
Expression patterns of platinum
resistance-related genes in lung
adenocarcinoma and related
clinical value models

Zhe Wang1†, Lin Mu2†, He Feng3†, Jialin Yao1, Qin Wang1,
Wenxiao Yang1, Huiling Zhou1, Qinglin Li3* and Ling Xu1*
1Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine,
Shanghai University of Traditional Chinese Medicine, Shanghai, China, 2Department of
Ophthalmology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai,
China, 3Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital),
Zhejiang, China

The purpose of this study was to explore platinum resistance-related biomarkers

andmechanisms in lung adenocarcinoma. Through the analysis of gene expression

data of lung adenocarcinoma patients and normal patients from The Cancer

Genome Atlas, Gene Expression Omnibus database, and A database of genes

related to platinum resistance, platinum resistance genes in lung adenocarcinoma

and platinum resistance-related differentially expressed geneswere obtained. After

screening by a statistical significance threshold, a total of 252genesweredefined as

platinum resistance geneswith significant differential expression, ofwhich 161were

up-regulated and 91 were down-regulated. The enrichment results of up-

regulated gene Gene Ontology (GO) showed that TOP3 entries related to

biological processes (BP) were double-strand break repair, DNA recombination,

DNA replication, the down-regulated gene GO enriches the TOP3 items about

biological processes (BP) as a response to lipopolysaccharide, muscle cell

proliferation, response to molecule of bacterial origin. Gene Set Enrichment

Analysis showed that the top three were e2f targets, g2m checkpoint, and rgf

beta signaling. A prognostic model based on non-negative matrix factorization

classification showed the characteristics of high- and low-risk groups. The

prognostic model established by least absolute shrinkage and selection

operator regression and risk factor analysis showed that genes such as HOXB7,

NT5E, and KRT18 were positively correlated with risk score. By analyzing the

differences in m6A regulatory factors between high- and low-risk groups, it was

found that FTO, GPM6A, METTL3, and YTHDC2 were higher in the low-risk group,

while HNRNPA2B1, HNRNPC, TGF2BP1, IGF2BP2, IGF2BP3, and RBM15B were

higher in the high-risk group. Immune infiltration and drug sensitivity analysis also

showed the gene characteristics of the platinum-resistant population in lung

adenocarcinoma. ceRNA analysis showed that has-miR-374a-5p and RP6-

24A23.7 were lower in the tumor expression group, and that the survival of the

low expression group was worse than that of the high expression group. In

conclusion, the results of this study show that platinum resistance-related

differentially expressed genes in lung adenocarcinoma are mainly concentrated

in biological processes such as DNA recombination and response to

lipopolysaccharide. The validation set proved that the high-risk group of our
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prognostic model had poor survival. M6A regulatory factor analysis, immune

infiltration, and drug sensitivity analysis all showed differences between high and

low-risk groups. ceRNA analysis showed that has-miR-374a-5p and RP6-

24A23.7 could be protective factors. Further exploration of the potential impact

of these genes on the risk and prognosis of drug-resistant patients with lung

adenocarcinoma would provide theoretical support for future research.
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1 Introduction

Globally, the mortality rate of lung cancer is the highest

among all tumors (Xia et al., 2022). Non-small cell lung cancer

(NSCLC), which accounts for 80% of all lung cancer cases (Miller

et al., 2016), can be divided into three main pathological

subtypes: adenocarcinoma (40%), squamous cell carcinoma

(30%), and large cell carcinoma (15%) (Ruiz-Cordero and

Devine, 2020; Travis et al., 2016). The standard first-line

treatment is still platinum-based combined chemotherapy

(Scagliotti et al., 2002; Schiller et al., 2002). Although

chemotherapy can bring benefits to lung adenocarcinoma

(LUAD) patients, the median progression-free survival time is

only 5.5 months (West et al., 2019), and drug resistance is

inevitable. Although many studies have explored the

mechanism of platinum drug resistance, there is still no clear

mechanism or targets of platinum drug resistance, and few

research results can be used in clinical application. Therefore,

we aimed to explore the potential biomarkers and mechanisms of

platinum-based drug resistance genes in LUAD, establish a

prognostic model, and conduct related research on clinical

prognosis and risk.

The rapid development of immunotherapy over the last

decade has led to the improvement of immune checkpoint

inhibitors, which has improved the clinical outcomes of some

patients with advanced cancer and changed the treatment status of

NSCLC (Osmani et al., 2018; Queirolo and Spagnolo, 2017).

Therefore, attention has been paid to immune cell infiltration,

the role of immune infiltration in the occurrence, development,

and prognosis of platinum-based LUAD, prognostic information,

and predicting the efficacy of immunotherapy. Drug sensitivity

analysis can also provide guidance for follow-up treatment of

platinum-resistant patients with LUAD. Several studies have

shown that mRNA methylation plays an important role in the

occurrence and development of some cancers (e.g., glioblastoma,

renal clear cell carcinoma, and pancreatic cancer) (Cui et al., 2017;

Du et al., 2020; Geng et al., 2020; Lan et al., 2019; Wang et al.,

2020). These studies indicated that the development of tumors

may be related to the expression of key genes related to the

function of the m6A regulator. However, there is no research

on them6Amethylation regulatory factor with respect to platinum

drug resistance in LUAD.

In this study, we aimed to identify the characteristics of

platinum drug resistance genes in LUAD, and explore the

characteristics of patients after drug resistance, to pave the

way for further study of drug resistance mechanisms. We first

explored the expression patterns of platinum-resistant genes

related to LUAD in The Cancer Genome Atlas (TCGA), Gene

Expression Omnibus (GEO), and A database of genes related to

platinum resistance. Functional annotations and channel

analysis of different platinum resistance genes were performed

through Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA).

Subsequently, we evaluated the ability to transform into clinical

applications through non-negative matrix factorization (NMF)

cluster analysis and the establishment of a prognosis model.

Immune infiltration and drug sensitivity analyses were used to

evaluate the possible applicability of patients with LUAD

platinum resistance to other clinical treatments. The results of

this study provide guidance for the development of clinical drugs

for platinum-resistant patients with LUAD. Workflow is shown

in Figure 1.

2 Materials and methods

2.1 Expression datasets and bioinformatic
analysis

2.1.1 Data and preprocessing
We downloaded the gene expression profile, miRNA

expression profile, and clinical information data of LUAD

from the TCGA database (n = 585) (https://tcga-data.nci.nih.

gov/tcga/). A total of 912 genes related to platinum resistance

were downloaded from A database of genes related to platinum

resistance (http://ptrc-ddr.cptac-data-view.org). Finally,

expression data and clinical information of 116 LUAD

samples (data number GSE26939) were downloaded from the

GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE26939) for use as the verification dataset.

2.1.2 Differentially expressed gene (DEG) analysis
We analyzed the differences in gene expression between

cancer and normal patients using the R package DESeq2 (v1.
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32.0) (Love et al., 2014). We set | log2fold change | (| log2fc |) ≥
1 and adjust p value <0.05 as the threshold of differential

genes; log2fc ≥ 1 and adjust p value <0.05 gene was used to

identify upregulated genes, while log2fc ≤ −1 and adjust p

value ≤0.05 were used to identify downregulated genes.

Cisplatin-based chemotherapy is a common method to

treat LUAD. However, after developing resistance to cis-

diammine di chloroplatinum (CDDP), a considerable

number of patients’ tumors recurred. Therefore, screening

patients with primary resistance to cisplatin in the LUAD

population can maximize the clinical benefit. To further reveal

the biological functions affected by the DEGs related to

platinum resistance, the intersection of platinum resistance

genes and DEGs was defined as PRR-DEGs. We used a volcano

map and heatmap to visualize platinum resistance genes with

significant differential expression. The volcano map was

drawn using the R package ggplot2 (v3.3.5), the heat

diagram was drawn using the R package pheatmap

(v1.0.12) (Figure 2A). The detailed information is shown in

Supplementary Table S1.

The expression of different genes is interrelated, especially

among genes that regulate the same biological process. Therefore,

to reveal the relationships between the PRR-DEGs, a

protein–protein interaction network (PPI) was constructed

based on the platinum resistance-DEGs. Using the String

database (https://www.string-db.org) (Mering, 2003), the

above genes were used as input, and the default confidence

threshold was 0.4 (Figure 2B). The PPI network was

constructed, and the visualization was carried out using the

Cytoscape (v3.8.2) (Shannon et al., 2003) software. The

expression correlation of PRR-DEGs was calculated and

visualized using a nomogram.

2.1.3 Functional enrichment analysis
GO (Http://geneontology.org/) is a commonmethod for large-

scale functional enrichment of genes in different dimensions and

levels. It is generally carried out from three levels: biological

process (BP), molecular function (MF), and cellular component

(CC) (Harris et al., 2004). The R package cluster Profiler (v4.0.5)

(Wu et al., 2021) was used for GO functional annotation analysis of

all the genes with significantly different expression levels to identify

the biological processes and pathways with significant enrichment.

The enrichment results were visualized using the R package

GOplot (v1.0.2) (Walter et al., 2015). The significance threshold

of enrichment analysis was set as adjust p value ≤0.05
(Figures 3A,C).

KEGG (https://www.kegg.jp/) is a utility database resource

for understanding advanced functions and biological systems

FIGURE 1
Workflow (Modify database name).
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(such as cells, organisms and ecosystems), genome sequencing

and other high-throughput experimental techniques generated

frommolecular level information, especially large molecular data

sets. It was established in 1995 by Kanehisa Laboratory of

Bioinformatics Center of Kyoto University, Japan. The

significance threshold of enrichment analysis was set as p

adjust p value ≤0.05 (Figures 3B,D).

GSEA is a calculation method used to determine whether a

group of predefined genes shows a statistical difference between two

biological states. It is usually used to estimate changes in pathways

and biological process activities in expression dataset samples

(Subramanian et al., 2005). To study the differences in biological

processes between the two groups of patients, we used the gene

expression profile dataset from the MSigDB database (Liberzon

et al., 2015) (https://www.gsea-msigdb.org) (Figures 3E–G). The

detailed information is shown in Supplementary Table S2.

2.1.4 NMF cluster analysis
Nonnegative matrix factorization, referred to as NMF, is a

matrix factorization method proposed by Lee and Seung in the

journal Nature in 1999 (Lee and Seung, 1999). It makes all the

decomposed components non-negative (requiring purely

additive description), and at the same time realizes nonlinear

dimension reduction. The samples were analyzed by NMF

unsupervised cluster analysis, which was realized using the

NMF package in R (v0.23.0) (Zushi, 2021). The correlation

between the expression of PRR-DEGs and clinical features

(including race, stage, age, and sex) based on NMF

classification was visualized (Figures 4A–C). Gene set

variation analysis, referred to as GSVA, is a non-parametric

and unsupervised algorithm. Unlike GSEA, GSVA does not need

to group samples in advance and can calculate the enrichment

scores of specific gene sets in each sample. In other words, GSVA

transforms gene expression data from a single gene as a feature

expression matrix to a specific gene set as a feature expression

matrix. To further analyze differences between NMF

classifications, GSVA analysis was implemented using the

GSVA package (v1.40.1). Finally, the features of NMF

classification were visualized using the FactoMineR (v2.4) and

factoextra packages (v1.0.7) (Figures 4D–F).

FIGURE 2
Differential expression analysis results. (A) Difference analysis volcano plot. (B) Heatmap of differentially expressed platinum resistance genes.
(C)Differentially expressed platinum resistance gene PPI network. (D)Heatmap of correlations of differentially expressed platinum resistance genes.
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2.1.5 Prognostic model construction
Owing to the importance of platinum resistance in the

treatment of LUAD, different patients may have different

platinum resistance states; as such, it is extremely feasible

to construct a diagnostic model based on differentially

expressed platinum resistance genes. Here, firstly, we used

the least absolute shrinkage and selection operator (LASSO)

regression method to screen differentially expressed platinum

resistance genes; the R package glmnet (v4.1–2) was used to

realize this method and select the best lambda symbol value.

After regression, only genes with coefficients other than

0 were retained (Figures 5A,B).

To analyze the relationship between the prognosis model and

survival status, we used Kaplan–Meier survival analysis and risk

factor analysis. Then, to verify the predictive efficiency of the

diagnostic model, receiver operating characteristic (ROC) curves

were drawn using the R package pROC (v1.18.0) (Robin et al., 2011).

The area under the curve (AUC) of 1 year, 3 years, and 5 years were

evaluated. To further prove the robustness of the model prediction,

external data (GSE26939) were used for verification (Figures 5C–F).

To further verify the efficacy of the prognostic model of PRR-

DEGs, we incorporated clinical indicators into the model, evaluated

the univariate andmultifactorial prognostic models of clinical factors

using the survival package (v3.2.11), and displayed them as forest

maps. In addition, we took clinical factors into account and used the

rms package (v6.2-0) to construct clinical prediction nomogram and

corresponding calibrate correction charts (Figures 5G,H).

We investigated whether clinical features are related to

prognosis. Univariate Cox regression analysis showed that risk

score, sample intermediate dimension, tumor stage, person

FIGURE 3
Enrichment results of GO, KEGG and GSEA. (A) GO enrichment analysis bar chart of up-regulated genes (TOP5 of BP, CC, and MF). (B) up-
regulating the enrichment result of gene KEGG. (C)GO enrichment analysis bar chart of down-regulated genes (TOP5 of BP, CC andMF). (D) down-
regulating the enrichment result of gene KEGG. (E–G): GSEA analysis of TOP3 results.
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neoplasm cancer status were significantly correlated with OS

(Figure 6A). Finally, these univariate prognostic variables were

used as covariates of multiple cox regression analysis. The results

showed that risk score and tumor status were independent

prognostic factors related to OS (Figure 6B).

In order to evaluate whether our model can effectively predict

the prognosis of patients in the clinical environment, we

incorporated OS-related factors into the model and constructed a

nomogram (Figure 6C) to predict the OS: 1, 3, and 5-year survival

rates of patients. The nomogram model once again confirms the

reliability and prospective clinical applicability of the risk model. At

the same time, we Calibration the nomogram and found that the

predicted results were highly correlated with the actual survival rate

(Figure 6D).

2.1.6 Immune infiltration analysis
The immune microenvironment mainly consists of immune

cells, inflammatory cells, fibroblasts, interstitial tissues, and various

cytokines and chemokines, and is a loaded comprehensive system.

The infiltration analysis of immune cells in tissues plays an

important guiding role in disease research and treatment

prognosis prediction.

To further explore the relationship between differentially

expressed prognostic platinum resistance genes and the infiltration

level of immune cells, CIBERSORT (Steen et al., 2020) was used to

evaluate the infiltration level of immune cells. The contents of

22 kinds of immune cells in each patient were calculated based

on the LM22 background gene set provided by the CIBERSORT

website (https://cibersort.stanford.edu/) to reflect the infiltration level.

The results were visualized using box diagrams drawn by the R

package ggplot2 (v3.3.5) (Figures 7A–D). Significant differences

between high and low immune cell expression groups of patients

may be related to the prognosis of PRR-DEGs. We used the R

package ggExtra (v0.9) and a p-value < 0.01 to identify extremely

significant differences in levels of immune cell infiltration, DEGs, and

the prognosis of platinum resistance gene expression; the results were

visualized using scatter plots and correlation curve fitting. At the

same time, we checked the high- and low-risk groups of the immune

checkpoints (CD274, CD47, HAVCR2, LAG3, IDO1, SIRPA,

TNFRSF4, YTCN1, PDC D1, CTLA4, and TIGIT). The tumor

immune dysfunction and exclusion (TIDE) score reflects the

sensitivity to immune checkpoints, and the TIDE score calculated

for each tumor sample could be used as a substitute biomarker to

predict responses to immune checkpoint blocking (Figures 7E,F).

N-methyladenine (m6A) modification is the most

common and abundant RNA modification in eukaryotes.

To explore differences in m6A between high and low

groups, we used m6A regulatory factor data from

Yongsheng Li et al. (Li Y et al., 2019), including 11 readers,

7 writers, and 2 erasers.

2.1.7 Drug sensitivity analysis
The LUAD cell line-drug action dataset was obtained from

the Genomics of Drug Sensitivity in Cancer database (GDSC

FIGURE 4
NMF clustering results. (A)NMF cluster cophenetic versus number of clusters. (B)NMF clustering results. (C)Heatmap of differentially expressed
platinum resistance genes associated with clinical information. (D) Heatmap of GSVA analysis of cancer hallmarks. (E) Survival differences for NMF
clustering. (F) Plot of PCA results for NMF clustering categories.
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www.cancerRxgene.org) (Yang et al., 2012). The drug

sensitivity of the expression data in TCGA-LUAD

was analyzed using the R package oncoPredict (v0.2)

(Maeser et al., 2021), and the sensitivity differences of

high- and low-risk groups to different drugs were

compared (Figure 9).

2.1.8 Construction of ceRNA network
To analyze the relationship between DEGs and miRNA and

lncRNA in the post-transcriptional stage, we collected data from the

Tarbase (https://dianalab.e-ce.uth.gr/html/diana/web/index.php?R=

tarbasev8) (Karagkouni et al., 2018) and TargetScan (https://www.

targetscan.org/vert_72/) (Agarwal et al., 2015) databases for miRNA

FIGURE 5
Construction and evaluation of prognostic models. (A,B) Lasso-cox regression analysis graph. (C,D) Survival analysis of TCGA LUAD and
GSE16939. (E,F) Time ROC curve analysis of TCGA LUAD and GSE16939. (G,H) Association factor analysis of TCGA LUAD and GSE16939.
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molecules that interact with PRR-DEGs. Using two databases

improved the accuracy, and eulerr (v6.1.1) was used to draw the

Wayne diagram. Then, using lncbase predicted v.2 (https://dianalab.

e-ce.uth.gr/html/diana/web/index.php?R = lncbasev2/index-

predicted) (Paraskevopoulou et al., 2016) and the StarBase V2.

0 database (https://starbase.sysu.edu.cn/starbase2/index.php)

(Maeser et al., 2021), we found that miRNA and lncRNA

molecules can bind to, and then construct, the ceRNA network.

In addition, we analyzed the expression differences of miRNA and

lncRNA in the normal tumor group and divided the samples into

high- and low-expression groups according to the average

expression of miRNA and lncRNA. Finally, we performed

Kaplan–Meier survival analysis (Figure 10).

2.1.9 Statistical analysis
All data calculations and statistical analyses are carried out in the

R language (v4.1.0). For comparison between the two groups, we

used a variance test, p ≤ 0.05 was considered statistically significant.

3 Results

3.1 DEG analysis

To reveal biological differences between LUAD patients and

healthy people at the transcriptome level, DEG analysis was

conducted between the two groups. After screening by a

FIGURE 6
Clinical factors are associated with prognosis. (A) Univariate regression analysis results. (B) Results of multivariate regression analysis. (C)
Nomogram analysis. (D) Calibration correction chart.
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statistical significance threshold, a total of 252 genes were defined as

platinum resistance genes with significant differential expression

(Figures 2A,B), of which 161 were upregulated and 91 were

downregulated. The PPI network diagram (Figure 2C) of PRR-

DEGs was constructed using the String database. In addition, we

calculated the correlation of differentially expressed platinum

resistance genes, and found that the correlation between

upregulated and downregulated genes was closer (Figure 2D).

FIGURE 7
Results of immune infiltration analysis. (A,B) Correlation of immune infiltration in high-risk and low-risk groups. (C) Differences in immune
infiltration between high and low risk groups. (D) Differences in immune checkpoints between high and low risk groups. Differences in (E) TIDE
between high and low risk groups. Differences of (F) m6A regulon in high and low risk groups.
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3.2 Functional enrichment analysis

In order to further reveal the biological functions and processes

affected by the differential expression of platinum resistance genes,

up-regulated and down-regulated genes were enriched by GO,

KEGG, and GSEA and visualized in various forms. The

enrichment results of up-regulated gene GO showed that

TOP5 entries related to biological processes (BP) were double-

strand break repair, DNA reconstruction, DNA replication,

intrinsic apoptotic pathway, and a response to oxidative stress

(Figure 3A), KEGG enriched to cell cycle, cellular senescence, IL-

17 signaling pathway, p53 signaling pathway, platinum drug

resistance etc. (Figure 3B). The down-regulated gene GO enriches

the TOP5 items about biological processes (BP) as a response to

lipopolysaccharide, muscle cell proliferation, response to molecule of

bacterial origin, response to mechanical stimulus, and regulation of

cell-cell adhesion (Figure 3C). Down-regulated gene KEGG

enrichment is mainly related to the MAPK signaling pathway, IL-

17 signaling pathway, EGFR tyrosine kinase inhibitor resistance, TNF

signaling pathway, and other related pathways (Figure 3D). In

addition, GSEA analysis showed that TOP3 was E2F targets,

G2M checkpoint, TGFβ signaling pathway (Figures 3E–G).

3.3 NMF clustering analysis

We molecular-typed the data of TCGA-LUAD according

to the PRR-DEGs. In the NMF method (Figure 4A), the

abscissa corresponding to the first sharp decline of the

cophenetic graph is the optimal cluster number. The results

(Figure 4B) showed that the samples of LUAD could be

divided into two categories. Then, we visualized the

relationships between the PRR-DEGs and clinical

information such as stage, race, age, and sex (Figure 4C),

and identified that PRR-DEGs can basically be classified

according to NMF. In addition, we calculated the GSVA

analysis scores of cancer hallmarks (Figure 4D). WNT beta-

catenin signaling and hedgegcg signaling, among others,

scored higher in the C1 category, g2 checkpoint and e2f

targets, among others, scored higher in the C2 category.

The survival analysis of the two classifications of NMF

(Figure 4E) showed that the survival rate of C1 was slightly

higher than that of C2, and was statistically significant (p <
0.05). Principal component analysis (PCA) analysis suggested

that most samples of the two categories of NMF can be

separated (Figure 4F).

3.4 Construction and evaluation of
prognosis model

We constructed a prognosis model based on the PRR-DEGs

in order to translate the research results into practical clinical

application. First, 252 PRR-DEGs were screened using the

LASSO regression method (Figures 5A,B). There were

17 genes with non-zero retention coefficients; therefore, we

constructed a prognosis model with 17 genes, and the

influence coefficient of each gene was the coefficient of the

LASSO regression results. To verify the prognostic efficacy of

the prognostic model, survival analysis (Figures 5C,D) was

carried out based on TCGA-LUAD data and the validation

dataset (GSE26939). The survival of the high-risk group was

poor. In addition, the predicted ROC curve was drawn and the

AUC was calculated. The results show that the prediction model

has excellent prediction efficiency for both sets of data, and the

AUC was ~0.7 (Figures 5D–F). Finally, in order to evaluate the

correlation trend between each gene and risk score, risk factor

analysis (Figures 5G,H) was carried out. Genes such as HOXB7,

NT5E, and KRT18 were positively correlated with risk score in

the two groups of data.

We investigated whether clinical features are related to

prognosis. Univariate Cox regression analysis showed that the

prognosis model gene, KRAS mutation, stage, and so on, were

significantly correlated withOS (Figure 6A). Finally, these univariate

prognostic variables were used as covariates of multivariate Cox

regression analysis. The results showed that all of the prognostic

model genes except CASP14 were independent prognostic factors

related to OS (Figure 6B). The 17 genes are ALDOA, CASP12,

CASP14, EXO1, FAT1, FEN1, GDF15, HOXB7, KRT18, MAL,

MSX1, NT5E, NTSR1, SIX1, TXNRD1, UBE2S, and WFDC2. The

risk score formula is risk score = 0.118495*exp (ALDOA) -

0.003607*exp (CASP12) + 0.01103671*exp (CASP14) -

0.03671*exp (EXO1) + 0.074027*exp (FAT1) + 0.058166*exp

(FEN1) - 0.04225*exp (GDF15) + 0.061475*exp (HOXB7) +

0.105,367*exp (KRT18) - 0.10004*exp (MAL) + 0.134,121*exp

(MSX1) + 0.099919*exp (NT5E) + 0.014771*exp (NTSR1) -

0.11253*exp (SIX1) + 0.024867*exp (TXNRD1) + 0.042712*exp

(UBE2S) - 0.04043*exp (WFDC2).

To evaluate whether our model could effectively predict the

prognosis of patients in clinical environments, we incorporated

OS-related factors into the model and constructed a Nomogram

(Figure 6C) to predict OS 1-, 3-, and 5-year survival rates. The

Nomogram model again confirmed the reliability and

prospective clinical applicability of the risk model. At the

same time, upon calibration to the Nomogram, the predicted

results were highly correlated with the actual survival rate

(Figure 6D).

3.5 Immune infiltration analysis

To further explore the degree of immune cell infiltration in

patients, the CIBERSORT method was used to calculate the

degree of infiltration in all samples based on 22 kinds of

background genes of immune cells. First, the correlation

between the infiltration degree of immune cells in high- and
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low-risk groups (Figures 7A,B) was calculated. In the high- or

low-risk group, the correlation between macrophage M, naïve

B cells, and plasma cells was high. In addition, we examined the

differences in immune cell infiltration for the different groups

(Figure 7C) and found significant differences in 8 of the 22 kinds

of immune cells in both groups. Resting T cells CD4 memory,

resting dendritic cells, resting mast cell, and monocytes have a

higher degree of infiltration in the low-risk group, while T cells

CD4 memory activated, macrophage M0, macrophage M1, and

mast cell activated have a higher degree of infiltration in the high-

risk group. In addition, we examined the differential expression

of ten common immune checkpoints in the high- and low-risk

groups (Figure 7D) and found that only CD47 was highly

expressed in low-risk groups. We further explored the

differences in TIDE scores between the two groups

(Figure 7E) and found that the TIDE score of the low-risk

group was higher. Then, we analyzed the differences in m6A

regulatory factors between the high- and low-risk groups

(Figure 7F)and found that FTO, GPM6A, METTL3, and

YTHDC2 were higher in the low-risk group, while

HNRNPA2B1, HNRNPC, TGF2BP1, IGF2BP2, IGF2BP3, and

RBM15B were higher in the high-risk group.

Finally, to reveal the relationship between the expression of

17 prognostic platinum resistance genes and the infiltration level

of immune cells more directly, a scatter plot was drawn and the

correlation curve was fitted by taking the expression values of

8 significant differential immune cells and prognostic platinum

resistance genes in the CIBERSORT results. The results showed

that the average expression value of prognostic platinum

resistance genes was positively correlated with macrophage

M0, macrophage M1 and T cells CD4 memory activated

(Figures 8A–C), while mast cell resting, monocytes and T cells

CD4 memory resting were negatively correlated (Figures 8D–F).

Then, to further identify drugs that may interact with the high-

risk group, we identified the drug sensitivity of TCGA-LUAD

patients (Figure 9) according to the gene expression data of

TCGA-LUAD patients and the GDSC database. The results

showed that the high-risk group was sensitive to drugs

ABT7371910, Axitinib1021, Afatinib1032, Afuresertib1912,

Axitinib1021, Ipatasertib1924, and Ibrutinib1799, and had

lower IC50 (Figure 9A). In contrast, the high-risk group was

nonsensitive to Afatinib1032, Bortezomib1191, Dasatinib1079,

Docetaxel1007, Erlotinib1168, Gefitinib1010, Lapatinib1558,

ZM4474391050, Paclitaxel1080, and Tozasertib1096 (Figure 9B).

3.6 ceRNA network construction

In total, 17 PRR-DEGs related to prognosis were identified,

5 mi-RNA (Figure 10A) interacting with PRR-DEGs were

identified based on Tarbase and Targetscan databases, and

18 lncRNA (Figure 10D) interacting with miRNA were found

through lncBase predicted V.2 and the StarBase V2.0 databases,

which constituted the ceRNA network. The difference in

expression of lncRNA and miRNA between the acute tumor

group and normal group (Figure 10B, C), as well as the KM

survival of high- and low-risk groups, were analyzed. The results

showed that among the five mi-RNA, only has-miR-374a-5p had

different expression and survival curves between the tumor

group and the normal group. The expression of HAS-MIR-

374a-5P in the tumor group was lower, but its survival in the

high-expression group was worse (Figure 10E). The expression of

RP6-24A23.7 in lncRNA was also lower in the tumor group, and

the prognosis was worse in the high expression group

(Figure 10F).

4 Discussion

Although the incidence of lung cancer is lower than that of

female breast cancer, the mortality rate remains the highest

worldwide (Xia et al., 2022). In China, the lung cancer death

rate is the highest among all cancers (Miller et al., 2016). Until

1995, landmark meta-analysis confirmed that cisplatin-based

chemotherapy could significantly prolong the survival of

NSCLC patients compared with meta-supportive treatment

(Listed, 1995). Subsequent studies further confirmed the

importance of chemotherapy in the treatment of NSCLC

(Socinski et al., 2013). Since then, targeted therapies and

immunotherapies have been developed. However, many

patients cannot use targeted drugs because they are resistant

to the drugs or because they contain driving genes; moreover,

immunotherapy cannot be used because of unqualified immune

indexes. As such, chemotherapy remains the best option for these

patients, despite its toxic nature and strong side effects. Cisplatin-

based chemotherapy is still the main method for the treatment of

many cancers, but patients treated with platinum drugs will

inevitably develop drug resistance.

In this study, we explored the mechanisms of drug resistance,

prolonged drug resistance time, and longer survival time for

patients. M6A is a methylationmodification of RNA adenine (A),

which is one of the most abundant modifications in eukaryotic

mRNA. It is mainly regulated by the m6A methylation regulator

(Chen et al., 2019; Liu et al., 2019). Previous studies have focused

on the relationship between m6A and the occurrence and

development of LUAD (Li et al., 2022; Ma et al., 2022; Qian

et al., 2021), or the relationship between the m6A regulatory

factor and chemotherapy resistance of small cell lung cancer

(Zhang et al., 2021a; Zhang et al., 2021b). Some studies have also

found that the m6A regulatory factor is closely related to LUAD

resistance to erlotinib (Li K et al., 2021). As far as we know, our

study is the first to explore the relationship between m6A and

LUAD resistance to platinum. Some past studies have found that

FTO promotes the growth of lung cancer cells (Li J et al., 2019),

but in this study, the expression of FTO in the low-risk group was

higher than that in the high-risk group, which suggests that the
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m6A regulatory gene may have changed in platinum-resistant

patients with LUAD.

In this study, by comparing the genes of LUAD patients from

the TCGA database with platinum resistance genes from A

database of genes related to platinum resistance, 252 platinum

resistance genes with significant differential expression were

obtained, of which 161 were upregulated and 91 were

downregulated. Among the significantly different drug

resistance genes, LIN28B is the most upregulated gene. LIN28,

a structurally conserved RNA-binding protein, is highly

FIGURE 8
Prognostic model genes associated with immune cells. (A–F). Correlation of mean gene expression in prognostic model with Macrophage M0,
Macrophage M1, mast cell resting, Monocytes, T cells CD4 memory activated, T cells CD4 memory resting.
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expressed in embryonic hepatocytes. It can promote rapid cell

proliferation and is highly expressed in a variety of tumor tissues

and tumor cell lines. The high expression of the LIN28 gene can

increase the ability of liver cancer cells to metastasize to distant

places (McDaniel et al., 2016), moreover, LIN28 can increase the

resistance of ovarian and breast cancer cells to chemotherapy

drugs by regulating let-7i (Yang et al., 2008). High expression of

LIN28 can increase the insensitivity of lung cancer cells and

pancreatic cancer cells to radiotherapy (Oh et al., 2010).

However, when LIN28 is inhibited, the growth of NSCLC is

reduced (Yang et al., 2019). Our research indicates that the high

expression of LIN28B may lead to an increase in the resistance of

LUAD cells to platinum drugs. This is helpful for further

verification in subsequent experiments.

A PPI network diagram of upregulated and downregulated

genes was constructed, and correlation analysis showed that the

correlation between upregulated and downregulated genes was

greater. The essence of oxidative stress is the imbalance of the

oxidation–antioxidation system in vivo. However, the

intracellular oxidation–reduction system of many tumor cells

is out of balance, and so the drug resistance of LUAD cells is also

closely related to oxidative stress (Winterbourn, 2008). There is

DNA recombination in the GO pathway of gene enrichment, and

the study shows that the occurrence and development of lung

adenocarcinoma are closely related to it (Liang et al., 2022). We

speculate that platinum resistance of lung adenocarcinoma is also

closely related to it, and we will focus on it in the follow-up

research. The research and development of lipopolysaccharide

drugs have further improved drug utilization (Guo et al., 2019).

In our down-regulated gene GO enrichment, top1 is the reaction

pathway to lipopolysaccharide.We speculate that in patients with

lung adenocarcinoma drug resistance, the metabolism of

lipopolysaccharide substances decreases, which may lead to

resistance to platinum drugs, which has a certain hint for us

to improve platinum drugs. The top three GSEA enrichment sites

were e2f targets, g2m checkpoint, and rgf beta signaling. E2f is a

transcription factor gene family. Previous research found that

E2F can regulate the expression of mitochondria-related genes,

and the loss of this regulation leads to serious mitochondrial

defects that affect cell metabolism and tumor cells

FIGURE 9
Differences in sensitivity of high and low risk groups to different drugs. (A) More sensitive drugs in the high-risk group. (B) Drugs with higher
resistance in the high-risk group.
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(Benevolenskaya and Frolov, 2015). Yao et al. (Yao et al., 2020)

found that E2F, the most abundant pathway in our GSEA

analysis, is a potential biomarker and therapeutic target of

colon cancer, which indicates that LUAD resistance to

platinum is also closely related to the E2f family. The G2m

checkpoint pathway is an important part of the cell cycle and is

related to the occurrence and development of many tumors. A

High G2M score is always related to the overall survival rate of

pancreatic cancer (Oshi et al., 2020).

NMF, which can be used to solve the complex and excessive

calculation issues caused by huge data, is a decomposition non-

probability algorithm using matrix decomposition, belonging to

the linear algebra algorithm group (Egger, 2022). NMF processes

the data after TFIDF conversion by decomposing a matrix into

two low-level matrices (Obadimu, 2019). We used the NMF

algorithm for the molecular typing of PRR-DEGs and found that

LUAD samples could be divided into two categories. We then

used heatmap visualization to identify associations between PRR-

DEGs and clinical information such as stage, race, age, and sex.

Using PCA, we also found that the two categories of samples

could be distinguished easily. In GSVA analysis, 4dk wnt beta-

catenin signaling and hedgegcg signaling had the highest scores

in C1. Wnt/β-catenin is a classic signal pathway, and the

occurrence and development of many tumors are closely

related to it, including colon cancer, hepatocellular carcinoma,

desmoid tumor, pancreatic cancer, gastric cancer, melanoma,

ovarian cancer, renal cancer (Guillen-Ahlers,2008), and prostate

cancer (Robinson et al., 2008). Our analysis shows that the

platinum resistance of LUAD is also related to Wnt/β. In

contrast, g2 eckpoint and e2f scored higher in C2. Some

studies (Li S et al., 2021) have shown that the expression of

abnormal cyclin G2 is the key factor leading to the pathological

process of cancer, including glioma. Among the platinum

resistance genes in LUAD, the related gene of cyclin G2 is

also very important and warrants attention.

To better guide clinical work, we constructed a prognosticmodel

to evaluate the PRR-DEGs, and screened 252 PRR-DEGs using the

LASSO regression method. There were 17 genes with a non-zero

retention coefficient, and so we constructed a prognostic model with

17 genes; the influence coefficient of each gene was the coefficient of

the LASSO regression results. Based on TCGA-LUAD data and a

validation set (GSE26939), survival analysis was carried out to verify

the prognostic efficacy of the prediction model, which confirmed

that the prognosis of the high-risk group was poor. Moreover, risk

factor analysis was used to evaluate the correlation trend between

each gene and risk score. We found that genes such as HOXB7,

NT5E, and KRT18 were positively correlated with risk score. Studies

(Yan et al., 2022) have shown that the HOXB gene cluster

contributes to cancer development; increased expression of

HOXB3, HOXB6, HOXB7, HOXB8, and HOXB9 in LUAD

patients is linked with poor overall survival (OS). Our data

mining also illustrated the close relationship between the

FIGURE 10
ceRNA analysis results. (A) Venn diagram ofmiRNA intersection ofmiRNAs in targerScan and tarbase databases. (B)mRNA expression difference
between tumor group and normal group. (C) Survival analysis of miRNAs in high-risk and low expression groups. (D) Venn diagram of the interaction
ofmiRNAs in lncBase predicted v2 and starBase V2. (E) LncRNA expression difference between tumor group and normal group. Survival analysis of (F)
LncRNA in high and low expression groups.
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HOXB7 gene and LUAD platinum resistance. Past research (Dong

et al., 2020) has also shown that NT5E levels are significantly higher

in NSCLC tissues and cells. In our model, NT5E was also associated

with the platinum resistance of LUAD, suggesting that the NT5E

gene may be related to the development of lung cancer. The study

has shown that the overexpression of ALDOA increases the

migration and invasion of lung cancer cell lines in vitro and the

formation of metastatic lung cancer in vivo (Chang et al., 2019). Our

analysis suggests that ALDOAmay also be associated with platinum

drug resistance. Cystatin (CASPs) is an important regulator and

executor of the apoptosis pathway. It has been found that the CASP

family is closely related to the prognosis of non-small cell lung

cancer (Lee et al., 2010). However, there is no study to explore the

relationship between CASP and platinum resistance. Our analysis

shows that CASP12, and CASP14 may be related to platinum

resistance. This will guide the following research. The researchers

have found that the deletion of FAT1 can accelerate the occurrence

and malignant progression of tumors. In mouse and human

squamous cell carcinomas, the loss of FAT1 function can

promote tumorigenesis by inducing a mixed EMT state

(Pastushenko et al., 2021). The other study has shown that

FAT1 mutation is associated with better immunogenicity and ICI

efficacy, which may be considered as a biomarker of patients who

choose to receive immunotherapy (Zhang et al., 2022). The results of

the expression of the same gene will be different under different

treatment regimens. No one has studied the relationship between

FAT1 and platinum resistance.FEN1 is the main component of the

basic excision and repair pathway of the DNA repair system. Studies

have shown that the high expression of the FEN1 gene is essential for

the rapid proliferation of lung cancer cells, and the FEN1 gene can

also increase the resistance of lung cancer cells to cisplatin (He et al.,

2017). Studies have shown that the over-expression of

GDF15 significantly inhibits the proliferation of NSCLC in vitro

and in vivo (Lu et al., 2018). Through our analysis and prediction,

GDF15 may be also related to platinum resistance of lung

adenocarcinoma, which needs further verification by subsequent

experiments. Studies have shown that high TXNRD1 protein levels

are associated with shorter disease-free survival and postoperative

distal metastasis-free survival in patients with NSCLC, including

some individuals receiving platinum adjuvant chemotherapy

(Delgobo et al., 2021; Guo et al., 2021), indicating that

TXNRD1 is an important predictor of poor prognosis, which is

consistent with our conclusion. Some studies have shown that

UBE2S promotes the metastasis of lung adenocarcinoma cells by

activating NF- κ B signal transduction, while other studies have

shown that UBE2S regulatesWnt/β-catenin signal and promotes the

progression of non-small cell lung cancer (Ho et al., 2021; Qin et al.,

2020).In our predictive model, UBE2S is also an important factor in

platinum resistance in patients with lung adenocarcinoma. The

clinical prediction model established by Luo Yu et al. also shows

that WFDC2 is an important factor affecting the prognosis of lung

adenocarcinoma. Whether WFDC2 is also an important factor

affecting platinum resistance in lung adenocarcinoma needs

further experimental verification (Luo et al., 2022). Univariate

Cox regression analysis showed that prognostic model genes,

KRAS mutations, stages, and so on, were significantly correlated

with OS. These univariate prognostic variables were used as

covariates of multivariate Cox regression analysis. Except for

CASP14, the other 16 prognostic model genes were independent

prognostic factors related to OS. The nomogram model once again

confirmed the reliability and prospective clinical applicability of the

risk model. When the nomogram was used for calibration, the

predicted results were highly correlated with the actual survival rate.

This shows that our risk model has good clinical application value.

Focusing on the immune status of tumor patients will help us

to explore the mechanisms of drug resistance and new

therapeutic targets. Therefore, we used the CIBERSORT

method to calculate the infiltration degree of immune cells in

all samples; the results showed that resting T cells CD4 memory,

resting dense cells, resting mast cell, and monocytes had higher

infiltration degrees in the low-risk group than in the high-risk

group. While activated T cells CD4 memory, macrophage M0,

macrophage M1, and activated mast cells had higher infiltration

degrees in the high-risk group compared with the low-risk

group. From a scatterplot of the above eight different immune

cells and platinum resistance genes, the average expression values

of platinum resistance genes in prognosis were positively

correlated with macrophage M0, macrophage M1 and

activated T cells CD4 memory but negatively correlated with

resting mast cell, monocytes, and resting T cells CD4 memory.

The TIDE score can be used to evaluate the potential clinical

efficacy of immunotherapy in different immune-related gene

prognostic model (IRGPI) subsets (Liu, 2018). The higher the

TIDE prediction score, the higher the possibility of immune

escape, suggesting that patients are less likely to benefit from

immunotherapy. Compared with the high-risk group, the low-

risk group had higher TIDE scores, indicating that people in the

low-risk group were more likely to experience immune escape and

could not benefit from immunotherapy. N6-methyladenosine, also

called m6A, is a base modification widely existing in mRNA. The

internal modification of mRNA can affect the RNA splicing,

translation, stability, and epigenetics of some non-coding RNAs

(Meyer and Jaffrey, 2017). By analyzing the differences in m6A

regulatory factors between high- and low-risk groups, it was found

that FTO, GPm6A, METTL3, and YTHDC2 expression was higher

in the low-risk group. Among these, studies have shown that FTO

plays the role of an oncogene in acute myeloid leukemia (Li et al.,

2017) by regulating the level of m6A and promoting the occurrence

and development of leukemia. Later, other studies showed that FTO

plays a role as m6A demethylase in various life processes (Gokhale

et al., 2016; Xiang et al., 2017). However, in this study, FTO was

highly expressed in the low-risk group. We suggest that FTO is not

closely related to platinum drug resistance in LUAD. The

expressions of HNRNPA2B1, HNRNPC, TGF2BP1, IGF2BP2,

IGF2BP3, and RBM15B were higher in the high-risk group,

indicating that the above m6A regulatory factors play an
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important role in the mechanism of platinum resistance in LUAD.

Fromdrug sensitivity analysis, the high-risk group had lower IC50 to

the drugs ABT7371910, Axitinib1021, Afatinib1032,

Afuresertib1912, Axitinib1021, Ipatasertib1924, and

Ibrutinib1799, indicating that the high-risk group is more

sensitive to these drugs, but less sensitive to Afatinib1032,

Bortezomib1191, Dasatinib1079, Docetaxel1007, Erlotinib1168,

Gefitinib1010, Lapatinib1558, ZM4474391050, Paclitaxel1080, and

Tozasertib1096. This has a certain clinical guiding significance for

patients with LUAD after platinum resistance. Has-miR-374a-5p is

related to the occurrence and development of pancreatitis (Wen

et al., 2019), but the relationship between has-miR-374a-5p and

platinum drug resistance of LUAD has not been explored. ceRNA

analysis showed that has-miR-374a-5p is highly expressed in healthy

individuals, and the higher the expression, the better the survival.

RP6-24A23.7 is associated with lymphatic metastasis of LUAD (Yan

et al., 2017). Morever, as we have demonstrated, may also be

associated with platinum resistance in LUAD. The expression of

RP6-24A23.7 was lower in the tumor group, and the survival was

worse in the low expression group.These indicate that has-miR-

374a-5p and RP6-24A23.7 were protective factors.

However, our research also had some limitations. First, in

order to fully clarify the molecular mechanisms of resistance and

development of platinum drugs in LUAD, microarray samples

from platinum drugs in different degrees of LUAD are needed.

Second, many biomarkers related to platinum resistance in

LUAD still have no characteristics, and further bioinformatic

analyses and experimental verifications are needed to clarify the

biological function of these predictive genes in platinum

resistance in LUAD. Unfortunately, because of the COVID-19

epidemic, our basic experimental process has been hindered. In

future research, we will further use experiments to verify the

mechanisms of drug resistance.

In summary, this study explored the characteristics of

high- and low-risk groups by analyzing the biological

process characteristics of platinum resistance genes in

LUAD, established a prognosis model, and analyzed its

m6A regulatory factors, immune infiltration, and drug

sensitivity. Our results have significance for guiding clinical

practice. We identified the potential targets and mechanisms

of LUAD platinum resistance, laying the foundation for

further research.
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