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Background:Clear cell renal cell carcinoma (ccRCC) is amalignancywith a high

incidence rate and poor prognosis worldwide. Copper ionophore–induced

death (CID) plays an important role in cancer progression.

Methods:One training and three validation datasets were acquired from TCGA,

GEO and ArrayExpress. K-means clustering was conducted to identify the CID

subtypes. The ESTIMATE and CIBERSORT algorithms were employed to

illustrate the immune microenvironment of ccRCC. LASSO Cox regression

was applied to construct the CID feature-based prognostic model. The

immunotherapy cohort was acquired from the literature to explore the

potential risk scores for predicting immunotherapy responsiveness.

Results: Two CID-related cancer subtypes of ccRCC were identified that

performed different immune microenvironment characteristics and prognosis.

Based on the identified subtypes, we analyzed the biological heterogeneity and

constructed a gene prognostic model. The prognostic model performed well in

one training dataset, three validation datasets, and different clinical pathological

groups. The prognostic model has a good potential for predicting cancer immune

features and immunotherapy responsiveness.

Conclusion: CID plays an important role in the tumor microenvironment

progression of ccRCC. The robust gene prognostic model developed can help

predict cancer prognosis, immune features, and immunotherapy responsiveness.
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Introduction

Renal cell carcinoma (RCC) is the major prevalent urinary

system malignancy, with more than 430000 cases diagnosed

worldwide in 2020 (Sung et al., 2021). Among RCC subtypes,

clear cell renal cell carcinoma (ccRCC) is the most common and

lethal form (Jonasch et al., 2014). The current progression of

comprehensive therapy strategies for ccRCC, such as tyrosine

kinases inhibitors, mTOR inhibitors and immune checkpoint

blockades, has significantly improved the prognosis of patients

(Motzer et al., 2014, 2015; Choueiri et al., 2017). However, a non-

negligible rate of patients remains non-responsive to cancer

therapy and with severe side effects (Kennedy and Salama,

2020; Braun et al., 2021). Furthermore, approximately 30% of

patients with ccRCC are diagnosed with metastatic cancer, for

which effective therapy strategies are limited (Patard et al., 2011).

Consequently, ccRCC is a major global public health concern.

Therefore, given the high incidence rate and poor prognosis of

ccRCC, developing a robust prognostic model to assist patient

prognosis evaluation and reveal the underlying heterogeneity

mechanism of ccRCC is urgently in demand.

Redox-active copper plays an essential role in maintaining cell

homeostasis and takes part in various biological processes,

including energy metabolism, biosynthesis, and antioxidant

defense (Tsang et al., 2021). Though copper is indispensable for

the normal physiological activity of cells, it can be cytotoxic. In

2022, Tsvetkov et al. (2022) revealed an unexpected cell death

pattern triggered by copper in a tricarboxylic acid (TCA) cycle

metabolism-related mechanism-copper ionophore–induced death

(CID). Meanwhile, copper-related drugs, such as copper chelation,

have great potential to be developed as a clinic anti-cancer therapy

(Yin et al., 2016; Lopez et al., 2019). ccRCC is a cancer type

characterized by significant TCA metabolic heterogeneity

(Wettersten et al., 2017). As CID may contribute to the

heterogeneous ccRCC formation, CID status may be developed

as an indicator of the prognosis of patients with ccRCC.

This study conducted an integrated analysis to illustrate the

multi-omics features of CID-related genes in ccRCC and

identified two CID subtypes of ccRCC. Then, we analyzed the

microenvironment heterogeneity across the two CID subtypes.

Based on the two identified CID subtypes, we developed a

prognostic model to predict patient prognosis, immune

characteristics, and immunotherapy responsiveness using a

machine-learning method. Our research presented an

overview of the regulatory function of CID during ccRCC

progression and developed a robust CID-based model to help

evaluate the prognosis and immunotherapy suitability during

clinical practice.

Methods and materials

Data collection

The genomic data and corresponding clinical

information on kidney clear cell carcinoma (KIRC) of The

Cancer Genome Atlas (TCGA) were downloaded from the

University of California Santa Cruz (UCSC) Xena online tool

(https://xenabrowser.net/). LOWESS normalized gene

expression profile and quantile normalized, and the

log2 transformed gene expression profile of KIRC

(GSE29609 and GSE22541) with corresponding clinical

information were downloaded from Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo). The

log2 quantile normalized expression data of 101 KIRC

samples were downloaded from ArrayExpress (https://

www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1980/), and

clinical information was obtained from Sato et al. (Sato

et al., 2013). The expression and clinical data of

IMvigor210 trial were accessed with R package

“IMvigor210CoreBiologies”. IMvigor210 was a single-arm

phase Ⅱ study investigating the anti-PD-L1 antibody agent

atezolizumab in patients with metastatic urothelial cancer

(mUCC) (Mariathasan et al., 2018). The KIRC samples of

TCGA was used as training dataset due to large sample size

for statistical accuracy, and complete gene expression and

clinical information (eg. stage, grade, survival time). For

validation, we chosen the gene expression datasets of

KIRC samples with survival time and survival status or

disease-free survival time. The samples in

IMvigor210 dataset has responsive information for

immunotherapy.

Variation and expression correlation

Genes involved in copper ionophore–induced death (CID)

were obtained from a study by Tsvetkov et al. (2022), including

FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS,

and CDKN2A. Somatic mutation, copy number variation (CNV)

alterations, and differential expression between tumor samples

and normal samples of CID genes were demonstrated. The

prognostic value of CID genes was analyzed with a

univariable Cox proportional hazards regression model

(Supplementary Table S1). Co-expression status of CID genes

was analyzed by Pearson correlation analysis (Supplementary

Table S2), and the correlation network was visualized using

Cytoscape software.
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Identification of CID subtypes

K-means clustering is an unsupervised learning algorithm

that groups data based on each point euclidean distance to a

central point called centroid. K-means clustering was performed

to identify two CID subtypes based on CID gene expression by R

package “pheatmap”. Finally, a total of 197 samples were grouped

into “Subtype A” and 329 samples were grouped into “Subtype B”

Principle component analysis (PCA) was applied to explore the

difference between Subtypes A and B based on CID gene

expression. Kaplan-Meier survival analysis and log-rank test

were used to analyze the difference in overall survival (OS)

among the two subtypes.

Analysis of tumor immune infiltration
microenvironment

The ESTIMATE algorithm was applied to evaluate the

immune and stromal scores of each KIRC sample in TCGA

using R package “estimate.” The proportion of infiltration of

22 immune cells for TCGA KIRC samples was inferred with

CIBERSORT algorithm using the web-based analytical tool

(https://cibersort.stanford.edu/) (Newman et al., 2015).

CIBERSORT estimates the abundances of specific cell types in

a mixed cell population using a gene expression-based approach.

We focused on mRNA expression of five immune checkpoints,

including PD-1, PD-L1, CTLA4, CD47 and BTLA. The immune

cytolytic activity (CYT) was calculated as the mean of GZMA and

PRF1 expression according to Rooney et al. (Rooney et al., 2015).

A one-sided Wilcoxon rank-sum test was used to analyze the

differences between subtypes.

Differentially expressed genes between
subtypes and functional analysis

A total of 1448 DEGs with |log2FC| > 1 and FDR <0.001 were
identified using R package “edgeR” between subtypes (Robinson

et al., 2010). Pathway and process enrichment analysis for

344 DEGs with |log2FC| > 2 and FDR <0.001 was performed

using the Metascape web-based tool (https://metascape.org/gp/

index.html), including many ontology sources such as KEGG

Pathway, GO Biological Processes, and Reactome Gene Sets and

Canonical Pathways (Supplementary Table S3) (Zhou et al.,

2019).

Construction of the prognostic model

A univariable Cox proportional hazards regression model

was performed to identify prognostic DEGs. A total of 80 DEGs

with p < 0.001 were selected. The least absolute shrinkage and

selection operator (LASSO) method was used for significant

prognostic DEGs selection in a Cox regression model by

fitting a generalised linear model via penalised maximum

likelihood. We analysed the lambda value (λ) using the

10 fold cross-validation, between λmin that gives minimum

mean cross-validated error or λ1se, that gives a model such

that standard error (SE) is within one standard error of the

minimum. The process was conducted using R package “glmnet”

(Engebretsen and Bohlin, 2019). Finally, a risk score formula was

calculated by considering the expression of 17 optimized genes

and correlation estimated multivariate Cox regression

coefficients using R package “survival” (Supplementary Table

S4). The risk score was calculated as follows:

Risk score � Σ(Expi*coef i) (1)

Survival analysis

Patients were classified according to the median of risk score.

The log-rank test was used to assess the survival time difference

between high-risk and risk score patients using R package

“survival.” Additionally, a stratified analysis was performed to

determine whether the risk score retained its predictive ability in

different subgroups according to gender, age, T stage, N stage, M

stage, tumor stage, and tumor grade. Kaplan-Meier plots were

used to present the results. Chi-square tests explored the

relationships between the risk score and clinical characteristics

(Table 1).

Statistical analysis

A one-sided Wilcoxon rank-sum test was used to test the

discrepancy between CID subtypes or high and low-risk groups.

Patients were divided into high risk and low risk groups

according to the median of risk score. All statistical analyses

were performed using R version 4.1.2. p < 0.05 was considered

statistically significant.

Results

Multi-omics level alterations of CID genes
in KIRC

The analytical process in this study is illustrated in

Supplementary Figure S1. We first explored the landscape of

variation in CID genes in genome and transcriptome from

TCGA KIRC samples. The incidence of somatic mutations of

CID genes is shown in Figure 1A. Among them, DLD had the

highest mutation frequency (27%), followed by LIAS, MTF1,
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GLS, PDHA1, and PDHB. The locations of CNV alterations in

CID genes on their respective chromosomes and the expression

of CID genes are shown in Figure 1B. PDHB showed the highest

frequency of CNV deletion, followed by CDKN2A, MTF1, and

GLS. GLS showed the highest frequency of CNV amplification,

followed by DLD and LIAS. In addition, we explored the

expression levels of CID genes between tumor and normal

tissues (Figure 1C). In total, 8 (80%) CID genes showed

differential expression, CDKN2A showed significant

upregulation, and seven CID genes showed significant

downregulation in the tumor samples (Figure 1D, p < 0.05,

one-sided Wilcoxon rank-sum test).

Tumor classification based on CID genes

We explored the prognostic value of CID genes with a

univariable Cox proportional hazards regression model. All

CID genes were predicted as favorable factors except

CDKN2A (Figure 2A). To explore expression correlation

among CID genes, we constructed a co-expression network;

the thickness of edges means a significance level (Figure 2A).

The network indicated a close connection among CID genes.

To analyze the heterogeneity of KIRC, K-means clustering

algorithm was used to identify two CID subtypes based on the

expression of CID genes (Figure 2B). The PCA revealed that

TCGA KIRC samples had distinctive expression patterns of CID

genes between two subtypes (Figure 2C). Next, we explored the

difference in prognosis between two subtypes; individuals in

Subtype A had significantly worse OS when compared with those

in Subtype B (Figure 2D, p = 2.8 E−07, log-rank test).

Characterization of the immune
microenvironment between subtypes

The tumor purity distinctions between subtypes, the stromal

score, immune score, and ESTIMATE score in Subtype A were

TABLE 1 Baseline characteristics of patients in TCGA KIRC cohort

Characteristics Whole cohort High PSR_score Low PSR_score p

TCGA cohort (n = 526) (n = 263) (n = 263)

Gender 0.044

Male 342(65.02%) 182(69.2%) 160(60.84%)

Female 184(34.98%) 81(30.8%) 103(39.16%)

Age 0.087

<65 years 329(62.55%) 155(58.94%) 174(66.16%)

>=65 years 197(37.45%) 108(41.06%) 89(33.84%)

T-stage 9.1 e-11

T1 269(51.14%) 95(36.12%) 174(66.16%)

T2 68(12.93%) 36(13.69%) 32(12.17%)

T3 178(33.84%) 121(46.01%) 57(21.67%)

T4 11(2.09%) 11(4.18%) 0(0%)

N-stage 0.0023

N0 239(45.44%) 115(43.73%) 124(47.15%)

N1 16(3.04%) 14(5.32%) 2(0.76%)

M-Stage 2.0 e-10

M0 436(82.89%) 191(72.62%) 245(93.16%)

M1 80(15.21%) 66(25.1%) 14(5.32%)

Stage 3.1 e-06

I 263(50%) 91(34.6%) 172(65.4%)

II 56(10.65%) 28(10.65%) 28(10.65%)

III 122(23.19%) 75(28.52%) 47(17.87%)

IV 82(15.59%) 68(25.86%) 14(5.32%)

Grade 1.2 e-05

G1 14(2.66%) 1(0.38%) 13(4.94%)

G2 224(42.59%) 81(30.8%) 143(54.37%)

G3 205(38.97%) 112(42.59%) 93(35.36%)

G4 75(14.26%) 67(25.48%) 8(3.04%)
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significantly higher than those in Subtype B (Figure 3A, p < 0.05,

one-sided Wilcoxon rank-sum test). Then, we analyzed the

differential expression of five immune checkpoints. PD-L1

expression was significantly higher in subtype A compared

with that of Subtype B, and the expression of CTLA4 and

PD-1 were significantly lower in Subtype A than those in

Subtype B (Figure 3B, p < 0.05). We also evaluated the

distinction of immune cells between two subtypes. According

to CIBERSORT algorithm, infiltration of “Macrophages M0,”

“NK cells activated,” “Plasma cells,” “T cells CD,” “T cells

follicular helper,” and “T cells regulatory (Tregs)” were higher

in the Subtype A than those in Subtype B (Figure 3C, p < 0.05).

Meanwhile, “Dendritic cells resting,” “Eosinophils,”

“Macrophages M1,” “Macrophages M2,” “Mast cells resting,”

“Monocytes,” and “T cells CD4 memory resting” had

significantly lower infiltration in Subtype A compared with

Subtype B (Figure 3D, p < 0.05). In addition, we evaluated

CYT for KIRC samples, and CYT score in Subtype A was

higher than that in Subtype B (Figure 3E, p < 0.05).

Identification of DEGs and construction of
the prognostic model

To explore the potential biological behavior of CID

subtypes, we identified 1448 DEGs between Subtypes A and

FIGURE 1
Genetic and transcriptional alterations of CID genes in KIRC. (A) Mutation frequencies of CID genes in KIRC patients of TCGA cohort. (B)
Locations of CNV alterations in CID genes on 23 chromosomes and distribution of expression. (C) Frequencies of CNV amplification and deletion of
CID genes in TCGA KIRC cohorts. (D) Differential expression of CID genes between tumor and normal samples.
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B (Figure 4A, |log2FC| > 1, FDR <0.001). Pathway and process

enrichment analysis for 344 DEGs with |log2FC| > 2 and

FDR <0.001 was performed using Metascape tool. DEGs

were significantly enriched in “NABA MATRISOME

ASSOCIATED,” “acute-phase response,” “Complement and

coagulation cascades,” “Transport of small molecules,” and

“steroid metabolic process” (Figures 4B,C).

A univariable Cox proportional hazards regression model

was performed to identify 80 prognostic DEGs with p < 0.001.

LASSO method was used for variable selection in a Cox

regression model to determine significant prognostic DEGs.

One SE above the minimum criteria was chosen, resulting in a

model with 17 prognostic genes (Figures 4D,E). Then, based

on the expression of the 17 genes, we established a

multivariate Cox proportional hazard model (Figure 4F,

Supplementary Table S4).

Validation of the prognostic model

According to the formula, the risk score of each patient

with KIRC was calculated. Patients were classified into the

high- and low-risk score groups using the median as the cutoff

value (Figure 5A). The distribution plot of the risk scores

revealed that survival time decreased while death rates

increased with an increase in risk scores in TCGA cohort

(Figure 5B). Figure 5C displays the expression of 17 genes in

the prognostic model between high and low-risk groups in

FIGURE 2
Identification of CID subtypes. (A) Co-expression among CID genes in TCGA KIRC cohorts. The line thickness indicate the strength of the
correlation. The color of nodes mean prognostic factors of CID genes. (B) Two heterogeneous subtypes (subtype A and subtype B) were identified
according to unsupervised K-means clustering. (C) PCA analysis showing a remarkable difference in expression of CID genes between subtypes. (D)
Overall survival analysis between subtype A and subtype B.
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TCGA (Figure 5C). Furthermore, patients in the high-risk

group had a significantly poorer OS (Figure 5D, p = 1.0 E−15,

log-rank test). According to the area under the curve (AUC) of

the receiver operating characteristic (ROC) curve, the risk

score was able to accurately predict mortality (Figure 5E,

AUC = 0.743). Mutations in the tumor suppressor

TP53 are associated with various human cancers;

consequently, we validated the prognosis power of risk

score among TP53 mutation status in TCGA cohort.

Patients in the high-risk group had a worse prognosis than

patients with TP53 mutation and wild type (Supplementary

Figure S2, p = 0.092, p = 2.5E-14).

Next, we validated the prognosis power of the risk score in

independent datasets. In GSE22541 cohort, the disease-free

survival (DFS) time of high-risk patients was lower than that

of low-risk patients (Figure 5F, p = 0.055, log-rank test).

Additionally, survival analysis was carried out in two KIRC

cohorts (GSE29606 and E-MTAB-1980), and high-risk scores

indicated poor prognosis (Figures 5G,H, p = 0.055, p = 0.047, log-

rank test), while the number of surviving patients in the low-risk

group were more than those in the high-risk group

(Supplementary Figure S3).

In addition, we explored the power of the risk score to predict

the outcome of patients within clinical subgroups. The survival

analysis revealed that high-risk score patients had a significantly

poorer OS compared with that of the low-risk score patients in

females, males, age (≥65), age (<65), T1-stage, T2-stage, T3-
stage, N0-stage, M0-stage, M1-stage, Stage I, Stage III, Stage IV,

Grade 2, Grade 3 or Grade 4 subgroups (Figure 6, p < 0.05, log-

rank test).

FIGURE 3
Distribution of TME between subtype A and subtype B. (A) Distribution of ESTIMATE score in two subtypes. (B) Expression levels of five immune
checkpoints between two subtypes. (C,D) Abundance of infiltrating immune cell types between two subtypes. (E) Distribution of immune CYT score
between two subtypes.
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Correlation of risk scores and
immunotherapy

We further investigated the association between risk

scores and immune infiltration. The stromal, immune, and

ESTIMATE scores of high-risk score samples were higher

than those in low-risk score samples (Figure 7A). The Pearson

correlation analysis was used to assess the correlation between

risk scores and the abundance of immune cells. Infiltration of

“T cells regulatory (Tregs),” “T cells CD4 memory activated,”

“Plasma cells,” “Macrophages M0,” “Neutrophils,” “T cells

CD8,” and “T cells follicular helper” were significantly

positively correlated with-risk scores (Figures 7B–H, p <
0.05, Pearson correlation analysis). We also assessed the

relationship between the expression of five immune

checkpoints and the risk score. PD-1, CTLA4, and BTLA

expressions were significantly higher in high-risk samples

compared with low-risk samples in TCGA KIRC cohort,

FIGURE 4
Identification of DEGs between subtypes and construction of the prognosticmodel. (A) Volcano plot showing the differentially upregulated (red
points) and downregulated genes (blue points). (B) Pathway and process enrichment analysis has been carried out for 344 DEGs that identified
between subtypes. The graphical representation showed top 20 enrichments with p <0.01. (C) Enrichment termswith a similarity >0.3 are connected
by edges. (D) LASSO coefficient profiles of 80 prognostic DEGs. (E) Cross-validation for tuning parameter selection in the LASSO model. (F)
Forest plot of the multivariate regression of 17-genes in prognostic model.
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and PD-L1 expression was significantly lower in high-risk

samples (Figure 7I, p < 0.05).

To further explore if the risk score can predict patients’

response to immunotherapy, we evaluated the risk score

differences among patients in immunotherapy response

subgroups. The risk score of patients with progressive disease

(PD) or stable disease (SD) was significantly higher compared

with patients with partial response (PR) (Figures 8A,B, p = 0.032,

p = 0.042). Moreover, the risk score of non-responsive (PD and

SD) patients were significantly higher than that of responsive (PR

and complete response [CR]) patients (Figure 8C, p < 0.011). The

numbers of patients in the high-risk group with PD and SD were

more than those in the low-risk group; PR and CR patients were

more abundant in the low-risk group (Figure 8D, p = 0.073,

hypergeometric test).

Discussion

In this study, we analyzed the role of CID in ccRCC

progression, microenvironment alteration, and clinical

prognosis. When analyzing the somatic mutation status of

CID-related genes in ccRCC, most of them have a high

mutation frequency. Meanwhile, the difference in CID-

related gene expression is significant in cancer and normal

tissues. These results further implied the potential of CID to be

developed as a cancer therapy target and prognosis indicator

(Ge et al., 2022; Oliveri, 2022).

Accordingly, we then identified ccRCC subtypes based on

CID-related genes with a K-means clustering algorithm.

Copper and CID plays the essential role in the mudutlation

of cancer immune microenvironment. For example, recent

FIGURE 5
Validation of the prognostic model. (A) Ranked dot shows the distribution of risk score. (B) Scatter plots shows the distribution of patient survival
status. (C) Heatmap shows the expression of 17-genes of prognostic model. (D) Assessment of the difference in OS between high risk and low risk
samples in TCGA cohort by log-rank test. (E) ROC curves to predict the sensitivity and specificity of 3-years survival according to the risk score. (F)
Distribution of DFS between high risk and low risk groups in GSE22541 cohort. (G,H) Kaplan-Meier curves show the independent relevance
between overall survival time and risk score in GSE29609 and E-MTAB-1980 cohorts.
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research demonstrated that major copper influx transporter

copper transporter 1 is correlated with PD-L1 expression

across many cancer types (Voli et al., 2020). Meanwhile,

copper chelators play the role in the inhibition of

STAT3 and EGFR’s phosphorylation and promoted the

degradation of PD-L1 (Voli et al., 2020). Further, copper in

also correlated with the cancer’s immunogenic cell death in

breast cancer (Kaur et al., 2020). Significant immune

heterogeneity across the two ccRCC subtypes was observed.

In Subtype B, ccRCC has the highest ESTIMATE score,

infiltration level of CD8+ T cell and NK cell, and immune

cytolytic activity. This result indicated that Subtype B may

have higher immune activity. In general, the high immune

activity of cancer implies a better prognosis (Chen and

Mellman, 2017). However, the immune activity of ccRCC

subtype B has a worse prognosis than subtype A. Xu et al.

(2019) also indicated that high immune activity relates to poor

prognosis. Nakano et al. (2001) also found that a high

infiltration level of CD8+ T cells correlates with a poor

RCC prognosis. Clonal variation of immune cells of the

microenvironment may contribute to this unique

characteristic of ccRCC (Borcherding et al., 2021).

Next, we acquired DEGs between Subtypes A and B and

conducted the enrichment analysis to reveal the role of CID

in ccRCC. According to the results, DEGs concentrated on

the immune and metabolic-related processes. Cell toxicity

mediated by copper was correlated with glucose metabolism

activity (Li et al., 2022). Glucose metabolism alterations of

microenvironment components, including cancer cells and

immune cells, leading to the formation of different tumor

FIGURE 6
Stratification analysis of the risk score in clinical subgroups. (A)–(P) Survival analysis for high risk score and low risk score patients in sex, age,
T-stage, N-stage, M-stage, tumor stage, and tumor grade subgroups.
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subtypes (Li and Zhang, 2016; Terrén et al., 2019; Zhang

et al., 2021). Our research demonstrated that CID may

contribute to the immune microenvironment

heterogeneity in ccRCC. Consequently, further analysis

concentrating on the detailed interaction of CID-mediated

metabolism alteration and TME may illustrate the regulatory

function of CID in cancer.

Based on the obtained DEGs, we constructed a model to

predict the prognosis of patients with ccRCC. Our result

demonstrated that the risk score can greatly predict patient

prognosis in training and validation datasets. Furthermore,

the risk score is effective in different stages (i.e., T, N, and M)

and grades. Accordingly, our risk score offers great clinical

applicability.

FIGURE 7
Correlation of risk score and immune cells infiltration. (A) Distribution of ESTIMATE score in high risk and low risk groups. (B)–(H) Positive
correlation between risk score and immune cells. (H) Distribution of ESTIMATE score in high risk and low risk groups. (I) Expression of five immune
checkpoints in high risk and low risk groups.
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Immunotherapy is widely applied in treating different

types of solid cancer (Helmy et al., 2013; Robert et al.,

2015; Larkin et al., 2019). Therefore, we further explored

the potential of our risk score for predicting the immune

features and therapy responsiveness of cancer. High-risk

scores predict the lower expression level of PD-L1.

Meanwhile, in the anti-PD-L1 cohort, high-risk scores are

correlated with a low therapy responsiveness rate.

Consequently, anti-PD-L1 therapy may be a suitable choice

for low-risk score patients.

It is worth noting the limitations of the research. First,

large-scale multi-omics immunotherapy data should be

employed to more comprehensively evaluate the potential of

the risk score for predicting immunotherapy responsiveness.

Due to the lack of high-quality validated data, the enrolled

immunotherapy samples are limited. Second, combining the

transcriptome analysis of the clinical samples and follow-up

data will further test the robustness of the risk score. Third, in

vivo and in vitro cell-line and animal models may help explore

the potential underlying mechanism of CID in cancer. These

shortcomings will be overcome with the rapid progression of

big data and our further in-depth research.

In summary, our research revealed the role of CID in

ccRCC, identified ccRCC subtypes based on CID features

and constructed a robust gene prognostic model to predict

patient prognosis. Our research laid a foundation for CID-

related analysis and presented a prognostic model which

can be potentially applied in the clinical treatment of

ccRCC.
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