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Background: Transarterial chemoembolization (TACE) is the standard treatment
option for intermediate-stage hepatocellular carcinoma (HCC), while response
varies among patients. This study aimed to identify novel immune-related genes
(IRGs) and establish a prediction model for TACE refractoriness in HCC patients
based on machine learning methods.

Methods:Gene expression data were downloaded fromGSE104580 dataset of Gene
Expression Omnibus (GEO) database, differential analysis was first performed to
screen differentially expressed genes (DEGs). The least absolute shrinkage and
selection operator (LASSO) regression analysis was performed to further select
significant DEGs. Weighted gene co-expression network analysis (WGCNA) was
utilized to build a gene co-expression network and filter the hub genes. Final
signature genes were determined by the intersection of LASSO analysis results,
WGCNA results and IRGs list. Based on the above results, the artificial neural network
(ANN) model was constructed in the training cohort and verified in the validation
cohort. Receiver operating characteristics (ROC) analysis was used to assess the
prediction accuracy. Correlation of signature genes with tumor microenvironment
scores, immune cells and immune checkpoint molecules were further analyzed. The
tumor immune dysfunction and exclusion (TIDE) score was used to evaluate the
response to immunotherapy.

Results: One hundred and forty-seven samples were included in this study, which
was randomly divided into the training cohort (n= 103) and validation cohort (n=44).
In total, 224 genes were identified as DEGs. Further LASSO regression analysis
screened out 25 genes from all DEGs. Through the intersection of LASSO results,
WGCNA results and IRGs list, S100A9, TREM1,COLEC12, and IFIT1were integrated to
construct the ANN model. The areas under the curves (AUCs) of the model were
.887 in training cohort and .765 in validation cohort. The four IRGs also correlated
with tumor microenvironment scores, infiltrated immune cells and immune
checkpoint genes in various degrees. Patients with TACE-Response, lower
expression of COLEC12, S100A9, TREM1 and higher expression of IFIT1 had better
response to immunotherapy.

Conclusion: This study constructed and validated an IRG signature to predict the
refractoriness to TACE in patients with HCC, whichmay have the potential to provide
insights into the TACE refractoriness in HCC and become the immunotherapeutic
targets for HCC patients with TACE refractoriness.
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Introduction

Primary liver cancer is the sixth most commonly diagnosed
malignancies and the fourth leading cause of cancer-related death
worldwide (Kelley and Greten, 2021). Hepatocellular carcinoma
(HCC) is the most common histological type, accounting for
75%–95% of all primary liver cancer cases (Bray et al., 2018).
However, nearly 70% of new patients are diagnosed at
intermediate or advanced stage and miss the opportunity for
curative resection (Song, 2015). Despite multimodal
therapeutic advancements, the prognosis of HCC patients
remains dismal with 5-years survival rate less than 20%
(Marron et al., 2022).

Transarterial chemoembolization (TACE) is a standard
treatment for intermediate-stage hepatocellular carcinoma
(HCC) according to the Barcelona Clinic Liver Cancer (BCLC)
staging system (Llovet et al., 1999; Han and Kim, 2015). TACE can
be performed with conventional TACE (cTACE) and drug-eluting
beads TACE (DEB-TACE). However, the response to TACE varies
from different patients due to the heterogeneity in intermediate-
stage HCC, and the concept of TACE refractoriness was
subsequently introduced by several organizations (Park et al.,
2013; Kudo et al., 2014; Raoul et al., 2014).

Although sorafenib therapy is recommended after TACE
refractoriness based on the current TACE guidelines (Arizumi
et al., 2015), other protocols including DEB-TACE, hepatic
arterial infusion chemotherapy (HAIC), ablation, and TACE
combined with systemic therapies are potentially effective as
subsequent treatment after TACE refractoriness (Kobayashi
et al., 2020; Zheng et al., 2020; Hsu et al., 2021; Kaibori et al.,
2021). Currently, it is still lacking in the effective tools for
predicting TACE response and selecting best candidates prior to
TACE treatment.

In recent years, with the rapid progress in high-throughput
profiling, the microarray technique has been extensively applied
through identifying variant gene expression and pathways in
considerable studies to disclose the molecular mechanisms of
tumor onset and progression (Zhang et al., 2020; Wang et al.,
2022a; Yang et al., 2022). Despite of its role in precision medicine, it
is still characterized with higher costs and data inconsistency across
different cohorts, also influenced by alignment or mapping method
and the quantification model adopted. At present, machine
learning algorithms have also been widely applied to screen
disease-related genes and build prediction model (Peng et al.,
2021; Han et al., 2022). RNA-seq data of HCC obtained from
The Cancer Genome Atlas (TCGA) or Gene Expression Omnibus
(GEO) databases have been utilized to identify genes associated
with HCC carcinogenesis or prognosis, and elucidate the potential
underlying mechanisms from various perspectives. To the best of
our knowledge, no immune-related gene signature has been
established for TACE refractoriness.

By using the bioinformatics analysis of GEO database, the aim of
this study is to construct and validate the immune-related gene
signature based on machine learning algorithms for predicting
TACE refractoriness in patients with unresectable HCC. It is
anticipated that this signature could help make decisions for TACE

operations and provide novel insights into the understanding of
mechanism of TACE refractoriness in HCC patients from the
immunological perspective.

Materials and methods

Data acquisition and processing

Gene expression dataset of GSE104580 was downloaded through
the GEO database (https://www.ncbi.nlm.nih.gov/geo/). The study
design and population was shown in Figure1. The CEL files of all
datasets was obtained from the GEO database and then processed with
R software (Version 4.0.1). ID conversion was conducted with the R
package “org.Hs.eg.db” (v3.13.0). The normalization and background
adjustment of expression profiles were conducted with “affy” package.

The dataset comprised of 147 patients with unresectable HCC and
no significant baseline liver dysfunction. These treatment-naive
patients received TACE as their primary treatment and 81 of them
were determined as TACE-Responders and 66 of them were
determined as TACE-Nonresponders.

Identification of differentially expressed
genes

The differentially expressed genes (DEGs) between TACE-
Nonresponders with TACE-Responders were acquired with Linear
Model for Microarray (LIMMA) package to analyze genes expression.
A False discovery rate (FDR) value < .05 and |logFC| >1.0 were set to
determine the significant differential expression mRNAs in patients
with TACE refractoriness. For visualization, the package “ggplot” was
used to display the volcano plot of DEGs.

Gene set enrichment analysis

To clarify the functional roles of DEGs, Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis
were conducted with the Search Tool for the retrieval of Interacting
Genes/Proteins database (STRING). The package “clusterProfiler” was
utilized to perform GO and KEGG analysis to identify top five types of
significantly enriched GO terms (p < .05) and pathways (p < .05).

WGCNA analysis

The “WGCNA” package was applied to establish the co-
expression network between TACE-Nonresponse and TACE-
Response samples. The integrity of data was checked with the
“goodSampleGenes” function. Then, pearson’s correlation analysis
of all pairs of genes was used to establish an adjacency matrix,
which was used to construct a scale-free co-expression network.
The adjacency matrix was transformed to a topological overlap
matrix (TOM) that could quantify the network connectivity of a
gene. Following the calculation of module eigengene (ME) and
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merging similar modules in the clustering tree based on ME, a
hierarchical clustering dendrogram was generated. Gene
significance (GS), which was the mediator p-value (GS = lgP) for
each gene, represented the degree of linear correlation between gene
expression and clinical states. Module Membership (MM) > .5 and
GS > .3 were set as the threshold to screen hub genes in each module.

LASSO regression analysis and screening for
final hub genes

Least absolute shrinkage and selector operation (LASSO)
regression with 10-fold cross-validation and penalty was
applied to explore important genes from all DEGs further. The
list of IRGs was obtained in the Immunology Database and
Analysis Portal (ImmPort) database (https://immport.niaid.nih.
gov), which timely updates the immunology data and shares the
data for immunologic research and provides a list of IRGs for
cancer researchers.

Final hub IRGs were determined by overlapping LASSO
regression analysis results, IRGs list, and WGCNA analysis results.
Venngram was then plotted based on the above results.

The construction and verification of the
artificial neural network model

The training cohort was used to construct the artificial neural
network (ANN) model, and validation cohort was used for
signature validation. According to the four IRGs selected, an
ANN model was constructed by the “neuralnet” R package. The
response to TACE classification score was the sum of the multiplied
results for hub gene expression and gene weight scores. The
discrimination, goodness-of-fit and net clinical benefit of ANN
model were assessed by receiver operating characteristic (ROC)
curve, calibration curve and decision curve analysis (DCA),
respectively.

Validation of final hub genes expression
profiles

Gene expression of final hub IRGs identified in training cohort
were verified in validation cohort. Differences of expression between
these samples was considered statistically significant with a
p-value < .05.

FIGURE 1
The flowchart of this study.
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Calculation of immune cell infiltration pattern

In order to compare the differences of infiltrated immune cells
between two groups, 66 TACE-Nonresponse and 81 TACE-
Response samples were included to evaluate the pattern of
immune cells infiltration. CIBERSORT is a computational
algorithm for transforming the gene expression matrix to the
composition of infiltrating immune cells. A total of 22 kinds of
immune cells were estimated. We set the p-value at <.01 for
statistical significance. The “vioplot” package in R Studio was
utilized to visualize the results.

Correlation between final hub IRGs with
tumor microenvironment and immune
checkpoints

We used the ESTIMATE algorithm to determine the immune/
stromal/Estimate scores and tumor purity of HCC and compared the
differences of these scores between high and low expression group
stratified with median values by Wilcoxon test. We also explored the
potential relationship between IRGs expression with immune cell
infiltration in the context of TACE refractoriness, by the “ggpubr”
and “ggExtra” package. Then, a lollipop was plotted to visualize the

results (Chen et al., 2022). In addition, correlation between hub IRGs
with immune checkpoints in HCC was assessed.

Evaluation of response to immunotherapy by
TIDE score

The patient’s response to immune checkpoint inhibitors (ICI) was
inferred by the tumor immune dysfunction and exclusion (TIDE)
score. The score was compared between TACE-Nonresponse with
TACE-Response samples, predicted TACE-Nonresponse with
predicted TACE-Response samples, high-expression with low-
expression IRG samples. Generally, a lower TIDE score represents
better response to immunotherapy.

Results

Identification of DEGs and functional
enrichment analysis

A total of 21,653 gene symbols were identified after annotation.
We finally identified 127 significantly upregulated and 97 significantly
downregulated expressed genes between TACE-Nonresponse and the

FIGURE 2
Identification of DEGs and functional enrichment analysis of DEGs. The heatmap (A) and volcano plot (B) of differentially expressed genes (DEGs)
between TACE-Nonresponse and TACE-Response samples, Gene Ontology (GO) (C) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (D) functional
enrichment analysis of DEGs.
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TACE-Response samples. The heatmap and volcano plot of these
DEGs were visualized in Figures 2A, B.

GO analysis demonstrated that identified DEGs were mainly
enriched in carboxylic acid catabolic process, cellular hormone
metabolic process, fatty acid metabolic process, organic acid
catabolic process, and small molecule catabolic process (Figure 2C).
KEGG pathway analysis displayed that DEGs are mainly enriched in
Retinol metabolism, Metabolism of xenobiotics by cytochrome P450,
Drug metabolism - cytochrome P450, Pyruvate metabolism, Tyrosine
metabolism (Figure2D).

Construction of the co-expression network

As illustrated in Figures 3A–D, a total of 14 modules were
determined with the dynamic tree cutting method, and each color
represented one module. The hub modules were identified through
module-trait correlation analysis and eight modules were defined as
hub modules (Figure 3E), among which the turquoise module was

considered most significant (Figure 3F). Finally, 452 hub genes were
identified in the hub modules.

As shown in Figures 3H, I, the log(λ) was set to -3.161178306371 and
24 features were selected by LASSO regression analysis. Then, final hub
genes were determined by overlapping the results of DEGs, LASSO
regression, WGCNA analysis, and IRGs list, including S100A9,
COLEC12, IFIT1, and TREM1 (Figure 3J). IFIT1 was significantly
downregulated in the TACE refractoriness group, while the remaining
three genes were upregulated.

Construction and evaluation of the ANN
model

Four IRGs were integrated to construct a neural network in the
training group with R package “neuralnet”. The weight of each gene
was calculated for optimal differentiation between the TACE-
Nonresponse and TACE-Response patients. A prediction model
was then established based on the weights of the four IRGs and the

FIGURE 3
The construction of WGCNA network, LASSO regression analysis and venngram of final hub genes. (A) Clustering dendrogram of samples in the dataset
GSE104580. (B) Clustering dendrogram of 66 TACE-Nonresponders and 81 TACE-Responders samples. (C) Analysis of network topology for various soft-
thresholding powers. (D) Clustering dendrogram of mRNAs, with dissimilarity based on topological overlap, together with assigned module colors. (E) The
heatmap to show the correlation between module eigengenes and patient response (TACE-Nonresponse and TACE-Response). (F,G) The scatter plots
of module eigengenes in turquoise module and yellow module. (H) The LASSO coefficient profiles of genes, (I) The feature selection by LASSO analysis. The
X-axis shows Log (λ), and the Y-axis shows the binomial deviance, (J) The venngram of final hub genes.
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neural network. The ANN model contained four input layers, five
hidden layers, and two output layers (Figure 4A). Each gene’s neural
network weight score was presented in Supplementary Table S1.

The formula of TACE response categorization score of neural
network model is: Neura TACE-Response = ∑ (Gene Expression ×
Neural Network Weight). Prediction accuracy of the model had an
AUC of .887 (95% CI, .810–.949) in training cohort and .762 (95% CI,
.612–.883) in the validation cohort (Figure 4B), suggesting that the
ANN is relatively stable in predicting TACE refractoriness. Besides of
ROC analysis, calibration curves and decision curves were plotted and
demonstrated that our ANN model performed well in predicting
TACE refractoriness (Figures 4C, D).

To compare the prediction efficacy between ANN model and
conventional logistic regression model, we performed ROC analysis
and plotted DCA curves in the total cohort. The ANN model had
better AUC [.857 (95% CI, .789–.908) vs.828 (95% CI, .758–.886)],
with more net clinical benefit than logistic regression model (shown in
right panel of Figure 4E).

Validation of final hub genes expression
profiles

In the validation cohort, gene expression of S100A9, COLEC12,
TREM1 were up-regulated while IFIT1 was down-regulated
(Figure 4F), which were consistent with those of training cohort.

Immune infiltration analysis

The histogram (Figure 5A) showed the general distribution of
22 kinds of immune cells for each sample. Individual differences were
observed about the proportions of immune cells between two groups
(Figure 5B). The correlation plot (Figure 5C) showed that the proportions
of different infiltrated immune cell were correlated to varying degrees. For
example, the correlation of T-cells follicular helper cells and T-cells
CD4 memory resting is -.35, and the correlation of T-cells CD8 cells
and T-cells follicular helper cells is .33. Differences of T-cells gamma delta,
NK cells resting, Macrophages M0, Macrophages M2, Dendritic cells
resting, Mast cells resting, Mast cells activated, and Neutrophils were
significant between two groups (Figure 5D).

Association between hub IRGs with immune
cells infiltration pattern, tumor
microenvironment scores, and immune
checkpoints

As illustrated in Figure 6, there were significant correlations between
these IRGs and tumor-infiltrating immune cells. Notably, among the
22 types of immune cells, the relative proportion of Macrophages M1,
and Mast cells resting were negatively correlated with the COLEC12, while
the relative proportion of Mast cells activated, Macrophages M0, Dendritic
cells resting, T-cells regulatory (Tregs) were positively correlated with

FIGURE 4
Construction of artificial neural network (ANN) (A) andmodel evaluation. (B) Receiver operating characteristics (ROC) curves of themodel in training and
validation cohort. (C,D) Decision curves and calibration curves of ANN model. (E) Comparison of discrimination and clinical application between signatures
constructed by ANN and traditional linear regression, (F) Expression profiles of four IRGs in the validation cohort.
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COLEC12 (Figure 6A). The expression of TREM1was positively correlated
with Mast cells activated, neutrophils, Macrophages M0, while negatively
related with Mast cells resting, T-cells CD4 memory resting, Macrophages
M1, Macrophages M2 (Figure 6B). The expression level of S100A9 was
negatively correlated with NK cells activated, and B cells memory, while
positively correlated with Macrophages M0, Mast cells activated, and
Neutrophils (Figure 6C). IFIT1 expression negatively related with the
proportion of neutrophils and Macrophages M0, Mast cells activated,
and Dendritic cells resting, while positively correlated with Mast cells
resting, Macrophages M1, and T-cells gamma delta (Figure 6D).

Moreover, the ESTIMATE algorithm was utilized to estimate the
immune score, stromal score, and tumor purity, which represents the
tumor environment. These scores all increased in high-expression
group of COLEC12, TREM1 and S100A9, while the corresponding
tumor purity decreased (Figures 6E–H), which further confirmed the
roles of these IRGs in regulating tumor microenvironment.

In addition, the expression levels of 45 potentially targetable immune
checkpoint genes were compared between the subgroups. Patients in the
high-expression S100A9 group had significantly increased C10orf54, CD44,
CD48, CD80,HAVCR2, LAIR1, LGALS9, NRP1, TNFRSF14 and decreased

FIGURE 5
The profiles of immune cell subtype distribution pattern in GSE104580 cohort. (A) The bar plot visualizing the relative percent of 22 immune cell in each
sample. (B) Heatmap of the 22 immune cell proportions in each sample. (C) Correlation heatmap of all 22 immune cells. (D) Violin plot of all 22 immune cells
differentially infiltrated fraction.
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HHLA2, and ICOSLG (Figure 6I). The expression of TREM1 positively
correlated withCD44, CD80,CD86,HAVCR2, LAIR1, LGALS9, andNRP1,
while negatively correlated with HHLA2, and ICOSLG (Figure 6J).
COLEC12 expression positively correlated with CD28, CD44, HAVCR2,
and TNFSF4, while negatively correlated with CD160 and ID O 2
(Figure 6K). IFIT1 expression positively correlated with CD160,
CD200R1, CD244, CD274, CD40, CD48, ID O 1, ID O 2, and TNFSF4
(Figure 6L).

Response to immunotherapy

To explore the effect of the four IRGs on immunotherapy, the
TIDE algorithm was used. As the results demonstrated, TIDE score
was higher in TACE-Nonresponse group than TACE-Response
group (1.87 ± .16 vs. 1.79 ± .20, p = .011), indicating that patients
with TACE refractoriness might have worse response to
immunotherapy. The predicted TACE-Nonresponder also had a

higher TIDE score than predicted TACE-Responder (1.89 ± .16 vs.
1.76 ± .18, p < .001) (Figures 6M–N). In addition, higher expression
levels of COLEC12, S100A9, TREM1 and lower expression level of
IFIT1 were associated with poor response to immunotherapy in
patients with HCC, suggesting that these IRGs probably affect the
efficacy of ICI in HCC patients (Figures 6O–R).

Discussion

Although TACE is the standard treatment option for
intermediate-stage HCC, the response to TACE is quite variable
among HCC patients. Currently, it is essential to identify early
biomarkers of TACE refractoriness and select individualized
treatment strategies. In the present study, differential analysis
was first performed to screen out 224 DEGs. Then, LASSO
regression analysis was performed to further select 25 genes
from all DEGs. A total of 152 genes were identified through

FIGURE 6
Correlations between four IRGs with infiltrated immune cells (A–D), tumor microenvironment characteristics (E–H), immune checkpoint molecules
(I–L), and Tumor immune dysfunction and exclusion (TIDE) scores for evaluating immunotherapy response (M–R).
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WGCNA analysis. Four hub genes were finally determined by the
intersection of LASSO analysis results, WGCNA results and
immune-related genes list. Based on the four genes, the ANN
model was constructed and validated. ROC analysis exhibited
satisfactory predictive value of ANN model, with .887 in
training cohort and .762 in validation cohort. Correlation
between four hub genes with immune cells and immune
checkpoint genes was analyzed and we found that four IRGs
were associated with infiltrated immune cells and correlated
with different immune checkpoint molecules in various degrees.
Patients with TACE-Response, predicted TACE-Response, lower
expression of COLEC12, S100A9, TREM1 and higher expression of
IFIT1 had lower TIDE score, indicating better response to
immunotherapy.

About the four IRGs involved in the signature, we found that
all of them were related with tumor immunity. Interferon-induced
protein with tetratricopeptide repeats (IFIT) genes, as prominent
interferon-stimulated gene, consists of IFIT1, IFIT2, IFIT3 and
IFIT5 (Pidugu et al., 2019a). Pidugu et al. (2019b) revealed the role
of IFIT1 and IFIT3 in driving OSCC progression and metastasis.
Liu et al. (2021) demonstrated that IFIT1 and IFIT3 expression
could modulate cell migration and metastasis in HCC patients.
IFIT1 or IFIT3 silencing reduced the expression of IL-17 and IL-
1β, and attenuated the migration capability of HCC cells. Yap
et al. (2020) suggested that ANXA1 plays a regulatory role in RIG-
I signaling and cell death in A549 lung epithelial cells, while
silencing IFIT1 could inhibit RIG-I-induced cell death.
Interestingly, lower expression of IFIT1 was identified to be
related with TACE refractoriness in our study. In addition,
higher expression group of IFIT1 was related to longer overall
survival. COLEC12 is a member of the C-type Lectin receptor
family, affecting the adaptive immune response through the
carbohydrate-recognition domain via the recognition of the
complex glycan structures of pathogens. Huang et al. (2021)
demonstrated that higher expression of COLEC12 was
correlated with shorter OS and involved in immunosuppression
for HCC patients. Zhang et al. (2021) constructed an immune-
related signature in which higher expression of COLEC12 was
related with shorter survival and more sensitive to immune
checkpoint inhibitors (ICIs) treatment.

Triggering receptors expressed on myeloid cells 1 (TREM-1),
as a member of the TREM family (Sun et al., 2020), is an
inflammatory modulator. Duan et al. (2015) claimed that
higher expression of TREM1 correlated significantly with
increased recurrence and poorer survival in HCC patients.
Chen et al. (2021) found that downregulating TREM1
expression in macrophages shift M2 macrophages towards a
M1 phenotype by inhibiting PI3K/AKT signaling, inhibiting
migration and invasion of live cancer. S100A9 belongs to the
S100 family of calcium-binding proteins and is over-expressed in
hepatocellular carcinoma (HCC). As indicted by Wu et al. (2013),
S100A9 could promote the proliferation and invasion of

HepG2 HCC cells via activating the MAPK signaling pathway.
Higher serum S100A9 is reported to be associated with worse
outcome in HCC patients receiving resection (Meng et al., 2019).
Through immunohistochemistry analysis of tissues from HCC
patients, Liao et al. (2021) discovered that the infiltration of
S100A9+ cells in both tumor and non-tumor tissues could
predict poor OS and a higher recurrence risk.

Many previous studies have attempted to construct the
immune-related, apoptosis-related, Cuproptosis-related, or
Ferroptosis-related gene signatures to predict cancer prognosis
and correlate these genes with immune cells infiltration patterns
(Wang et al., 2022b; Luo et al., 2022; Ma et al., 2022; Zhang et al.,
2022). There may be many potential mechanisms of TACE
refractoriness. According to the study by Dong et al. (2018),
hypoxia-induced angiogenesis is the potential underlying
mechanism of TACE failure. Cheng et al. (2022) also found
that hypoxia-related genes are potential biomarkers for patients
with refractory TACE and patients at high hypoxic risk have more
active immune microenvironment). Our study screened DEGs
between TACE-refractory with TACE-response HCC patients
and constructed a signature from the immunological
perspective. We also investigated the correlation of signature
genes with tumor microenvironment scores, infiltrated immune
cells and immune checkpoint molecules. In essence, these are
different means of dimension reduction that could more
specifically reflect tumor response to TACE procedures from
respective pathways, with certain selection bias.

The prognosis of HCC patients treated with TACE varies due to
highly heterogeneous tumor biological characteristics, not always
positively impacting survival (Ringelhan et al., 2018). In addition,
repeated TACE is often recommended because it is sometimes difficult
to achieve a satisfactory tumor response with a single session (Chen
et al., 2022). However, we should also be acknowledged that high
frequency and number of TACE operations may cause liver function
impairment and increasing treatment-related adverse events. Though,
there is no clear consensus on the definition of TACE refractoriness.
The concept is put forward to take full advantage of TACE treatment
while reducing repeat or ineffective TACE induced liver function
damage and other complications as far as possible.

There are still several limitations that should also be noted.
First, this is a small sample size retrospective study, and the
training and validation cohort were split from the same dataset.
Further investigation needed more samples from various
institutions for verification. Second, the related clinical and
imaging characteristics were unavailable from the dataset,
failing to integrate these important variables into the model.
Third, although with better prediction accuracy, the
interpretability of ANN model used in our study is not better
than the conventional algorithms, which can provide specific
possibility value for individuals. Last, the experiments
confirmation is lacking and further molecular biology studies
would be supportive.
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Conclusion

In this study, immune-related genes of S100A9, COLEC12,
TREM1, and IFIT1 were identified to be associated with TACE
refractoriness and integrated to establish a machine-learning based
signature with satisfactory performance, which may have the
potential to be the immunotherapeutic targets for TACE
refractory HCC patients. We anticipate this tool can provide
guidance for clinicians to make decisions for HCC patients.
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