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Tuberous Sclerosis (TS) is a rare genetic disorder manifesting with multiple

benign tumors impacting the function of vital organs. In TS patients, dominant

negative mutations in TSC1 or TSC2 increase mTORC1 activity. Increased

mTORC1 activity drives tumor formation, but also severely impacts central

nervous system function, resulting in infantile seizures, intractable epilepsy, and

TS-associated neuropsychiatric disorders, including autism, attention deficits,

intellectual disability, and mood disorders. More recently, TS has also been

linked with frontotemporal dementia. In addition to TS, accumulating evidence

implicates increased mTORC1 activity in the pathology of other

neurodevelopmental and neurodegenerative disorders. Thus, TS provides a

unique disease model to address whether developmental neural circuit

abnormalities promote age-related neurodegeneration, while also providing

insight into the therapeutic potential of mTORC1 inhibitors for both developing

and degenerating neural circuits. In the following review, we explore the ability

of both mouse and human brain organoid models to capture TS pathology,

elucidate disease mechanisms, and shed light on how neurodevelopmental

alterations may later contribute to age-related neurodegeneration.
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Introduction

Overview of Tuberous Sclerosis

Tuberous Sclerosis (TS) is a rare genetic disorder manifesting with multiple benign

tumors impacting the function of vital organs (Curatolo et al., 2015). TS is driven by

autosomal dominant negative mutations in either of the Tuberous Sclerosis Complex

(TSC) genes, TSC1 or TSC2 (Laplante et al., 2012). A significant portion of patients also

exhibit germline and/or somatic mosaicism, resulting in heterogenous expression of

TSC1/2 mutations (Verhoef et al., 1999; Giannikou et al., 2019). In most patients, TSC1/
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2mutations impact central nervous system function, resulting in

infantile seizures, intractable epilepsy, and TS-associated

neuropsychiatric disorders (TAND), including autism,

attention deficits, intellectual disability, and mood disorders

(Shepherd and Stephenson, 1992; de Vries and Watson, 2008;

Chu-Shore et al., 2010; Bolton et al., 2015; de Vries et al., 2015;

Kingswood et al., 2017; de Vries et al., 2018; Cervi et al., 2020).

Recently, significant phenotypic overlap between TS and

frontotemporal dementia (FTD) has also been described; this

overlap includes TAND-associated cognitive-behavioral

alterations, as well as clinical biomarkers, such as

phosphorylated tau (Olney et al., 2017; Liu et al., 2020a;

Alquezar et al., 2021; Liu et al., 2022). These neuropsychiatric

manifestations significantly affect quality of life for TS patients

and their families, accounting for the majority of disease-

associated morbidity, mortality, and burden of care in the TS

patient population (Curatolo et al., 2015).

Despite this significant burden, the neuropsychiatric component

of TS is the most complex and least understood disease aspect. At a

molecular level, TSC1 and TSC2 form a complex that negatively

regulates mammalian target of rapamycin complex-1 (mTORC1)

-mediated growth pathways (Laplante et al., 2012). Thus, disease-

associated mutations result in increased mTORC1 activity and

growth, leading to tumor formation (Laplante et al., 2012; Lipton

and Sahin, 2014). Not surprisingly, therapeutic approaches have

largely focused on mTORC1 inhibitors, such as rapamycin and

rapamycin-derivatives. mTORC1 inhibitors, such as the rapamycin

derivative everolimus, have demonstrated efficacy in preventing

disease-associated tumor growth, including the growth of

subependymal giant cell astrocytomas in the brain (Franz et al.,

2013; Franz et al., 2015; Lechuga et al., 2019). However, attempts at

treating neurocognitive impairment in TS have beenmixed (Krueger

et al., 2013; Tran et al., 2015; French et al., 2016; Krueger et al., 2017;

Overwater et al., 2019). For example, everolimus fails to treat

intractable epilepsy in at least 50% of patients (French et al.,

2016; Overwater et al., 2019), and there is no clinically observed

benefit to TAND (Krueger et al., 2017). This failure of

mTORC1 inhibitors suggests tumor-independent mechanisms

contribute to neurocognitive impairment. Tumor-independent

mechanisms in TS pathology are supported by mouse models, in

which pathogenic TSC1 and TSC2 mutations give rise to neuron-

autonomous alterations in synapse development (Feliciano et al.,

2013/02; Feliciano et al., 2020; Bassetti et al., 2021; Bateup et al.,

2013). Understanding how TS-associated synaptic alterations

contribute to neurocognitive impairment and increased risk of

dementia within the TS patient population (Liu et al., 2020a) will

have implications for the larger autism spectrum, where synaptic

alterations are a common pathological feature (Penzes et al., 2011;

Phillips and Pozzo-Miller, 2014). Emerging evidence also suggests

that patients within autism spectrum disorders are at an increased

risk of early onset dementia (Vivanti et al., 2021). Thus, it is necessary

to understand how synaptic alterations within developing circuits

may later contribute to synapse loss, neurodegeneration and

cognitive decline in dementia. This review addresses shared

pathological features linking synaptic dysfunction across TS

patient lifespan with the hope of elucidating mechanisms that

drive age-related cognitive loss within the larger autism patient

spectrum.

Synapse formation in developing neural
circuits

Before we address how synapses are altered in TS, we will first

discuss how they typically form during development. Synapses

are the points of contact between neurons which facilitate

electrochemical communication, giving rise to complex

cognitive functions, such as learning, memory, and social

behavior (Lynch et al., 2007). In humans, synapse formation

begins around mid-fetal gestation (Tau and Peterson, 2010).

Synapses can either be inhibitory, suppressing action potential

formation, or excitatory, promoting action potential formation.

Inhibitory GABAergic synapse formation precedes the formation

of excitatory glutamatergic synapses (Ben-Ari, 2002; Ben-Ari,

2006). However, inhibitory synapses initially exhibit GABA-

induced excitation (Ben-Ari, 2002; Ben-Ari, 2006). This

GABA-elicited depolarization may serve neuroprotective roles

in the fetal development of neural circuitry since the excitatory

transmitter glutamate can be cytotoxic. However, since GABA is

derived from glutamate, this initial GABA-induced excitation

may allow GABA to promote neurite and synapse formation,

while also preventing glutamate-induced neurotoxicity in

vulnerable neural circuits of the developing brain (Ben-Ari,

2002; Ben-Ari, 2006). In immature neural circuits, expression

of the sodium-potassium-chloride importer, NKCC1, is high,

while expression of the potassium chloride exporter, KCC2, is

low (Ben-Ari, 2002; Sernagor et al., 2010; Côme et al., 2019). The

ratio of NKCC1 to KCC2 affects the reversal potential of GABA

receptors, resulting in Cl− efflux and depolarization when the

ratio of NKCC1:KCC2 is high (Liu et al., 2020b). However,

KCC2 expression beginning at 18–25 post-conception weeks

in subplate and cortical plate neurons enables GABA-induced

inhibition through chloride influx and hyperpolarization

characteristic of mature circuits (Sedmak et al., 2016).

Corresponding with the developmental shift from GABA-

induced excitation to inhibition, excitatory synapses containing

pre-synaptic vesicular glutamate transporters and post-synaptic

glutamate receptors, begin to form. These excitatory synapses

initially form along dendrites or on finger-like dendritic

projections, known as filopodia-like spine precursors, but after

birth, they are predominantly found on specialized dendritic

projections, known as spines (Wilson and Newell-Litwa, 2018).

In their mature state, these dendritic spines exhibit a polarized

mushroom-shaped structure with a bulbous head atop a thin

spine neck (Newell-Litwa et al., 2015). This morphology helps to

facilitate action potential propagation. The increased surface area
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of the head region increases the number of glutamate receptors

adjacent to the pre-synaptic axon terminal, thus increasing the

likelihood of action potential formation. Furthermore, the

physical properties of the thin spine neck alter resistance, with

length of the spine neck inversely correlating with action

potential formation (Araya et al., 2014; Tønnesen and Nägerl,

2016). Unlike inhibitory synapses which form along the dendritic

shaft, the unique morphology of the post-synaptic compartment

of excitatory synapses allows them to be readily visualized in

post-mortem tissue without the use of immunolabeling, which

often requires antigen retrieval in human post-mortem samples.

Furthermore, in transmission electron microscopy, the electron-

dense post-synaptic density of excitatory synapses is also readily

visible (Hahn et al., 2009/04). Because of these attributes, the

majority of post-mortem human brain studies of

neuropsychiatric disorders have focused on changes to

excitatory synapses. In humans, excitatory synapse formation

lasts until later juvenile stages (~5–6years). Throughout

adolescence, synaptic pruning refines developing neural

circuits, leading to relatively stable synapse densities

throughout adulthood, except for cases of age-related

cognitive decline and neurodegenerative diseases when

synapse numbers once more decline (Penzes et al., 2011).

Synaptic pathology in TS

In TSmousemodels, synapse formation is initially impaired, but

synaptic overgrowth is observed later in development (Tavazoie

et al., 2005; Phillips and Pozzo-Miller, 2014; Tang et al., 2014; Yasuda

et al., 2014). In TS mice, the initial defect in synapse formation

corresponds with immature filopodia-like spine precursors

(Tavazoie et al., 2005; Yasuda et al., 2014). However, later in

development, increased mTORC1 activity impairs

macroautophagy of excitatory synapses, resulting in synaptic

overgrowth (Tang et al., 2014). Consistent with these temporal

differences in synaptic pathology, mTORC1 inhibition fails to

rescue the emergence of TS-associated deficits in synapse

formation but restores synaptic pruning later in synapse

development (Tavazoie et al., 2005; Phillips and Pozzo-Miller,

2014; Tang et al., 2014; Yasuda et al., 2014). Defective

macroautophagy may also contribute to the observed increase in

excitatory synapses in the temporal lobe of autism patients aged

13–19 years (Tang et al., 2014). Notably, a similar increase is not

observed in autism patients of ages 3–9 years, suggesting that TSC-

mediated inhibition ofmTORC1 is necessary for synaptic pruning to

occur at later adolescent stages (Tang et al., 2014). Intriguingly, one

might suspect that this synaptic overgrowth might protect TS

individuals from age-related FTD (Olney et al., 2017; Liu et al.,

2020a). Similar to other neurodegenerative diseases, FTD exhibits

synapse loss within the temporal lobe (Clare et al., 2010). However, if

the TS-associated mTORC1 hyperactivation prevents synaptic

pruning, what are the mechanisms that drive synapse loss and

cognitive decline of TS patients later in life? Here, we will explore

two potential hypotheses by which developmental TS synaptic

pathology later disrupts neural circuits, resulting in their eventual

degradation (Figure 1). In the following section, we will first address

the mechanisms by which developmental synaptic pathology may

contribute to later neurodegeneration and then examine potential

therapeutic strategies.

Potential synaptic mechanisms
linking neurodevelopmental and
neurodegenerative pathology

Altered NKCC1:KCC2 in
neurodevelopmental and
neurodegenerative disorders

As previously mentioned, the ratio of NKCC1 to

KCC2 underlies GABA-mediated currents, with developing

neural circuits exhibiting higher NKCC1:KCC2 ratios

resulting in GABA-induced depolarization and excitation.

Intriguingly, TS patients exhibit increased expression of

NKCC1 and decreased expression of KCC2, perpetuating

GABA-induced excitation as observed in the immature

developing brain (Talos et al., 2012; Ruffolo et al., 2016). A

human neuronal model of TS recapitulates elevated SLC12A2

(NKCC1) and decreased SLC12A5 (KCC2) expression (Costa

et al., 2016). The elevated NKCC1:KCC2 ratio may in part be a

compensatory mechanism in response to TS-elevated

mTORC1 since NKCC1 suppresses mTORC1 activity

(Demian et al., 2019). Similar NKCC1:KCC2 alterations are

observed in other neurodevelopmental disorders, such as Rett

Syndrome (Tang et al., 2016). Neurodegenerative diseases,

such as Huntington’s Disease (HD) and possibly Alzheimer’s

Disease (AD), exhibit alterations in NKCC1 and

KCC2 expression that resemble immature neural circuits

(Tang, 2020; Dargaei et al., 2018; Yin et al., 2019/01; Lam

et al., 2022; Virtanen et al., 2021). Furthermore, in a human

induced pluripotent model of tauopathies, introducing

common FTDP-17 mutations (FTD with parkinsonism

linked with chromosome 17) reduced KCC2 expression in

differentiated neurons (García-León et al., 2018), further

suggesting that reduced KCC2 is a driver of

neurodegenerative disease pathology, particularly in

tauopathies, such as AD and FTD.

Altered NKCC1:KCC2 expression can impact both synaptic

formation and function, potentially contributing to disease-

associated hyperexcitability and synapse loss. Acute

pharmacological reductions in KCC2 are sufficient to drive

hyperexcitability and epileptiform activity through

depolarizing GABA currents (Sivakumaran et al., 2015).

However, KCC2 also functions independent of GABA at

excitatory glutamatergic synapses, where KCC2 is necessary
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for both dendritic spine maturation and clustering of AMPA

receptors (Li et al., 2007; Gauvain et al., 2011). At the dendritic

spines of excitatory synapses, reduced KCC2 expression results in

immature filopodia-like protrusions and impairs glutamatergic

synapse formation (Li et al., 2007), similar to synaptic

impairment initially observed in TS (Yasuda et al., 2014).

Later in development, TS synapse density increases due to

mTORC1-mediated inhibition of autophagy (Tang et al.,

2014). However, consistent with KCC2-mediated trafficking of

AMPARs, Tsc1 knockout hippocampal neurons have reduced

expression of AMPAR subunits, GluA1/R2 and GluA2/R2

(Bateup et al., 2013). GluA1/2 are specifically added to

synapses during periods of plasticity that underlie learning

and memory (Shi et al., 2001).

How might early alterations in NKCC1:KCC2 contribute to

synaptic alterations in neurodegenerative disorders? Due to the

NKCC1:KCC2 regulation of synapse formation and function,

GABA-mediated depolarization could contribute to the observed

increase in neuronal excitability in neurodegenerative disorders,

including FTD (Wishart et al., 2006; Clare et al., 2010; Beagle

et al., 2015; Cepeda et al., 2019; Subramanian et al., 2020; Targa

Dias Anastacio et al., 2022). Furthermore, GluA1 subunit

expression is decreased in neurodegenerative disorders,

including AD and FTD, consistent with learning and memory

deficits in these disorders (Benussi et al., 2019; Qu et al., 2021).

Thus developmental disruptions in synaptic plasticity and

activity could predispose individuals to early-onset dementia.

Further studies are needed to identify synapse-specific proteomic

changes in TS and corresponding synaptic changes in

FTD. Identification of synaptic alterations shared between TS

and FTD could be used for therapeutic intervention in early

development, thus preventing synaptic alterations that likely

contribute to later age-related cognitive decline.

Restoring KCC2 expression in TS patients may be

complicated as mTORC1 inhibition does not restore the

developmental shift in GABA-induced activity; rather,

rapamycin treatment decreased KCC2 expression,

increasing seizure susceptibility in a juvenile, but not adult,

rat model (Huang et al., 2012). Thus, while the rapamycin

derivative everolimus reduces patient tumor burden,

decreased KCC2 expression could contribute to the

persistence of epileptic seizures in ~50% of treated patients

(French et al., 2016; Overwater et al., 2019). Notably, however,

these studies were conducted in a chemically-induced seizure

model and not in a TS model, where mTORC1 is elevated.

Thus, further studies of the effect of mTORC1 inhibition on

KCC2 and epilepsy in TS are needed. Nonetheless, the

development of KCC2-enhancing drugs may hold promise

for restoring GABA-induced inhibition and AMPAR-

mediated synaptic plasticity in affected neurodevelopmental

and neurodegenerative disorders (Tang et al., 2019; Tang,

2020).

FIGURE 1
Synaptic Alterations Linking Neurodevelopmental and Neurodegenerative Pathology in TS. Under physiological conditions, TSC1/2 inhibit
mTORC1 activity through Rheb-GTPase. mTORC1 promotes synapse formation, but prevents macroautophagy-mediated synaptic pruning later in
development. Thus under pathological conditions in TS, mTORC1 activity is increased, resulting in defective synaptic pruning in adolescence.
Increased mTORC1 also promotes tau aggregation through acetylation and phosphorylation. Furthermore, impaired autophagy prevents the
clearance of tau aggregates, ultimately driving synapse loss. Additionally, TS patients exhibit alterations in NKCC1:KCC2 that resemble immature
neural circuits. These changes may in part be driven by tau accumulation. Increased NKCC1:KCC2 can alter GABA polarization at inhibitory synapses,
but also impairs AMPAR recruitment at excitatory synapses which is necessary for synaptic plasticity associatedwith learning andmemory. Thus, early
developmental synaptic alterations likely lead to the accumulation of neurotoxic tau aggregates, impair synaptic plasticity necessary for learning and
memory, and alter neuronal excitability, thus driving synapse loss in neurodegenerative disorders. Created with Biorender.com.
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mTORC1-driven tau post-translational
modifications drive pathological
accumulation

Since tauopathies, such as AD and FTD, exhibit synapse loss

and hyperexcitability, we will next explore how tau pathology

may contribute to both neurodevelopmental and

neurodegenerative diseases. Pathogenic tau impairs synaptic

transmission by binding to the synaptic vesicle protein,

synaptogyrin-3, ultimately resulting in the loss of excitatory

glutamatergic synapses (Largo-Barrientos et al., 2021). Notably,

TS is a tauopathy that exhibits similar pathology to FTD brains,

which do not contain amyloid plaques (Liu et al., 2022). Thus,

TS is a good model to assess the role of tau aggregation

independent of amyloid plaques. Accumulating evidence also

suggests that tau aggregation plays an underappreciated role in

other neurodevelopmental disorders (Rankovic and

Zweckstetter, 2019). Intriguingly, TSC1 haploinsufficiency

increases tau acetylation and accumulation (Alquezar et al.,

2021). This is likely through increased mTORC1 activity since

mTORC1 directly activates p300 acetyltransferase, which is

responsible for tau acetylation (Wan et al., 2017; Alquezar

et al., 2021). In addition to acetylation, mTORC1 also

regulates tau aggregation through phosphorylation (Caccamo

et al., 2013). Since elevated mTORC1 in TS prevents autophagy-

mediated clearance of pathogenic tau aggregates (Alquezar

et al., 2021), early post-translational tau modifications may

progressively lead to the accumulation of tau aggregates and

early-onset dementia and neurodegeneration, especially since

hyperphosphorylated tau promotes the self-assembly of tau

neurofibrillary tangles (Iqbal et al., 2010). Thus, increased

tau phosphorylation and acetylation leading to accumulation

are likely early biomarkers of neurodevelopmental disorders

that contribute to the increased patient susceptibility to

neurodegenerative disorders. As previously noted, increased

excitability in tauopathies may be driven in part by

decreased KCC2 expression as introduction of FTD-

associated tau mutations decrease KCC2 levels in a human

neuronal model (García-León et al., 2018). Furthermore, loss of

tau reduces network hyperexcitability in AD and seizure models

(Holth et al., 2013). However, this rescue is likely driven by

multiple factors since tau loss reduces hyperexcitability in the

absence of KCC2 function (Holth et al., 2013). Finally,

rapamycin reduces tau aggregate burden in mice and human

neurons by activating autophagy (Ozcelik et al., 2013; Silva

et al., 2020). Additionally, this reduction in tau burden reduces

astrogliosis (Ozcelik et al., 2013), which is associated with

neuroinflammation (Fleeman and Proctor, 2021), although

tau was recently shown to drive synapse loss through pre-

synaptic vesicle association independent of

neuroinflammation (Largo-Barrientos et al., 2021).

Intriguingly, preventing association of tau with the synaptic

vesicle protein, synaptogyrin-3, restores synaptic plasticity and

could potentially serve as an additional therapeutic strategy for

reducing tau neurotoxicity (Largo-Barrientos et al., 2021).

Concluding remarks

Accumulating evidence suggests that neurodevelopmental

disorders, such as TS, place the affected individual at an

increased susceptibility to neurodegeneration. In the present

piece, we explored potential synaptic mechanisms driving this

association (Figure 1). We first examined how persistent

alterations in potassium chloride channels may alter neuronal

excitability and synaptic plasticity in developing and degenerating

networks. Next, we discussed how early mTORC1-driven post-

translational modifications to tau promote accumulation and

pathological aggregation leading to synapse loss. The

accumulated evidence links early impairment in synaptic

plasticity with later synapse loss in neurodegeneration, while also

highlighting the need for future studies to identify developmental

synaptic alterations that drive age-related synapse loss and

neurodegeneration. Insights from future studies of TS and FTD

will likely have ramifications for other neurodevelopmental and

neurodegenerative disorders, where increased mTORC1 signaling is

observed (Negraes et al., 2021).
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