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Introduction

The Research Topic “Population genomic architecture: Conserved polymorphic

sequences (CPSs), not linkage disequilibrium” addresses the discovery of distinct

genomic regions or blocks which are highly polymorphic and therefore different

between random individuals (Figure 1). Importantly, these differences are not due to

recent mutation but have been conserved over hundreds of generations. So as avoid

some of the confusion in the literature, we use mutation to describe an observed

change in the sequence whereas polymorphism refers to a sequence difference which

is inherited faithfully (Dawkins et al., 2013). This distinction is important but often

overlooked. Polymorphisms which are “fixed” or “frozen” must somehow be

protected from background mutation and recombination within the CPS. Just

how this might happen has been of great interest and subject to much debate

over several decades. For reviews see Steele (2014), Dawkins (2015), and Dawkins

(2022).

Conserved polymorphic sequences

The initial discoveries of Conserved Extended Haplotypes are presented in the chapter

by Alper (2021). By the 1970s it was known that there could be extensive HLA haplotypes

containing specific alleles of HLA-A and HLA-B which are nearly 1 Mb apart but

inherited together, without recombination. It was soon appreciated that such subjects
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with HLA-A1 and HLA-B8 frequently had DR3 bringing the

length of the A1, B8, DR3 or 8.1 haplotype to almost 2 Mb

containing multiple genes, many of them duplicated. At the time

there was much speculation as to how such “linkage

disequilibrium” could be explained. Was there some form of

cis interaction between the gene products? However, all became

clear when the Alper group showed that individuals with 8.1 also

have a specific complotype (SC01), unrelated to HLA, midway

between HLA B and DR (Alper et al., 1982).

It was only a matter of time before methods, such as pulsed

field electrophoresis (Tokunaga et al., 1989), allowed the direct

demonstration of such an extensive DNA sequence. It transpired

that there are many other ancestral haplotypes, such as 57.1 (A1,

B57, DR3) whichmust have been conserved since before the Out-

of-Africa migration i.e., during thousands of generations and

meioses (Kay et al., 1988). There were other interesting examples

such as 7.1 (A3, B7, DR15) which contrasted with 8.1 in that it is

protective with respect to Insulin Dependent (or Juvenile)

Diabetes Mellitus (Degli-Esposti et al., 1992). How could this

be explained?

By the 1990s, it was obvious that these ancestral haplotypes

did more functionally than simply carrying HLA class I and II

alleles. For example, 8.1 affects the concentrations of TNF and

IgA in the plasma and the development of hyperplasia within the

thymus (French and Dawkins, 1990; Vandiedonck et al., 2004).

So, there are still many fascinating questions to be resolved. How

do these conserved sequences do what they do?

Some of these questions are being addressed by Okano et al.

(2020), Kulski et al. (2021a), Kulski et al. (2021b), Cun et al.

(2021), and Tay et al. (2021). These groups are discovering new

mechanisms of gene regulation embedded within the non-coding

regions of Ancestral Haplotypes. As proposed by Kulski,

Retroviral like elements may have several roles. Firstly, they

can generate sequences involved in cis and trans interactions.

Secondly, they can introduce conserved polymorphism

associated with duplication.

Mechanisms

Fortunately, we now have the benefit of Miro Radman’s

provocative proposal based on his pioneering work on the actual

mechanisms involved in mutation and recombination (Radman,

2022). Perhaps polymorphism can be self-sustaining. “The

mismatching of DNA sequences and the recognition of

mismatched base pairs by mismatch repair (MMR) proteins

are the determinants of .... conservation of highly polymorphic

genetic motifs.” The sequence differences and the activity of the

MMR prevent recombination which would otherwise fragment

the CPS.

How much sequence difference is required in order to

conserve polymorphism by preventing recombination?

Radman concludes that a minimal figure is of the order of

1 difference for every 30 base pairs in bacteria and 1/200 bp

in lower eukaryotes. In mammals, the figure may be 1/

400 bp. Interestingly, earlier comparisons of MHC ancestral

haplotypes revealed sequence diversity sufficient to prevent

recombination according to Radman’s predictions (Gaudieri

et al., 1997, 1999; Longman-Jacobsen et al., 2003; Lloyd et al.,

2016). The careful study by Smith et al. (2006) was also consistent

with the Radman number for mammals. In a landmark study

(Traherne et al., 2006), cite 3.4 to 3.6 differences per 1,000 bp,

FIGURE 1
CPSs are inherited unchanged from distant ancestors. Blocks
are conserved because sequence differences prevent
recombination. Some reshuffling is possible when a homozygous
block is present. An example is highlighted in yellow where
the 123 haplotype has recombined with the 222 haplotype
because it is homozygous at the second block thereby creating a
223 haplotype.
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suggesting that there may be a buffer or safety zone between 1/

300 and 1/400. Further, it appears that a linear increase in

sequence divergence leads to exponential decrease in

homologous recombination. The figure illustrates how

Radman’s predictions result in conservation of polymorphic

haplotypes. Blocks are conserved because sequence differences

prevent recombination; these haplotypes are inherited

unchanged from distant ancestors. However, as shown in the

figure, some reshuffling is possible when a homozygous block is

present, with the implication that frequent CPS can diverge.

No doubt there are additional factors and species differences,

but it does appear reasonable to conclude that a certain amount

of polymorphism, ipso facto, results in conservation. Critical,

however, is that this safety zone for conservation must be

retained over generations.

Implications

The implications must be profound and extend to other

genomic regions in Humans and, presumably, other vertebrates.

We see these CPSs as the keys to an understanding of the fate of

different individuals within the species. They can provide a type

of memory for recurring challenges. They allow a concept which

complements survival of the fittest with survival of the

experienced.

Thus, the availability of tried and tested CPS permits some

optimism, at least with respect to recurring events whether

infectious or environmental and, also, with respect to changes

in food and behavior. There is less cause for optimism in the case

of new man-made challenges, such as population growth and

biological warfare, as just two examples.

The further implications of CPSs deserve attention andmight

include, inter alia:

(a) Heterozygous advantage.

(b) Shuffling within the monomorphic sequence (see Figure 1)

so as to increase diversity.

(c) Caveats on the use and interpretation of studies of

homozygous cell lines.

(d) Strategies for threatened populations.

(e) Selection of preferred traits in livestock.

(f) Self vs. non-self recognition and autoimmunity.

Conclusion

Conservation of Polymorphic Sequences associated with

gene duplication may achieve the Radman number and

thereafter provide stability of inheritance of multigenic traits.
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