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Background: Lung adenocarcinoma (LUAD) shows intratumoral heterogeneity,

a highly complex phenomenon that known to be a challenge during cancer

therapy. Considering the key role of monocytic myeloid-derived suppressor

cells (M-MDSCs) in the tumor microenvironment (TME), we aimed to build a

prognostic risk model using M-MDSCs-related genes.

Methods: M-MDSCs-related genes were extracted from The Cancer Genome

Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Utilized

univariate survival analysis and random forest algorithm to screen candidate

genes. A least absolute shrinkage and selection operator (LASSO) Cox

regression analysis was selected to build the risk model. Patients were

scored and classified into high- and low-risk groups based on the median

risk scores. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis along with R packages “estimate” and

“ssGSEA” were performed to reveal the mechanism of risk difference.

Prognostic biomarkers and tumor mutation burden (TMB) were combined to

predict the prognosis. Nomogram was carried out to predict the survival

probability of patients in 1, 3, and 5 years.

Results: 8 genes (VPREB3, TPBG, LRFN4, CD83, GIMAP6, PRMT8, WASF1, and

F12) were identified as prognostic biomarkers. The GEO validation dataset

demonstrated the risk model had good generalization effect. Significantly

enrichment level of cell cycle-related pathway and lower content of CD8+

T cells infiltration in the high-risk group when compared to low-risk

group. Morever, the patients were from the intersection of high-TMB and

low-risk groups showed the best prognosis. The nomogram demonstrated

OPEN ACCESS

EDITED BY

Zhouxiao Li,
Ludwig Maximilian University of Munich,
Germany

REVIEWED BY

Syuzo Kaneko,
National Cancer Center Research
Institute, Japan
Burong Hu,
Wenzhou Medical University, China
Xi Jia,
The First Affiliated Hospital of Xi’an
Jiaotong University, China

*CORRESPONDENCE

Rong-Xiu Li,
rxli@sjtu.edu.cn

†These authors share first authorship

‡These authors share second authorship

§These authors share third authorship

SPECIALTY SECTION

This article was submitted to Cancer
Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 08 July 2022
ACCEPTED 30 November 2022
PUBLISHED 04 January 2023

CITATION

Wang G-C, Zhou M, Zhang Y, Cai H-M,
Chiang S-T, Chen Q, Han T-Z and Li R-X
(2023), Screening and identifying a
novel M-MDSCs-related gene signature
for predicting prognostic risk and
immunotherapeutic responses in
patients with lung adenocarcinoma.
Front. Genet. 13:989141.
doi: 10.3389/fgene.2022.989141

COPYRIGHT

© 2023 Wang, Zhou, Zhang, Cai,
Chiang, Chen, Han and Li. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 04 January 2023
DOI 10.3389/fgene.2022.989141

https://www.frontiersin.org/articles/10.3389/fgene.2022.989141/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.989141/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.989141/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.989141/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.989141/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.989141/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.989141/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.989141&domain=pdf&date_stamp=2023-01-04
mailto:rxli@sjtu.edu.cn
mailto:rxli@sjtu.edu.cn
https://doi.org/10.3389/fgene.2022.989141
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.989141


good consistency with practical outcomes in predicting the survival rate over 1,

3, and 5 years.

Conclusion: The risk model demonstrate good prognostic predictive ability.

The patients from the intersection of low-risk and high-TMB groups are not

only more sensitive response to but also more likely to benefit from immune-

checkpoint-inhibitors (ICIs) treatment.

KEYWORDS

LUAD, M-MDSCs, prognostic model, immunotherapeutic responses, precision
medicine

Introduction

Lung cancer is the second most commonly diagnosed cancer

with 11.4% of incidence rate and 18% mortality rate, ranked first,

among 36 tumors in 185 countries in the worldwide (Sung et al.,

2021). LUAD is a prevalent subtype of NSCLC and comprises for

greater than 40% of lung cancer cases (Shi et al., 2016). ICIs is one of

the most promising treatments for LUAD when compared to other

cancer therapies, such as surgery, chemotherapy, and radiotherapy.

Though ICIs therapy shows an increased estimated overall survival

rate over 5 years among these patients which is 16% (Gettinger et al.,

2018), only a small fraction of patients can response to ICIs

treatment. Therefore, it is an urgent need to identify effective

prognostic biomarkers to stratify the patients and predict

immunotherapeutic responses for precision medicine.

Tumor heterogeneity is tightly linked to the tumor

microenvironment (TME). Benefiting from the advancements in

sequencing technologies and machine learning algorithms,

understanding of the characteristics of TME at the molecular level

has substantial clinical value to predict prognosis in patients. In the

TME of LUAD, many studies have been focused on the prognosis of

T cells (Du et al., 2021), B cells (Zhang et al., 2021), cancer-associated

fibroblasts (CAFs) (Navab et al., 2011; Min et al., 2021), and tumor-

associated macrophages (TAMs) (Chen et al., 2021), as well as the

biological processes, including epithelial-mesenchymal transition

(EMT) (Shi et al., 2021) and angiogenesis (Cai et al., 2021).

However, the analysis on the prognostic significance of M-

MDSCs, showing a strong immunosuppressive function, is still

insufficient.

In clinical practice, metastasis is an important cause of

cancer-related deaths (Veglia et al., 2021). MDSCs are highly

undifferentiated cells derived from immature myeloid progenitor

cells with immunosuppressive ability in the TME of LUAD. They

can be divided into M-MDSCs and polymorphonuclear myeloid-

derived suppressor cells (PMN-MDSCs) (Talmadge and

Gabrilovich, 2013; Bronte et al., 2016; Gabrilovich, 2017; De

Cicco et al., 2020). M-MDSCs exert greater immunosuppressive

effects relative to PMN-MDSCs, which suppress antigen-non-

specific and antigen-specific T cell functions by generating nitric

oxide (NO), arginase-1 (Arg-1), and other immunosuppressive

factors (Wang Y. et al, 2019). Moreover, M-MDSCs participate in

EMT and angiogenesis in the TME, forming a pre-metastatic

niche (Groth et al., 2019), and finally differentiate into TAMs

with immunosuppressive ability. TAMs participate in

angiogenesis and tumor pre-metastasis (Yang et al., 2020;

Consonni et al., 2021). Although various methods have been

developed to overcome the therapeutic resistance due to the

existence of M-MDSCs, the results remain unsatisfactory.

Given the important role of M-MDSCs between monocytes

and TAMs and its close relationship with tumor heterogeneity in

the TME, we hypothesized that M-MDSCs-related genes could

act as prognostic signature genes and effectively stratify patients.

Based on univariate survival analysis, random forest algorithm,

and LASSO Cox regression method, a risk model was generated

using the TCGA training set and these findings were validated in

the GEO dataset. We aimed to discover robust biomarkers to

precisely stratify LUAD patients. Understanding the mechanism

underlying the differences between risk groups might help

develop effective strategies for ICIs therapy.

Materials and methods

LUAD and M-MDSCs datasets

The data of RNA-seq transcriptome (workflow: HTSeq-

Counts) and corresponding clinical information of the

TCGA-LUAD cohort (https://portal.gdc.cancer.gov/) were

downloaded using the R package “TCGAbiolinks”

(Colaprico et al., 2016) as the training group. Entrez IDs

were converted into gene symbols and the counts were

transformed using the file from TCGA (https://gdc.cancer.

gov/about-data/gdc-data-processing/gdc-reference-files) into

the transcripts per million (TPM) formation. Next, the data

were log (x+1) normalized. Using the “GEOquery” (Davis and

Meltzer, 2007), from the GEO database (https://www.ncbi.

nlm.nih.gov/geo), the validation dataset GSE68465 (Director’s

Challenge Consortium for the Molecular Classification of

Lung Adenocarcinoma et al., 2008) and M-MDSCs datasets

GSE131552 and GSE162353 (Kwak et al., 2020) were obtained.

Patients with insufficient information were excluded with the

exclusion criteria as follows: overall survival days less than
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30 days; lack of specific information on clinical characteristics;

recurrent cases; lack of information on gene expression in the

clinical data. First, 594 RNA-seq cases and 515 LUAD clinical

cases were extracted from the TCGA database. After the

exclusion, 592 cases (including 59 normal tissues and

533 tumor tissues) for differential analysis and 482 cases

for survival analysis were obtained. Both GSE131552 and

GSE162353 consisted of three monocytes samples and three

M-MDSC cases and the GSE68465 comprised 439 cases for

survival analysis.

Analysis of differentially expressed genes
(DEGs)

DEGs were acquired between monocytes and M-MDSCs using

the R package, “limma”, and visualized on a heatmap (This DEGs

were defined asM-DEGs). The cut-off values forM-DEGs screening

were p < 0.05 and |logFC| > 1. DEGs in TCGAwere identified using

the R package, “DESeq2”, and visualized on a volcano plot (This

DEGs were defined as LUAD-DEGs). The cut-off values for LUAD-

DEGs were set as padj < 0.05 and |logFC| >1. The volcano plot were

FIGURE 1
Identification of M-MDSCS-related signature genes in LUAD patients. (A) Univariate Cox regression analysis revealed the 56 genes significantly
correlated with clinical prognois. (B,C) Heatmap for the difference between Monocytes and M-MDSCs datasets (GSE131552, GSE162353). (D) A
volcano map of the differently expressed genes in TCGA training set. (E) Randomforest showed the number of trees and its classification effect.
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drawn using the R packages, “ggplot2”. Finally, The genes obtained

from the intersection ofM-DEGs and LUAD-DEGs were defined as

M-MDSCs-related genes, for these genes can exert function to affect

prognosis and immunotherapy of LUAD patients.

Acquisition of the signature gene

To construct an effective and precise prognostic risk

model based on M-MDSCs-related genes, the “survival”

package was firstly used followed by the univariate Cox

regression analysis to filter the prognosis-related genes (p <
0.05). Subsequently, the random forest algorithm was utilized

to obtain genes with the top variance using the R package,

“randomForestSRC”. The intersecting genes between

univariate Cox regression and random forest analysis were

our target for further evaluation.

Construction and verification of
M-MDSCs-related prognostic model for
patients with LUAD

The prognostic risk model was constructed by LASSO Cox

regression analysis using “survival” and “glmnet” packages. Each

patient was scored according to the levels of gene expression and their

corresponding coefficients as follows: Risk score = Exp (gene1)* Coef

(gene1) + . . .. . .+ Exp (genen)* Coef (genen), where Exp indicated the

level of gene expression and Coef represented the corresponding

coefficient of gene. According to the median risk value, patients were

classified into low- and high-risk groups. To visualize the grouping

effect between these two groups, t-distributed stochastic neighbor

embedding (t-SNE) analysis was conducted using the “ggplot2” and

“Rtsne” packages. The Kaplan-Meier (K-M) curve and log-rank test

was applied to compare differences of the survival probabilities

between the two risk groups using the “survival” and “survminer”

packages. The receiver operating characteristic curve was plotted to

evaluate the accuracy of the model using “survminer”, “timeROC”,

and “survival” packages.

Functional annotation and estimation of
immune status between risk groups

To elucidate the mechanism and find potential targets between

the two risk groups, GO annotation and KEGG analysis were

performed using “clusterProfiler” (Yu et al., 2012). Additionally,

to further estimate the immune status between the two risk groups,

R packages “estimate” and “ssGSEA” were applied. These results

were demonstrated using “ggplot2”.

FIGURE 2
Risk model based on M-MDSCs-related signature genes for LUAD patients. (A) Venn plot showed genes acquired from different methods for
model constrution. (B,C) Lasso and partial likelihood deviance coefficient profiles of the selected genes.
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Evaluation of TMB for patients with LUAD

The Mutation Annotation Format (MAF) files of somatic

variants for LUAD were extracted from TCGA using the

GDCquery_Maf (pipelines = “varscan”) tool in the R package,

“TCGAbiolinks”. The mutational data were analyzed using

“maftools.” The mutational frequency with the number of

variants/the length of exons (38 million) was defined as the

TMB value. Further, patients were categorized into low-TMB and

high-TMB groups according to the median TMB value for

subsequent analysis.

Construction and calibration of
nomogram for patients with LUAD

Univariate and multivariate Cox analysis were conducted

using the R package, “survival”. Four clinical variables (age,

gender, risk score, and stage) were employed to construct the

nomogram for predicting the overall survival of LUAD

patients over 1, 3, and 5 years by using the R package,

“rms.” To estimate the consistency between the practical

results and prediction outcomes, a calibration curve was

constructed and plotted.

Statistical analysis

The t-test or Wilcoxon test were chosen to compare the mean

between two groups based on actual requirements.

Benjamini–Hochberg was carried out to adjust the p-value for

multiple testing with the R function “p.adjust”. Kaplan-Meier

(K-M) and the log-rank test were performed for the survival

analysis. p < 0.05 represented statistical significance. All statistical

analyses were performed on the R software (v4.0.3).

Results

Obtation of M-MDSCs-related prognostic
signature genes for patients with LUAD

LUAD-DEGs between normal controls and TCGA-LUAD

patients were presented (Figure 1D). M-DEGs between

monocytes and M-MDSCs in the GEO dataset were shown

in Figures 1B,C. In order to simplify complexities and achieve

the best stratification with fewer genes, two different

algorithms (including the univariate Cox regression and

random forest) were utilized to select the most significant

prognostic-related genes. As the result, nine genes were

identified from univariate Cox regression (Figure 1A) and

random forest (Figure 1E) analysis as shown in the Venn

diagram (Figure 2A).

Construction and verification of the
M-MDSCs-related prognostic model for
patients with LUAD

Prognostic model was constructed using the nine genes

obtained from the above analysis, eight signature genes were

acquired (Figures 2B,C). The risk score for each LUAD

patients was derived as follows: expression values of

VPREB3* −0.0895214478145377( ) + LRFN4* 0.130109206874633( )
+ F12* 0.0789203393477133( ) + PRMT8* −0.0840653641514239( )
+TPBG* 0.085357138019245( ) + GIMAP6* −0.0384913787997157( )
+CD83* −0.0878273131513041( ) +WASF1* 0.0439661671050762( )

In the TCGA training set, LUAD patients were categorized

into two risk groups (Figure 3A) based on the median value of the

risk scores. Blue dots represented patients who were alive, while

those in red indicated the death of patients, the survival time was

obviously reduced with an increase in the risk scores (Figure 3C);

The t-SNE plot demonstrated a good grouping effect between the

risk groups (Figure 3E). K-M curve analysis showed significant

survival differences (p < 0.05), whereby the low-risk group had a

better prognosis (Figure 4A). The values of area under the time-

dependent ROC curve over 1, 3, and 5 years were 0.7, 0.65, and

0.63, respectively (Figure 4C).

The area under the curve (AUC) of risk model in the TCGA

training set was greater than 0.6, suggesting it had a good predictive

power. To validate the generalization of our model,

GSE68465 included 439 samples with useful survival information

was applied for the following analysis. The risk scores distribution

based on themedian value and the association between survival time

and risk scores was shown in Figures 3B,D. With an increase of the

risk scores, the survival time was decreased, which was consistent

with the results of the TCGA training set. t-SNE analysis showed

good grouping effects between the two risk groups (Figure 3F). The

K-M curve showed significant survival differences (p < 0.05) and

patients in the high-risk group experienced worse survival outcomes

(Figure 4B). The time-dependent ROC curve demonstrated good

generalization effect, AUC values for the prognostic model over 1, 3,

and 5 years were 0.7, 0.67, and 0.6, respectively (Figure 4D).

Functional and pathway enrichment
analyses and estimation of the immune
status between two risk groups

To elucidate the mechanism affecting the prognosis of LUAD

patients between the two risk groups, GO annotation, KEGG

enrichment analyses and immune cell infiltration status

estimation were performed. The GO annotation of DEGs

between the two risk groups were mainly enriched in the

metabolic and multicellular organismal process (Supplementary

Figure S1). KEGG results showed high-risk group significantly
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enriched in cell cycle processes (Figure 5A), including “E2F targets”,

“G2M checkpoint” and “mitotic spindle” (Figure 5B), while low-risk

group remarkably enriched in IFN-γ and inflammation related

pathway (Figure 5C). Estimate algorithm was performed to

compare immune status between the two risk groups (Figures

6A–D), the immune score and estimate score of low-risk group

was significantly higher than high-risk group, while the tumor purity

of low-risk group was remarkably lower than high-risk group. It

FIGURE 3
The distribution of risk scores in training (TCGA) and validation set (GSE68465). (A) The patients from TCGA training set were divided into high-
and low-risk groups based on the median value of the risk scores. (B) The patients from GEO validation set were divided into high- and low-risk
groups based on themedian value of the risk scores. (C) The distribution of the survival time between high- and low-risk groups in the TCGA training
set. (D) The distribution of survival time between high- and low-risk groups in the GEO validation set. (E) The t-SNE plot in the TCGA training set.
(F) The t-SNE plot in the GEO validation set.
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seems the risk was consistent with the immune status. Then, ssGSEA

was carried out to compare the distribution of immune cells

(Figure 6E) and verified the “estimate” result. “Activated B cell”,

“Activated CD8+T cell”, “Activated dendritic cell” and “Natural

killer cell” were remarkably enriched in the low-risk group, which

contributed to its decrease of risk.

Analysis of TMB between the two risk
groups

TMB in high-risk and low-risk groups was also investigated.

The differences in the mutational landscape between the two risk

groups were shown in Figures 7A,B. The frequency of mutations

was higher in the high-risk group (90.64%) as compared to the

low-risk group (79.48%) in the waterfall map depicting the top

10 mutations. The boxplot showed that the low-risk group had a

lower TMB value relative to the high-risk group (Figure 7C) (p <
0.001). Analysis of overall survival indicated that the patients

from the intersection between low-TMB and high-risk groups

showed the worst prognosis, while patients from the intersection

between high-TMB and low-risk groups showed the best

prognosis (p < 0.0001) (Figure 7D).

Construction of the nomogram and its
calibration for patients with LUAD

The risk score was proved to be an independent prognostic

factor after performed univariate andmultivariate Cox regression

analysis (p < 0.001) (Supplementary Figures S2, S3). The

nomogram integrated the risk score with other clinical

FIGURE 4
Evaluation of the predictive ability of the eight-gene signature. (A) K-M survival curve for OS in the TCGA training set. (B) K-M survival curve for
OS in the GEO validation set. (C) Time-dependent ROC curve of prognosticmodel at 1-,3-,5-year in the TCGA training set. (D) Time-dependent ROC
curve of prognostic model at 1,-3,-5- year in GEO validation set.
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characteristics, including age, stage and gender for the prediction

of 1-, 3-, and 5-year overall survival probabilities (Figure 8A),

thus providing a quantitative tool for estimating prognosis of

patients in the clinical settings. Good consistency was observed

between the practical results and prediction outcomes

(Figures 8B–D).

Discussion

LUAD is a heterogeneous intratumoral disease (Herbst

et al., 2018), making its high incidence and mortality rate that

causes major public healthcare concern (Malla et al., 2021).

Traditional clinical treatment does not consider changes at the

molecular level, and a huge deficiency exists in traditional

clinical treatment. Although immunotherapy has substantially

improved the survival of patients with advanced LUAD, the

outcome remains unsatisfactory due to the tumor

heterogeneity. While the studies on the roles of

heterogeneity in TME are limited, therefore, it is necessary

to identify potential biomarkers of TME to stratify patients for

the personalized therapy. In this study, the prognostic risk

model based on M-MDSCs-related genes demonstrated good

prognostic prediction ability in the TCGA training set and

showed good generalization effect in the GEO validation set.

High- and low-risk groups stratified by prognostic biomarkers

showed significant differences in survival analysis. Functional

annotations and assessment of immune cell infiltration levels

revealed that the high-risk group was enriched in cell cycle-

relevant targets and contained lower infiltration ratios of

CD8+T cells, which resulted in a strong immunosuppressive

state than low-risk group. The patients from the intersection

between low-risk and high-TMB groups had the best

prognosis. Risk score was an independent prognostic factor,

the nomogram indicated that the practical results and

prediction outcomes had good consistency.

In our research, prognostic biomarkers consisted of eight

genes (VPREB3, TPBG, LRFN4, CD83, GIMAP6, PRMT8,

FIGURE 5
Function and pathway enrichment analysis by GSEA between high- and low-risk groups in LUAD patients. (A–C) The pathway enrichment and
analysis between high- and low-risk groups in LUAD patients.
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WASF1, and F12), most of which were closely related to the

prognosis of LUAD. VPREB3 encoded proteins were involved in

the maturation of B cells and might play an important role in the

assembly of pre-B cell receptors (Rosnet et al., 2004). In the TME,

B cells participated in all clinical stages of lung cancer and played

an important role in tumor development (Wang S.-S. et al, 2019).

TPBG was a leucine-rich transmembrane glycoprotein that

encoded cell adhesion, which was expressed in many tumor

tissues but hardly in normal adult tissues and was involved in the

directional movement of cells. TPBG, also known as 5T4, was a

marker of early differentiation of human embryonic stem cells

and was involved in the EMT process and was associated with

poor prognosis in a variety of tumors (Stern and Harrop, 2017).

LRFN4, also known as SALM3, was expressed in many tumors

and leukemia cell lines. LRFN4 was involved in the migration of

monocytes/macrophages to inflammatory regions and might

play a role in the polarization of M2 macrophage

(Konakahara et al., 2011), which were involved in a poor

prognosis for LUAD (Cao et al., 2019). The CD83 gene

encoded a membrane protein that belonged to the

immunoglobulin superfamily of receptors, studies had shown

that CD83 was not only a typical co-stimulatory molecule, but

played an important role in controlling the immune response

(Grosche et al., 2020). CD83 was expressed in a variety of active

immune cells (B lymphocytes, T lymphocytes, monocytes,

dendritic cells, neutrophils, etc.) (Grosche et al., 2020), and

FIGURE 6
Estimated the difference of immune status between high- and low-risk groups in LUAD patients by ESTIMATE and ssGSEA algorithm. The
ESTIMATE algorithm evaluated the difference of (A) immune scores (B) stromal score (C) estimate score (D) tumor purity between high- and low-risk
groups in LUAD patients (E) ssGSEA algorithm evaluated the level of immune cells infiltration between high- and low-risk groups in LUAD patients.
***p < 0.001; **p < 0.01; *p < 0.05; ns, Not significant.
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these immune cells were closely related to the prognosis of

LUAD. GIMAP6 was expressed in lymphocytes and was

involved in the development of cells in the immune system,

where it regulated immune function by controlling cell death and

activating T cells (Ho and Tsai, 2017). In addition,

GIMAP6 induced by IFN-γ played an important role in

antimicrobial immunity (Yao et al., 2022). Although

GIMAP6 had been poorly reported in the prognosis of LUAD,

its activation of T lymphocytes played an important role in

improving the prognosis of LUAD (Jackute et al., 2015).

PRMT8 was a member of the arginine methyltransferase, its

participation in arginine methylation played an important role

in cell signaling, RNA processing, transcriptional regulation and

DNA repair (Lee et al., 2005). PRMT8 had been reported to be

involved in the prognosis of a variety of tumors, with high

expression of PRMT8 associated with a good prognosis in

breast and ovarian cancers and poor prognosis in gastric cancer

(Hernandez et al., 2017). WASF1, also known as WAVE1, was a

member of the Wiskott-Aldrich syndrome protein family and

acted as a regulator between Rac-GTPase and actin to induce actin

polymerization (Ito et al., 2018), was an integral part of cellmotility

and a key step in cancer metastasis (Fernando et al., 2008), which

was a hallmark of poor prognosis in patients with LUAD (Inamura

and Ishikawa, 2010). F12, also known as clotting factor 12, was a

serine protease. There was substantial evidence showed they

played an important role in macrophage polarization and

tumor-associated macrophages were associated with poor

prognosis for LUAD (Renne and Stavrou, 2019; Zheng et al.,

2020). We investigated and explored the role of eight signature

genes in the prognosis of LUAD, which reasonably explained as

prognostic biomarkers to a certain degree.

The predictive power of prognostic risk model and

significant difference in survival analysis between high- and

low-risk groups of LUAD patients prompted us to explore the

mechanism of the risk differences. GO enrichment results

were consistent with the need for high-intensity metabolic

FIGURE 7
Analysis of the TMB between high- and low-risk groups and predicted prognosis in different combination in LUAD patients. (A) Waterfall plot
demonstrated mutation information of the genes with high mutation frequencies in the high-risk group. (B) Waterfall plot demonstrated mutation
information of the genes with high mutation frequencies in the low-risk group. (C) Difference of TMB between high- and low-risk groups. ***, p <
0.001. (D) K-M curve for four combinations groups divided by risk groups and TMB groups.
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activity in tumor cells. In the TME, tumor cells rapidly

proliferated in a hypoxic environment, only by producing

metabolic flows different from normal cells could they meet

their survival in extreme condition. KEGG enrichment

showed that the high-risk group was mainly enriched in

the signaling pathways related to the cell-cycle (G2M_

Checkpoint, E2F_Targets, Mitotic_Spindle), while the low-

risk group was mainly enriched in the signaling pathways

related to IFN-γ and inflammation. The result of high-risk

group was consistent with the theory that overactivated cell

cycle allowed tumor cells to evade immune surveillance in

addition to accelerating cell proliferation (Li and Stanger,

2020), which contributed to its high risk. IFN-γ played an

important role in activating cellular immunity and activating

antitumor immunity (Jorgovanovic et al., 2020), which could

kill tumor cells and led to low risk. Analysis of GO and KEGG

showed the risk difference was closely related to the immune

status of patients. Then, we estimated the level of immune cell

infiltration with R packages “estimate” and “ssGSEA.” In the

TME, which includes cells that exerts immune killing effects

(CD8+T, CD4+T, NK, DC, M1, etc.) and immune suppressive

effects (Treg, MDSCs, TAM, etc.), there are also stromal cells

(CAF, etc.) and the infiltration ratio of different cells is closely

related to the prognosis of LUAD patients. In the estimation of

immune cells infiltration by “estimate,” the low-risk group

had a higher proportion of immune score, a higher proportion

of estimation score and a lower proportion of tumor purity

when compared to the high-risk group, which pointed to the

close relationship between risk difference and proportion of

immune cell infiltration. In order to further verify the

relationship between risk difference and immune status, we

evaluated the level of immune cells infiltration between high-

and low-risk groups with “ssGSEA” and found that the results

were consistent with the estimation by “estimate.” Compared

with the high-risk group, the low-risk group had a higher

proportion of immune killing-related cells, such as activated

B cells, CD8+T cells, DC cells and NK cells. Studies have

shown that activated B cells (Germain et al., 2014),

CD8+T cells (Gueguen et al., 2021), DC cells (Goc et al.,

2014) and NK cells (Zeng Y. et al, 2021) were associated

with a good prognosis in LUAD patients. In addition to

explaining the mechanism of the difference of risk between

the high- and low-risk groups, functional annotations and

immune cell infiltration levels also indicated a close

relationship between the degree of risk and immune status.

The high-risk group was in an immunosuppressive state due

to the overactivation of the cell cycle and a lower infiltration of

immune-killing cells. Besides increasing the infiltration ratio

FIGURE 8
The nomogram for predicting the overall survival of LUAD patients. (A) The nomogram for predicting the LUAD patients with 1,-3,-5-year overall
survival. (B–D) The plots depicted the calibration of the nomogram between predicted and actual outcomes.
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of immune-killing cells, targeting cell cycle-related target

signaling pathway will achieve a better clinical effect in

reversing the immunosuppressive state of high-risk

group. Available data showed the prognosis of LUAD

patients was significantly improved by targeting G2M_

Checkpoint-related signaling pathways (Zeng L. et al,

2021). The low-risk group had relatively strong immune-

killing function with a higher infiltration ratio of CD8+T,

which contributed to a better prognosis in LUAD patients.

The correlation between the invasion ratio of CD8+T in tumor

tissues and the response to ICIs had been clinically proved

(Topalian et al., 2016). Given the relationship between risk

level and immune status in high- and low-risk groups, it is

reasonable to infer that low-risk group is more likely to benefit

from ICIs treatment.

At present, ICIs therapy utilizes the immune system to kill

tumor cells and only benefit a small number of patients who

can respond to this treatment (Syn et al., 2017). Inspired by

this phenomenon, we try to utilize some biomarkers to stratify

these patients, to overcome the shortcomings of ICIs therapy

caused by tumor heterogeneity. TMB is a potential molecular

predictive biomarker for ICIs response, implying that

neoantigens generated by tumor cells can be effectively

recognized by the immune system (McGrail et al., 2021).

However, using TMB as a predictive biomarker to select

patients who can respond to ICIs therapy remains

unsatisfactory (Addeo et al., 2019). The risk difference

stratified by the prognostic biomarkers obtained from our

model may explain the imperfect forecasting of TMB. A

higher TMB means that there is a greater possibility

producing tumor-associated neoantigens that can be

effectively recognized by the immune system and thus can

be utilized to predict the effects of immunotherapy. From the

distribution of TMB and immune cells infiltration between

high- and low-risk groups, patients from the intersection of

low-risk and high-TMB groups might produce more effective

tumor-associated neoantigens, which could be identified by

cytotoxic T lymphocyte and led to more CD8+T cells

infiltration, while patients from the intersection of high-

risk and low-TMB groups might not produce enough

tumor-associated neoantigens, which finally resulted in

lower CD8+T cells infiltration. Prognostic analysis of the

four combinations (high-risk and high-TMB, high-risk and

low-TMB, low-risk and high-TMB, low-risk and low-TMB)

confirmed this deduction, the patients from the intersection of

low-risk and high-TMB groups had the best prognosis and the

patients from the intersection of high-risk and the low-TMB

groups had the worst prognosis. Hence, in theory, patients

from the intersection of low-risk and high-TMB groups are

more likely to sensitive response to and benefit from ICIs

therapy.

Despite the promising results, our risk model demonstrates

its potential value in precision medicine, the current study still

exists some shortcomings. Firstly, the prognosis of patients is

closely related to the TME. Considering the heterogeneity of the

TME, constructing a prognostic risk model with only one kind of

signature molecules may limit the prediction ability of the

prognostic risk model. Secondly, the regulation of tumor

progression by these eight genes requires experimental

investigation. Thirdly, the samples for the construction of the

prognostic risk model gathered from retrospective studies,

whether the conclusion can guide the clinic still needs a large

number of multi-center clinical samples for further discussion

and verification.

Conclusion

In conclusion, the prognostic risk model constructed by

M-MDSCs-related genes shows good predictive ability in the

prognosis of LUAD patients. The risk stratification of patients by

prognostic biomarkers demonstrates the degree of risk is closely

related to immune status. Theoretically, the patients have the

characteristics of both low-risk and high-TMB are not only more

sensitive response to but also more likely to benefit from ICIs

treatment.
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