AUTHOR=Jie Xiaodie , Wu Honglin , Yang Miao , He Ming , Zhao Guangqing , Ling Shanshan , Huang Yan , Yue Bisong , Yang Nan , Zhang Xiuyue
TITLE=Whole genome bisulfite sequencing reveals DNA methylation roles in the adaptive response of wildness training giant pandas to wild environment
JOURNAL=Frontiers in Genetics
VOLUME=13
YEAR=2022
URL=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2022.995700
DOI=10.3389/fgene.2022.995700
ISSN=1664-8021
ABSTRACT=
DNA methylation modification can regulate gene expression without changing the genome sequence, which helps organisms to rapidly adapt to new environments. However, few studies have been reported in non-model mammals. Giant panda (Ailuropoda melanoleuca) is a flagship species for global biodiversity conservation. Wildness and reintroduction of giant pandas are the important content of giant pandas’ protection. However, it is unclear how wildness training affects the epigenetics of giant pandas, and we lack the means to assess the adaptive capacity of wildness training giant pandas. We comparatively analyzed genome-level methylation differences in captive giant pandas with and without wildness training to determine whether methylation modification played a role in the adaptive response of wildness training pandas. The whole genome DNA methylation sequencing results showed that genomic cytosine methylation ratio of all samples was 5.35%–5.49%, and the methylation ratio of the CpG site was the highest. Differential methylation analysis identified 544 differentially methylated genes (DMGs). The results of KEGG pathway enrichment of DMGs showed that VAV3, PLCG2, TEC and PTPRC participated in multiple immune-related pathways, and may participate in the immune response of wildness training giant pandas by regulating adaptive immune cells. A large number of DMGs enriched in GO terms may also be related to the regulation of immune activation during wildness training of giant pandas. Promoter differentially methylation analysis identified 1,199 genes with differential methylation at promoter regions. Genes with low methylation level at promoter regions and high expression such as, CCL5, P2Y13, GZMA, ANP32A, VWF, MYOZ1, NME7, MRPS31 and TPM1 were important in environmental adaptation for wildness training giant pandas. The methylation and expression patterns of these genes indicated that wildness training giant pandas have strong immunity, blood coagulation, athletic abilities and disease resistance. The adaptive response of giant pandas undergoing wildness training may be regulated by their negatively related promoter methylation. We are the first to describe the DNA methylation profile of giant panda blood tissue and our results indicated methylation modification is involved in the adaptation of captive giant pandas when undergoing wildness training. Our study also provided potential monitoring indicators for the successful reintroduction of valuable and threatened animals to the wild.