation burden. Wilcoxon test was performed. (B) Pearson correlation analysis between genomic
features and EMT score. (C) The top 20 significantly mutated genes in C1 and C2 subtypes. Fisher exact test was conducted. **p < 0.01.
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In addition, the result also demonstrated that these 58 EMT-

related lncRNAs may play a key role in regulating EMT

activity.

Characterizing gene mutations of two
molecular subtypes

We compared the genomic features between C1 and

C2 subtypes in TCGA-COAD cohort on five aspects

including aneuploidy, fraction altered, tumor mutation

burden, homologous recombination defects and number of

segments. We observed that only a significant difference was

shown in number of segments between two subtypes

(Figure 3A). No obvious correlation was manifested

between genomic features and EMT score (Figure 3B).

Gene mutation analysis revealed that samples in

C2 subtype had a higher mutated proportion than

C1 subtype, except for KRAS mutations contributing for

53% samples in C1 subtype (Figure 3C).

Oncogenic pathways were more enriched
in C2 subtype

Next we tried to know if there was a difference of activated

pathways between two subtypes. Hallmark pathways from

MSigDB were included for GSEA and significantly enriched

pathways were outpuuted with false discovery rate (FDR) <
0.05. By comparing C2 subtype with C1 subtype, we observed

that C2 subtype had 23 activated and 11 suppressed pathways in

TCGA-COAD cohort, and 27 activated and 9 suppressed

pathways in GSE17538 cohort. Of these activated pathways, we

found that oncogenic pathways and immune-related pathways

were greatly enriched, such as EMT, angiogenesis, KRAS signaling,

hypoxia, interferon response, TNF-α signaling, IL6-JAK-

STAT3 signaling, IL2-STAT5 signaling, and TGF-β signaling

pathways (Figure 4A). Overall, C2 subtype had significantly

higher normalized enrichment scores (NES) of these pathways

than C1 in both two cohorts (Figures 4B,C), suggesting that EMT-

related lncRNAs may be extensively involved in the regulation of

these pathways especially EMT.

FIGURE 4
Differentially enriched pathways between C1 and C2 subtypes (A) Activated hallmark pathways by comparing C2 with C1 based on normalized
enrichment score (NES). Orange indicates upregulated pathways in C2 and purple indicates the reverse (B–C) Rader plots of activated pathways of
C2 subtype in TCGA-COAD (B) and GSE17538 (C) cohorts. NES was indicated as −4, 0 and 4 from inside to outside. Hallmark pathways were shown
around rader plots.
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C2 subtype had higher infiltration of
immune cells

To evaluate the tumor microenvironment of C1 and

C2 subtypes, we assessed the estimated proportions of a

series immune cells based on gene signatures from

Şenbabaoğlu et al. Şenbabaoğlu et al. (2016). To our

surprise, C2 subtype had extremely higher proportions of

most immune cells in both two cohorts (Figure 5A).

Specifically, activated CD4 T cells, activated CD8 T cells,

regulatory T cells, dendritic cells, macrophages, myeloid-

derived suppressor cells (MDSCs) and natural killer cells

were all more enriched in C2 subtype. ESTIMATE

evaluation also supported the result that C2 subtype had

higher stromal score and immune score than C1 subtype in

both two cohorts (p < 0.001, Figure 5B). Furthermore,

unsupervised consensus clustering based on these immune

cells clearly divided samples into two groups of high and low

immune infiltration (Figure 5C). Obviously, samples in high

immune infiltration group largely belonged to C2 subtype.

FIGURE 5
Tumor microenvironment of C1 and C2 subtypes (A) Estimated proportion of 28 immune cells in TCGA-COAD and GSE17538 cohorts. (B)
Stromal score and immune score in TCGA-COAD and GSE17538 cohorts calculated by ESTIMATE. (C) Unsupervised consensus clustering based on
gene signatures of immune cells in two cohorts. Red and purple indicates relatively high and low enrichment. Student t test was conducted between
two groups. ns, no significance. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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These results implicated a close link between EMT-related

lncRNAs and TME modulation.

Commonly, high immune infiltration of cytotoxic immune cells

has favorable prognosis. However, immunosuppressive immune

cells such as regulatory T cells and MDSCs were simultaneously

increased in C2 subtype. In addition, we analyzed the expression of

immune checkpoints obtained from HisgAtlas database (Liu et al.,

2017). Higher expression of many important immune checkpoints

was observed in C2 subtype, such as LAG3, ICOS, CTLA4, CD276,

PDCD1, IDO1 and CD274 (Figure 6).

The crosstalk between epithelial-
mesenchymal transition-related lncRNAs
and transcription factors

Given that we have illustrated distinct molecular features of

different subtypes, we implicated that EMT-related lncRNAs

were greatly involved in modulating oncogenic pathways or

the expression of immune-related genes. Actually, close

associations (both negative and positive) were observed

between EMT-related lncRNAs and protein-coding genes

(PCGs) (Figure 7A). It is known that the function of lncRNAs

is highly associated with their subcellular locations. Therefore, to

evaluate the possible mechanism of the regulation, we assessed

the locations of these 58 identified EMT-related lncRNAs. We

found over a half of lncRNAs localized in the nuclear with 61.59%

and 63.30% in TCGA-COAD and GSE17538 cohorts respectively

(Figure 7B). As most of EMT-related lncRNAs localized in the

nuclear, we supposed that they possibly regulated gene

expression by interacting with TFs. We then analyzed the TF

activity and screened differentially expressed TFs between two

subtypes (131 TFs in TCGA-COAD and 106 TFs in GSE17538).

Correlation analysis between 58 EMT-related lncRNAs and

dysregulated TFs discovered a group of important TFs and

lncRNAs that may closely interact with each other. The top

10 identified TFs in two cohorts were listed (Figure 7C), and

19 EMT-related lncRNAs were screened to have a close relation

to differentially expressed TFs (Figure 7D). By comparing

C2 with C1 subtype, we found that a majority of TFs were

upregulated in C2 with 7 same TFs upregulated in both two

cohorts (Figure 7E). Functional analysis on the genes targeting by

these 7 upregulated TFs showed that tumor-related pathways of

Jak-STAT signaling and transcriptional misregulation in cancer

were significantly enriched (Figures 7F,G). The above results

indicated that the 19 identified EMT-related lncRNAs may

regulate oncogenic pathways through interacting with the

7 upregulated TFs.

Six epithelial-mesenchymal transition-
related lncRNAswere identified to serve as
prognostic biomarkers

In the previous section, we identified 19 EMT-related

lncRNAs with a relation to TFs. To understand which

FIGURE 6
Comparison of immune checkpoint expression between two subtypes in TCGA-COAD (A) and GSE17538 (B) cohorts. Student t test was
conducted. ns, no significance. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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lncRNAs among them acted a key role between EMT-related

genes and EMT activity, we applied first order partial

correlation analysis on them. When eliminating some of

lncRNAs, the correlation between EMT activity and EMT-

related genes greatly decreased. As a result, six EMT-related

lncRNAs were identified, including ZNF667-AS1,

CCDC144NL-AS1, MAGI2-AS3, HAND2-AS1,

LINC01094 and PCAT19 (Figure 8A). Not surprisingly,

GSEA on EMT-related genes associated with these

6 lncRNAs dug out that tumor- and immune-related

pathways including proteoglycans in cancer, leukocyte

transendothelial migration and focal adhesion were

significantly enriched (Figure 8B). Finally, based on the

expression of the 6 lncRNAs, we constructed a prognostic

model. Samples in two cohorts could be both clearly

stratified into high-risk and low-risk groups (p = 0.0058 and

p = 0.00052 in TCGA-COAD and GSE17538 respectively,

Figures 8C,D), implicating robust performance of the

prognostic model.

Discussion

A number of studies have found the regulatory role of

lncRNAs in EMT and thus promotes tumor development and

metastasis. Usually, the function of lncRNAs can be divided into

two classifications, EMT promoters or suppressors (Cheng et al.,

2019). However, some of lncRNAs are controversial that they act

different roles varied by cancer types, indicating the complication

of tumor development. To further understand the role of

lncRNAs in EMT in colon cancer with early stages (Ⅰ and Ⅱ),
we identified 58 lncRNAs that were possibly involved in EMT

process, and constructed two molecular subtypes based on these

EMT-related lncRNAs.

FIGURE 7
The relation between EMT-related lncRNAs and TFs (A) Pearson correlation analysis between EMT-related lncRNAs and PCGs in two cohorts.
(B) Proportion of nuclear (negative) and cytoplasmic (positive) lncRNAs in two cohorts (C) The top 10 differentially expressed TFs associated with
EMT-related lncRNAs of two cohorts. (D) 19 of 58 identified EMT-related lncRNA with close relations to differentially expressed TFs (E) Activated and
suppressed TFs by comparing C2 with C1. (F) GSEA of genes targeted by 7 upregulated TFs. Size indicates gene counts. (G) Comparison of
expression of 7 upregulated TFs between C1 and C2 subtypes in TCGA-COAD cohort. Student t test was conducted. ****p < 0.0001.
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In the comparison between two subtypes, it was

reasonable that C1 subtype had more favorable OS, with

lower EMT activity than C2. However, two subtypes

displayed no obvious difference on genomic features.

Notably, pathways activated in cancer development were

observed to be more enriched in C2 subtype, indicating

higher invasive activity of tumor cells leading to

migration in C2 subtype. There was no doubt in the

results that EMT pathway was the most enriched in

C2 subtype compared with other enriched tumor-related

pathways such as angiogenesis, hypoxia, TNF-α signaling

and TGF-β signaling. These pathways were all reported to be

associated with EMT process under the regulation of

lncRNAs or miRNAs.

FIGURE 8
Identification of key EMT-related lncRNAs (A) First order partial correlation analysis on the 19 identified EMT-related lncRNAs with EMT score
and EMT-related genes. Four CDF curves were presented. Solid and dashed lines represents CDF of correlation coefficients between EMT score and
EMT-related genes, without and with adjustment respectively. Kolmogorov-Smirnov test was performed between solid and dashed lines. Vertical
axis indicates cumulative probabilities. (B)GSEA on EMT-related genes associated with the 6 EMT-related lncRNAs. (C–D) Kaplan-Meier survival
analysis of high-risk and low-risk groups stratified by the 6-gene prognostic model in two cohorts. Log-rank test was conducted.
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Vascular endothelial growth factor (VEGF) contributing for

angiogenesis is demonstrated to be linked with Twist2 expression

and the reduction of E-cadherin levels (Rojas-Puentes et al.,

2016). It has been reported that VEGF upregulation in solid

tumors with hypoxia can stimulate the transformation of

endothelial cells to mesenchymal cells (Holderfield and

Hughes, 2008). Multiple studies on different cancer types

demonstrated that VEGF administration induced the

detection of EMT markers (Yang et al., 2006; Gonzalez-

Moreno et al., 2010; Desai et al., 2013). Hypoxia is a

critical hallmark of solid tumors, and are illustrated to

induce EMT through hypoxia-inducible factor-1α (HIF-1α)
activating SNAI1 (Zhang et al., 2013; Tam et al., 2020).

Notably, HIF-1α is a mediator of E-cadherin expression, a

major epithelial tumor suppressor, whose reduction can

promote angiogenesis (Evans et al., 2007). Links among

hypoxia, HIF-1α, E-cadherin, angiogenesis and EMT are

shown to promote tumor invasion.

Techasen et alhave demonstrated that tumor necrosis factor-

α (TNF-α), an inflammatory cytokine largely secreted from

tumor stromal cells, stimulates EMT activation and

significantly upregulated Snail expression in

cholangiocarcinoma tissues (Techasen et al., 2012). Another

critical cytokine tumor growth factor-β (TGF-β) expressing by
tumor-infiltrating immune cells also serves as an inducer of

EMT through forming EMT-permissive microenvironment,

which creates a linkage between EMT and TME (Fuxe and

Karlsson, 2012). Moreover, we found that JAK-STAT signaling

controlling immune response was highly enriched in

C2 subtype. JAK-STAT signaling mediates immune cells in

response to cytokines and growth factors, which is involved in

metastasis and EMT (Jin, 2020). Xue et alhave revealed that

lncRNA-AB073614 promotes EMT through JAK-STAT3

signaling pathway in colorectal cancer cells (Xue et al.,

2018). These associations support the reliability of EMT-

related lncRNAs for classifying COAD patients into two

subtypes where EMT-related pathways were highly enriched

in C2 subtype.

Besides enriched pathways, two subtypes also showed

distinct TME with high immune infiltration in C2 subtype. A

series of cytokines, chemokines and immune checkpoints

secreted by tumor cells and tumor-infiltrated immune cells

contribute EMT-permissive TME (Jung et al., 2015). Although

C2 subtype was highly infiltrated with higher proportion of

cytotoxic immune cells, immunosuppressive cells such as

macrophages, regulatory T cells, and MDSCs were also highly

enriched. In addition, higher expression of immune checkpoints

was shown in C2, further supporting the close relation between

TME and EMT. In lung adenocarcinoma, Lou et alfound that

multiple immune checkpoints associating with increased

regulatory T cells including PD-L1, PD-1, TIM-3, B7-H3,

BTLA and CTLA-4 displayed EMT phenotype (Lou et al.,

2016). Similarly, C2 subtype with high EMT activity also

shown increased expression of BTLA, CD274 (PD-L1) and

CTLA-4, suggesting that these immune checkpoints may be

involved in EMT process.

To understand the possible mechanism of EMT-related

lncRNAs regulating EMT-related genes, we investigated the

relation between lncRNAs and TFs. We discovered that 7 TFs

were significantly upregulated in C2 subtype, and JAK-STAT

signaling pathway was found to be enriched in these TFs, which

was consistent with the previous findings. Among the

19 identified lncRNAs correlated with TF expression,

MEG3 and MIR22HG were massively expressed in the

nuclear. MEG3, considering as an oncogenic lncRNA (Al-

Rugeebah et al., 2019), is indicated to affect EMT in various

cancer types such as breast cancer (Zhang et al., 2017), ovarian

cancer (Wang et al., 2019), lung cancer (Terashima et al., 2017)

and gastric cancer (Xu et al., 2018). However, it has not been

reported in colon cancer, whichmay serve as a novel direction for

further characterizing the mechanism of EMT. MIR22HG is

demonstrated as a tumor suppressor through TGF-β/SMAD

signaling in colorectal cancer, whose depletion can promote

EMT process and tumor metastasis (Xu et al., 2020). We

speculated that these 19 lncRNAs are highly involved in

regulating EMT through interacting with TFs or other regulators.

Furthermore, to identify key EMT-related lncRNAs, we used

first-order partial correlation analysis and dug out six key

lncRNAs including ZNF667-AS1, CCDC144NL-AS1, MAGI2-

AS3, HAND2-AS1, LINC01094, and PCAT19. These six

lncRNAs were all reported to be involved in cancer

progression. ZNF667-AS1 was reported to be involved in

cancer progression and migration in laryngeal squamous cell

carcinoma and cervical cancer (Li et al., 2019; Meng et al., 2019).

CCDC144NL-AS1 was identified as a prognostic biomarker in

non-small cell lung cancer and it could also promote

hepatocellular carcinoma development (Zhang et al., 2021a;

Zhang et al., 2021b). MAGI2-AS3 and HAND2-AS1 were

dysregulated in many cancer types and were suggested as

potential biomarkers for cancer prognosis (Gu et al., 2021;

Kai-Xin et al., 2021). LINC01094 could promote the

progression of ovarian cancer (Chen et al., 2021), breast

cancer (Wu et al., 2021), pancreatic cancer (Luo et al., 2021),

and other cancers. PCAT19 could activate cell-cycle genes

thereby promoting cancer cell growth and cancer metastasis

in pancreatic cancer (Hua et al., 2018).

In conclusion, this study proposed two novel molecular

subtypes based on EMT-related lncRNAs. The distinct

features of enriched pathways and TME between two subtypes

supported that EMT-related lncRNAs played important roles in

EMT process through regulating TFs involved in JAK-STAT

signaling. Moreover, we identified six key EMT-related lncRNAs

associated overall survival and the six lncRNAs could serve as a

prognostic signature for COAD patients. As the study focused on

COAD samples with stage Ⅰ and Ⅱ, we expanded the fundamental

research on the early stages of COAD and the six lncRNAs may
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serve as biomarkers for early diagnose of COAD. However, the

limitation was that only pure bioinformatics analysis was applied

in the present study. In addition, we did not distinguish left-sided

and right-sided colon cancer, which may lower the accuracy of

our results. In the future work, the role and prognostic value of

six key EMT-related lncRNAs needed to be further explored and

validated in more clinical patients.
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