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Background: Ferroptosis is an iron-dependent cell death mode and closely linked to
various cancers, including skin cutaneous melanoma (SKCM). Although attempts
have been made to construct ferroptosis-related gene (FRG) signatures for
predicting the prognosis of SKCM, the prognostic impact of ferroptosis-related
genetic mutations in SKCM remains lacking. This study aims to develop a
prediction model to explain the relationship between ferroptosis-related genetic
mutations and clinical outcomes of SKCM patients and to explore the potential value
of ferroptosis in SKCM treatment.

Methods: FRGswhich significantly correlatedwith the prognosis of SKCMwere firstly
screened based on their single-nucleotide variant (SNV) status by univariate Cox
regression analysis. Subsequently, the least absolute shrinkage and selection
operator (LASSO) and Cox regressions were performed to construct a new
ferroptosis-related genetic mutation risk (FerrGR) model for predicting the
prognosis of SKCM. We then illustrate the survival and receiver operating
characteristic (ROC) curves to evaluate the predictive power of the FerrGR
model. Moreover, independent prognostic factors, genomic and clinical
characteristics, immunotherapy, immune infiltration, and sensitive drugs were
compared between high—and low—FerrGR groups.

Results: The FerrGR model was developed with a good performance on survival and
ROC analysis. It was a robust independent prognostic indicator and followed a
nomogram constructed to predict prognostic outcomes for SKCM patients. Besides,
FerrGR combined with tumor mutational burden (TMB) or MSI (microsatellite
instability) was considered as a combined biomarker for immunotherapy
response. The high FerrGR group patients were associated with an inhibitory
immune microenvironment. Furthermore, potential drugs target to high FerrGR
samples were predicted.
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Conclusion: The FerrGRmodel is valuable to predict prognosis and immunotherapy in
SKCM patients. It offers a novel therapeutic option for SKCM.
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Introduction

Skin cutaneous melanoma (SKCM), which is the most aggressive
skin cancer, takes up for more than 75% mortality rate of skin-related
cancers. Although patients with localized and regional cutaneous
melanoma have a 5-year relative survival of 98% and 64%
respectively. Once metastasized through the body, the 5-years
survival rate falls to 23% (Rebecca et al., 2020). Generally, surgical
resection is considered the first choice for patients with early-stage
disease. Moreover, some advanced melanoma is insensitive to
radiotherapy and chemotherapy as for its high aggressiveness (Ping
et al., 2022). Therefore, several therapeutic agents including kinase
inhibitors and immune checkpoint inhibitors (ICIs) were developed
(Leonardi et al., 2018; Leonardi et al., 2020). Nowadays,
Immunotherapy and targeted therapy have shown promising
results in clinical trials and become the backbone of systemic
treatment (Pelster and Amaria, 2019; Ribas et al., 2019). Despite
the rapid development of these therapeutic approaches, limitations
emerged since SKCM is heterogeneous cancer. Patients with the same
stage and treatments may have a different prognosis and treatment
response (Ackerman et al., 2014; Hassel et al., 2016; Simeone et al.,
2017). Therefore, it is crucial to identify a prognostic predictive
biomarker to inform clinical prognosis and treatment response.

Ferroptosis which was discovered in recent years is a novel form of
programmed cell death and is characterized by a large amount of iron
accumulation and lipid peroxidation (Li et al., 2020). It differs from
other forms of cell death such as apoptosis, pyroptosis, necroptosis,
and autophagy in morphology, biochemistry, and genetics (Gao et al.,
2016). The main mechanism of ferroptosis is phospholipid
peroxidation, which relies on the transition metal iron, reactive
oxygen species (ROS), and phospholipids. In addition, nutrients,
intra/intercellular signaling, and environmental stresses contribute
to ferroptosis by regulating cellular metabolism and ROS levels
(Jiang et al., 2021). Increasing evidence has indicated that
ferroptosis was closely associated with the tumorigenesis and
progression of cancers (Li et al., 2020). Many tumor suppressors
show susceptibility to ferroptosis. Hence, regulating the antitumor
activity of these tumor suppressors could be explored as an anticancer
therapy (Jiang et al., 2021). Furthermore, Erastin, Sulfasalazine,
Sorafenib, and other small molecule ferroptosis inducers used in
the clinical treatment of cancer showed promising outcomes of
anti-tumor effect (Liang et al., 2019; Xu G et al., 2021). Recent
studies investigated that the differentiation status of melanoma
cells was correlated with the susceptibility to ferroptosis.
Ferroptosis inducers could decrease the number of dedifferentiated
melanoma cells and prevent their immunosuppressive actions
(Rebecca et al., 2020; Ping et al., 2022) (Gagliardi et al., 2020; Talty
and Bosenberg, 2022). Apart from ferroptosis inducers, some miRNAs
and genes associated with ferroptosis are involved in the development
of SKCM. A previous study reported that miR-137 acts as a negative
regulator of ferroptosis by directly targeting glutamine transporter

SLC1A5 in melanoma cells (Luo et al., 2018). Additionally, miR-9
suppressed Erastin- and RSL3-induced ferroptosis by targeting
glutamic-oxaloacetic transaminase GOT1 in melanoma cells (Zhang
et al., 2018). Inhibiting mitochondrial complex I induced
autophagosome formation, mitophagy, a cytosolic ROS increase
and ultimately lead to necroptosis/ferroptosis in melanoma cells
(Basit et al., 2017). Besides, evidence suggested that GPX4,
VDAC2/3, NEDD4, AKRs, and SLC7A11 are involved in the
resistance to ferroptosis in melanoma (Talty and Bosenberg, 2022).
Ferroptosis has been a new hope for SKCM therapeutics. Nevertheless,
the roles of ferroptosis-related genes in prognostic prediction and
tumor microenvironment (TME) remain unclear.

Recent studies have consistently revealed biomarkers such as
tumor mutation burden (TMB), neoantigen load (NAL),
programmed cell-death receptor 1 ligand (PD-L1) expression, and
lactate dehydrogenase (LDH) to predict therapeutic benefit in SKCM
(Jiang J et al., 2020). Unfortunately, there still existed several
limitations to their clinical application, including the undefined
cut-off value, intra/intratumor heterogeneity, unsatisfactory
predictive power, and relatively high cost (Jiang J et al., 2020; Bai
et al., 2020). This highlights more effective and clinically actionable
biomarkers are required to be identified.

Genetic mutations are heritable changes in the nucleotide
sequence of DNA that resulted from both inherited and
environmental factors. The mutator phenotype hypothesis suggests
that the capacity to divide, invade, and metastasize of cancer cells
results from genetic mutations that maintain the stability of genes in
normal cells. Mutations in genetic stability genes initiate mutations by
causing mutations in other genes that govern genetic stability. Next,
some of the resulting mutated cells expand and achieve clonal
dominance (Loeb et al., 2003). Notably, targeted therapy based on
the specific genetic background has made a great progress. For
example, BRAF mutations were discovered in nearly half of
metastatic SKCM. Patients with BRAF mutations showed improved
progression-free survival by treatment with two BRAF inhibitors
vemurafenib and dabrafenib (Hauschild et al., 2012; Jin et al.,
2019). However, the mutations in cancers affect drug sensitivity
and drive drug resistance. Therefore, the outcomes of targeted
therapy are largely dependent upon the mutation profile of tumors
in patients.

In this study, we performed comprehensive analysis utilizing data
downloaded from TCGA and GEO databases, along with FRGs identified
in previous studies to determine potential ferroptosis-related prognostic
genes of SKCM in accordance with SNVmutational status. Subsequently,
we developed and evaluated a ferroptosis-related genetic mutation risk
(FerrGR) model for predicting prognosis and assessing multiple roles of
ferroptosis-related genetic mutations in the TME of SKCM. In addition,
an integrated prognostic nomogram was established by combining the
risk model and clinicopathological features to ameliorate the prognostic
assessment of SKCM patients. We also characterized the distinctive
immune landscape and genetic and epigenetic signature associated
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with the FerrGR model. Besides, potential drugs were predicted in the
light of the FerrGR score. Overall, the FerrGR model might provide an
effective prediction tool and help guide clinical decisions on therapy
for SKCM.

Materials and methods

Data collection

All datasets used in this study were publicly available. RNA-seq
transcriptome data, somatic mutations, SNVs, copy number variations
(CNVs), methylation, clinical characteristics, and survival information
were downloaded from The Cancer Genome Atlas (TCGA) database
(http://www.cgga.org.cn/) and the Gene-Expression Omnibus (GEO)
database (GSE91061). TMB data of Pan-Cancer was received from the
GDC database. 63 immune checkpoint marker genes were obtained
from the literature (Hu et al., 2020). A total of 299 ferroptosis-related
genes were obtained from the FerrDb database (http://www.zhounan.
org/ferrdb/) and a literature search (Liang et al., 2020; Zhuo et al.,
2020; Hong et al., 2021; Tang et al., 2021). Among them, the TCGA-
SKCM cohort contains 286 ferroptosis-related genes which were
selected for further analysis (Supplementary Table S1).

Identification of the prognostic FRGs

SNVmutations of FRGs in the TCGA-SKCMcohort were counted by
the “maftools” R package. The heatmap of FRGs was drawn by the
“ComplexHeatmap”Rpackage. Tumor patients in TCGA-SKCMcohorts
were classified as themutation and the wild-type based on the presence or
absence of SNV mutations in FRGs. Thereafter, the prognostic value of
FRGs was determined by univariate Cox regression analysis using the R
package “survival” where p < 0.1 was considered statistically significant.
“Forestplot” R package was used to plot the forest map of prognostic
FRGs. “ggpubr” R package was used to plot the sample proportion pie
chart of prognostic ferroptosis related-genes mutation/wild-type samples.
“Survminer” and “Survival” R packages were used to plot the survival
curve of mutation/wild-type patients.

Establishment of a ferroptosis-related genetic
mutation risk (FerrGR) model

TCGA-SKCM mutational cohorts were divided into training and
validation cohorts with the ratio of the training: validation = 7:3. The
prognostic risk characteristics were assessed using the “glmnet” and
“survival” R package based on the LASSO method in the training
cohort. The FerrGR score was calculated according to the SNV
mutational status (SNV mutation was equivalent to 1, while wild-
type status was 0) of the key FRGs and the corresponding regression
coefficient. The computational formula was as follows:

FerrGR score � ∑ LASSO regression coefficient

× SNVmutational value of keygene 0 or 1( )

The “forestplotdrug-sensitive” R package was used to draw the
forest map of the key genes included in themodel and their coefficients
in the model.

Validation of the FerrGR model

The patients in the training cohort were divided into High—and
Low—FerrGR groups according to the optimal threshold obtained by
the “surminer” R package. Then, the SNV type and frequency of key
genes in the training cohort were counted with the package “maftools”.
In addition, the heatmap of FRGs was drawn by the package
“ComplexHeatmap”, while the survival curves of the two subgroups
were created by the package “survminer” and “survival”. Subsequently,
the package “pROC” was used to calculate and draw the ROC curve of
FerrGR, TMB, and MSI in the validation cohort.

Construction of the predictive nomogram
based on the FerrGR model

The clinical characteristics including sample type, tumor stage,
gender, the value of Clark’s level, BMI, TNM-staging, and TCGA
molecular typing in different subgroups of the FerrGR model were
calculated by the R package “ggpubr”. The FerrGR scores and the
clinical characteristics were inputted into univariate and multivariate
Cox analysis to validate whether the FerrGR score was an independent
risk factor for SKCM. After that, a nomogram was constructed by
“regplot” and “rms” packages for predicting the progression of SKCM
patients.

Multiomics characteristics analysis

The different landscape of SNVs, amplification and deletion of
FRGs between high—and low—FerrGR groups was identified by the
chi-square test. In addition, the differential expression and genomic
methylation of FRGs between subgroups were analyzed with the
“limma” package.

FerrGR model for immunotherapy

Data of SNV mutations from the dataset GSE90161 was scored by
the FerrGR model, and then the patients were divided into high - and
low - FerrGR groups based on the median value. After grouped, the
heatmap of immune checkpoint genes and the survival curve of
different groups were performed by “complexheatmap”,
“survminer” and “survival” R packages, respectively. Besides,
immunotherapeutic response PD (progressive disease)/SD (stable
disease) and CR (complete response)/PR (partial response) was
assessed by “ggstatsplot” package.

Survival analysis on basis of the FerrGR model
combined with TMB or MSI

We got the MSI status of patients from the TCGA-SKCM dataset
by the “PreMSIm” package. Subsequently, patients were grouped into
high—and low—MSI groups based on the median value. In
combination with the FerrGR model, the patients were split into
three groups: the first group’s scores in MSI and FerrGR model were
both high, the second group’s scores were both low, and the third
group’s scores were single high. The prognostic survival curve of these
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three groups was then analyzed and plotted by package “survminer”
and “survival”. The prognostic survival analysis by the FerrGR model
combined with TMB was done in the same way.

Tumor microenvironment analysis

Here, we used package “estimate” to calculate stromal and
immune scores for predicting the level of infiltrating stromal and
immune cells, and the tumor purity was also inferred in TCGA-SKCM
cohort patients. The differences in the clinical characteristics, FerrGR
score, stromal and immune scores, and tumor purity between
high—and low—FerrGR groups were then statistically analyzed,
where the t-test and chi-square test were used for continuous and
categorical variables respectively. Subsequently, the infiltration of
immune cells in the TCGA-SKCM cohort was estimated using the
cibersort algorithm. The R package “ggpubr” was performed to count
the differential expression of immune checkpoints between the two
subgroups. The gene set variation analysis (GSVA) was conducted to
calculate the scores of enrichments in immune pathways by complying
with the “GSEABase” and “GSVA” R package.

Potential sensitive drug prediction

The drug sensitive information and corresponding expression
were downloaded from the PRISM Repurposing 19Q4 dataset
(https://depmap.org/portal/download/all/) and Cancer Therapeutics
Response Portal v2.1 (https://ocg.cancer.gov/programs/ctd2/data-
portal/#). In addition, SNVs and samples’ information of CCLE
cell lines was obtained (https://depmap.org/portal/download/all/).
Next, SKCM cell lines were divided into high—and low—FerrGR
groups by calculated FerrGR score. Drug sensitivity of cell lines was
qualified as an AUC value, and a lower AUC value suggested higher
drug sensitivity. We then used the package “corrr” for exploring the
correlations between the FerrGR score and AUC/IC50.

Statistical analysis

The R software (version: 4. 0. 2) was utilized to conduct all the
statistical analyses in this article. All p values of statistical data were
based on two-sided statistical tests, and data with p < 0.05 was
considered to be statistically significant (except for the univariate
Cox proportional hazards regression model, where p < 0.1 was
considered to be statistically significant).

Results

Identification of prognosis-related FRGs in
the TCGA-SKCM cohort

The flowchart of the present research is shown in Supplementary
Figure S1. A total of 463 SKCM patients from the TCGA-SKCM
cohort were included in this study. The detailed clinical characteristics
of these patients were summarized (Supplementary Table S2). We
firstly identified the SNV landscape of 286 FRGs in SKCM patients.
SNVs were discovered inmost FRGs and the 30 top-ranked FRGs were

present in the heatmap of Figure 1A. Of note, the top 2 highest ranked
FGRs were NRAS and CFTR, which had 29 and 19 percent SNV
mutation regions respectively. Subsequently, 24 prognosis-related
genes were screened from all 286 FRGs by the univariate Cox
regression analysis of overall survival (OS) (p < 0.1), shown in the
forest plot (Figure 1B). According to the value of hazard ratio (HR),
ATP6V1G2, SRC, IL6, CEBPG, and NGB were considered the genes
with the highest risk. To examine the prognostic significance of these
screened risk FRGs, DNA Damage Inducible Transcript 3 (DDIT3),
one of the risk FRGs, was performed as an example. 3.37% of SKCM
patients were observed to carry DDIT3 mutations and these patients
significantly had worse OS than patients without DDIT3 mutations by
Kaplan-Meier survival analysis (Figures 1C,D).

Construction and validation of the
ferroptosis-related genetic mutation risk
(FerrGR) model

To prevent the risk of over-fitting, the LASSO Cox regression
analysis was performed to establish a prognostic prediction model
based on whether patients carrying SNV mutations in the above
screened 24 FRGs or not. As a result, 19 key genes (TP63,
CDKN2A, MTOR, EGFR, BRD4, PLIN4, GCLC, HELLS, MAPK9,
FH, PHKG2, DDIT3, SLC11A2, SRC, CISD2, PLIN2, IL6, HSD17B11,
ATP6V1G2) were filtered out by the minimum value of lambda (λ)
(Supplementary Figure S2). The coefficients of these genes were shown
in Figure 2A. The risk score was calculated with the following formula:
0.295704560557983 × SNV mutational value of TP63 +
(−0.457905201754129) × SNV mutational value of CDKN2A +
(−0.440669922200648) × SNV mutational value of MTOR +
0.370753348528944 × SNV mutational value of EGFR +
(−0.655423174928644) × SNV mutational value of BRD4 +
(−0.257562121098952) × SNV mutational value of PLIN4 +
0.790692660435278 × SNV mutational value of GCLC +
0.485910362202744 × SNV mutational value of HELLS +
0.70467787865497 × SNV mutational value of MAPK9 +
0.851337406732927 × SNV mutational value of FH +
0.947077530588054 × SNV mutational value of PHKG2 +
1.45060826783863 × SNV mutational value of DDIT3 +
2.28402264491982 × SNV mutational value of SLC11A2 +
2.06527868435253 × SNV mutational value of SRC +
1.55256390491241 × SNV mutational value of CISD2 +
5.80583718370437 × SNV mutational value of PLIN2 +
2.7431230119215 × SNV mutational value of IL6 +
1.60058988692493 × SNV mutational value of HSD17B11 +
0.0133531074086934 × SNV mutational value of ATP6V1G2.

The patients in the training cohort were classified into the high
ferroptosis-related genetic mutation risk (high FerrGR) group and low
ferroptosis-related genetic mutation risk (low FerrGR) group by the
median risk score as a cut-off value, which was calculated as
0.2467727. The SNV landscape of 19 key FRGs in the TCGA
training cohort was further figured out based on the two subgroups
(Figure 2B). The Kaplan-Meier analysis indicated that patients in the
high FerrGR group had significantly worse OS than those in the low
FerrGR group (Figure 2C).

To test the reliability of the FerrGRmodel, the same formula as the
training cohort was performed to calculate risk scores for the patients
in the validation cohort. The patients were then allocated into the high
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FerrGR group and low FerrGR group by the same cut-off value. The
SNV landscape of 19 key FRGs for patients in the validation cohort
was shown in Figure 2D. Similar to the training cohort, The high
FerrGR group exhibited a poorer survival outcome when compared to
the low FerrGR group (Figure 2E).

Subsequently, we used the ROC curve to evaluate the prediction
efficacy of the model by calculating the areas under the curve (AUC).
The AUCs of the FerrGR model for one-year survival time were
0.643 in the training cohort and 0.721 in the validation cohort

respectively; Besides, the FerrGR model showed the best prognostic
power compared with TMB and MSI (Figures 2F,G).

Correlations between the FerrGR score and
clinicopathological factors

To further explore the roles of the FerrGR model in the SKCM
development, the correlations between the FerrGR score and

FIGURE 1
Identification of prognosis-related key FRGs in SKCM. (A)Heatmap to show the SNV landscape of the top 30 FGRswith themost frequent SNVmutations
in the TCGA-SKCM cohort. (B) Forest plots showing the results of the univariate Cox regression analysis between FGRs and prognosis. (C) Pie charts depicting
the proportions of wild-type and DDIT3-mutant patients. (D) Kaplan-Meier survival analysis of the wild-type and DDIT3-mutant patients.
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clinicopathological factors were studied. Our results showed that the
FerrGR score was independent with sample type (p = 0.19, Figure 3A),
gender (p = 0.66, Figure 3C), T stage (p = 0.13, Figure 3E) and N stage
(p = 0.93, Figure 3F). Further, there may be some correlation between
the FerrGR score and tumor stage (p = 0.082, Figure 3B). The FerrGR
score in stage II patients was higher than in other stages. Furthermore,
The FerrGR score in stageM0 patients was higher than in theM1 stage
(p = 0.065, Figure 3G). In particular, the FerrGR score was significantly
among the values of Clark levels (p = 0.012, Figure 3D), and the
signature was associated with TCGA subtypes (p = .017, Figure 3H).
The FerrGR score in Clark level III patients was the highest. Besides,
patients with NF1 mutations have a higher score than patients in other
TCGA subtypes.

Independent prognostic factors analysis
and nomogram prediction model
construction

To evaluate whether the risk score was a suitable independent
prognostic indicator, univariate and multivariate Cox regression
analysis were performed among the clinical characteristics and risk
scores in the TCGA cohort. The univariate Univariate Cox regression
revealed that clinical parameters, including primary tumor, T4 stage,
N2 stage, N3 stage, NF1mutated subtype, RASmutated subtype, triple
wild type, low FerrGR score, age ≥ 60, Breslow depth value >4.5,

Breslow depth value = (3–4.5) were significantly associated with OS
(Figure 4A). Through multivariate Cox regression, N2 stage, N3 stage,
low FerrGR score, age ≥ 60, and Breslow depth value >4.5 were
independent predictors of SKCM (Figure 4B).

What’s more, a nomogram was created based on the values of
multiple variables to predict the probability of specific clinical
outcomes or events. We constructed the nomogram with the
following factors: Breslow depth value, age, FerrGR score, and N
stage. In the nomogram, columnar height represents the
distribution and number of SKCM patients (Figure 4C). Testing
of the proportional hazards hypothesis demonstrated the
individual and global variables satisfied the requirement of the
hypothesis (Figure 4D). Additionally, the calibration curve for the
1-, 2-, and 3-year survival rates displayed good agreement between
the prediction and the investigation (Figure 4E).

Mutation landscape of FRGs between the high
FerrGR group and low FerrGR group

Further, the SNV mutation profiles of FRGs in 284 SKCM
patients were utilized to explore the different landscape of SNVs in
high—and low—FerrRG group patients. Among these patients,
60 belonged to the high FerrRG group and 100% had SNV
alterations, while 224 were classified into the low FerrRG group
and 136 (60.71%) carried SNV mutations in FRGs. We then

FIGURE 2
Construction and prognostic analysis of the ferroptosis-related genetic mutation risk (FerrGR)model in the training cohort and validation cohort. (A)
Lasso coefficient spectrum of 19 key FRGs in the FerrGRmodel (B,D) SNV heatmap and clinicopathologic features of 19 key FRGs in the (B) training cohort and
(D) validation cohort. (C,E) Kaplan-Meier curves of the FerrGR model for SKCM patients with different risk groups in the (C) training cohort and (D) validation
cohort. (F,G) ROC analysis of the FerrGR model compared with TMB and MSI.
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collected SNV mutation information in each sample of both groups
and presented the top 30 FRGs in Figures 5A,B, respectively. We
revealed TP63 (55%), NRAS (42%), CFTR (27%), EGFR (22%), and
FLT3 (17%) were the top 5 FRGs with highest mutation frequencies
in the high FerrGR group, and NRAS (26%), CFTR (17%),
CDKN2A (17%), FLT3 (8%) and TP63 (7%) were top 5 in the
low FerrGR group. Notably, missense mutation was the largest
fraction of mutation types in both groups.

Next, the differential expression of the top 30 FRGs between the
high FerrGR group and the low FerrGR group was exhibited
(Figure 5C). We found that CASP8, ATP6V1G1, RRM2, ENPP2,
and TFAP2C were the top five differentially expressed genes. CNV
analysis then showed RELA and NOX4 were the two FRGs with
significantly different CNVs (p < 0.1) between high - and Low -
FerrGR groups. RELA and NOX4 in the high FerrGR group possessed
more widespread CNV deletion (Figures 5D,E). However, there was
no significant difference in the CNV status of other FRGs between the
two groups (Supplementary Table S3). DNA methylation is an
important consideration in the pathogenesis of cancer (McMahon
et al., 2017). Therefore, the heat map summarized the 30 most
significant FRGs-associated DNA methylation sites between two
groups (Figure 5F).

FerrGR-based prognostic stratification of
SKCM patients with immunotherapy

Immunotherapy is an innovative treatment strategy for cancers. In
particular, immune checkpoint blockade (ICB) therapy has made great
progress in immunotherapy for cancer patients (Havel et al., 2019). Hence,
we firstly determined the differences in the expression levels of 61 immune
checkpoints between the high FerrGR group and low FerrGR group of the
GSE91061 dataset (Figure 6A). We then revealed that there was no
significant difference in patient OS between these two groups
(Figure 6B). Subsequently, the response to immunotherapy was studied
and found that no significant difference in immunotherapy responses
between the high FerrGR group (n = 18) the and low FerrGR group (n =
80), implying that the FerrGR model may not be a direct biomarker of
immunotherapy (Figure 6C). Thus, we further investigated the joint utility
of FerrGR combined with TMB or MSI for patient stratification and
prediction of clinical outcomes. The FerrGR-high/TMB-high and FerrGR-
high/MSI-high (both high) subgroups had a remarkably poorer survival
outcome compared with the subgroups where both were low or single was
high (Figures 6D,E). These results demonstrated that a combination of
FerrGR and TMB/MSI served as a combined biomarker with better
predictive value for favorable ICIs benefit.

FIGURE 3
Relationships between the FerrGR score and clinicopathological features. The boxplots showed whether the FerrGR score was correlated with
pathological features in SKCM patients, including (A) sample type, (B) tumor stage, (C) gender, (D)Clark level, (E) T stage, (F)N stage, (G)M stage, and (H) TCGA
subtype.
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Identification of the relationship between the
FerrGR model and tumor immune
microenvironment

To better study how the FerrGR model and the immune
microenvironment interact, we firstly evaluated the different
distribution of clinicopathological features between two FerrGR group
patients of the TCGA cohort, and revealed that patients in the high FerrGR
group had a lower immune score, higher tumor grade, and higher tumor
purity than in low FerrGR group (Figure 7A). The distribution patterns of
22 immune cells between two groups were next calculated by the
CIBERSORT algorithm. The comprehensive comparisons with the
FerrGR score showed that B cells naive and T cells regulatory (Tregs)
were enriched in the high FerrGR group obviously, while the patients in the
low FerrGR group had a higher level of T cells CD4 memory activated
(Figure 7B). It is known that immune checkpoint genes usually make an
immunosuppressive effect in tumorigenesis and immune evasion.
Therefore, the expression levels of immune checkpoint genes in
high—and low—FerrGR groups were compared, and the results
indicated that the expression levels of common immune checkpoint

genes, including CD274 (PD-L1), CD80, CD86 and PDCD1LG2 (PD-
L2), in the low FerrGR groupwere all higher than those in the high FerrGR
group (Figures 7C–F). However, there was no remarkable differential
expression of CTLA4 between these two groups (Figure 7G). Subsequently,
GSEA was performed to determine the biological functions and signal
transduction pathway associated with the FerrGR score. The results
showed that the FerrGR score was negatively correlated with
inflammatory response, interferon-alpha response, interferon-gamma
response, antigen processing and presentation, and the JAK-STAT
signaling pathway, respectively (Figure 7H). These findings revealed
that SKCM patients with high FerrGR scores prefer to form a
suppressive immune microenvironment by increasing suppressive
immune infiltration cells and upregulating immune checkpoint genes.

Potential sensitive drugs for SKCM according
to the FerrGR model

According to the data on drug sensitivity and expression,
1,311 and 481 potential sensitive compounds were figured out from

FIGURE 4
The connection between FerrGR score and conventional clinical characteristics. (A,B)Univariate andmultivariate regression analysis of FerrGR score and
clinical characteristics in prognostic value showed FerrGR score had excellent prognostic independence, (C) Prognostic nomogram for SKCM patients with
factors, including Breslow depth value, age, FerrGR score and N stage, (D) Test for the proportional hazards hypothesis, (E) Calibration maps for predicting
patient survival at 1, 2, and 3 years. The x-axis and y-axis represent the expected and actual survival rates of the nomogram.
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the PRISM and CTRP database respectively, and 152 overlapped
compounds were filtered out (Figure 8A). It was accepted that
values of AUC and IC50 represented the sensitivity of the cells to
drugs and were negatively correlated with the sensitivity. We then
identified the top differential AUC value and IC50 value between
high—and low—FerrGR group samples, and determined a threshold
to select potential compounds. The Spearman’s correlation >0.2 was
set as the threshold. The AUC values of pevonedistat, crystal-violet,
bardoxolone-methyl, BNTX from the PRISM database, and cerulenin,
HBX-41108 from the CTRP database exhibited significant correlations
with the FerrGR score. Apart from BNTX showing a positive
correlation with the FerrGR score, the other five selected
compounds had negative correlations (Figure 8B). Besides,
differential distribution of the AUC value of six potential
compounds in high—and low—FerrGR groups was depicted
(Figure 8C, D). Similarly, pevonedistat, crystal-violet, bardoxolone-
methyl, and BNTX were identified from the PRISM database based on
their IC50 values, and no potential compounds were found in the
CTRP database. BNTX had a positive correlation with the FerrGR
score, while pevonedistat, crystal-violet, and bardoxolone-methyl had
negative correlations (Figure 8E). The differential distribution of the

IC50 value of these four potential compounds in high—and
low—FerrGR groups was exhibited in Figure 8F. Therefore, those
compounds may be novel options for SKCM treatments in the future.

Discussion

SKCM is highly heterogeneous in the genetic, epigenetic, and gene
expression with highmetastases and death threats (Grzywa et al., 2017;
Hendrix et al., 2017). Understanding the rapid progression of this
heterogeneity makes possible the molecular classification and
individualized treatment of SKCM. Ferroptosis has gained the
interest of numerous researchers due to its unique cell death
mechanism and its potential therapeutic prospects in cancers (Jiang
et al., 2021). Current studies have constructed several prognostic
prediction models for SKCM based on the expression of FRGs.
Zeng et al. developed a prognostic model depending on the
expression of two FRGs (ALOX5, CHAC1), and differences in the
underlying diseases of SKCM did not effect on the expression features
of these two genes (Zeng et al., 2021). Additionally, studies showed
five-, six-, eight-, nine- and ten- FRG predictive models according to

FIGURE 5
Analysis of ferroptosis-related genomic variation in the high FerrRG group and low FerrRG group (A,B)waterfall plots represent mutation information of
FRGs in each sample of the high FerrGR group and low FerrGR group SKCM patients, (C)Heatmap of top 30 differentially expression FRGs between the high-
and the low-FerrGR groups, (D,E) The CNV mutation proportion of (D) RELA, and (E) NOX4 between groups, Amp: Gene amplification, Del: gene deletion (F)
Heatmap showed the methylation sites of FRGs with top 30 significantly different methylation levels between groups.
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the RNA sequencing data have been constructed (Xu Z et al., 2021; Xu
and Chen, 2021; Chen et al., 2022; Ping et al., 2022; Yue et al., 2022).
These models forecasted the melanoma patients’ prognosis and exhibited
the close relationship between immune function and FRGs. However, the
role of ferroptosis in SKCM patients, especially the mechanism of the
association and interaction between ferroptosis-related genetic mutations
and the clinical outcomes is still unclear. After performing a series of
bioinformatics analyses, we found that SNVs of FRGs are an indicator of
prognosis and TME status in SKCM patients, which may be of great
significance for future research. Therefore, based on the SNV landscape,
we systematically identified FRGs with prognostic ability to establish a
robust and accurate ferroptosis-associated genetic mutation risk model to
predict prognosis in SKCM patients and illustrate the relationship
between ferroptosis-related SNVs and the TME.

In this study, the TCGA-SKCM cohort was used to perform
univariate Cox regression combined with the previously reported and
identified 24 FRGs that were correlated with SKCM prognosis.
Subsequently, the LASSO algorithm was used to reduce dimensionality
and construct a 19-gene signature prognostic model (FerrGRmodel). We
verified the effectiveness of this model in the training cohort and the
validation cohort. The FerrGR score of each sample is calculated on basis
of whether the sample has SNV mutations in the 19 key genes or not.
Then, patients in the training cohort and validation cohort were classified
into the high FerrGR group and the low FerrGR group. The results
showed that it is an independent, effective and robust prognostic model in
both cohorts where the prognosis was worse in the high FerrGR group. In
addition, aiming at the characteristics of high heterogeneity in SKCM
patients, we established and validated a nomogrambased on FerrGR score
and clinicopathological indications that can predict 1-, 2-, and 3-year OS
for individual SKCM patients specifically.

Nowadays, high-throughput sequencing technologies allow us to
detect numerous genes which are significantly related to melanoma

prognosis through comprehensive analyses and establish multiple
biomarkers. Therefore, recent studies explored novel favorable
prognostic genes, such as aging-related genes, metabolic genes and
pyroptosis-related genes, to predict prognosis and immune response
for SKCM (Ju et al., 2021; Guo et al., 2022; Zeng et al., 2022). However,
most of these studies did not systematic and in-depth analysis of the
genetic mutations of these prognostic genes. SNVs are somatic point
mutations found in cancer tissues and enriched in cancer driver genes
and cellular pathways which are essential for tumorigenesis.
Tumorigenesis is an evolutionary process of accumulation of
somatic mutations (driver mutations), which promotes a selective
growth advantage for cancer cells (He et al., 2014). Several pathogenic
CNVs in special genes have been reported in the beginning and
development of breast cancer subtypes, including BRCA1, MTUS1,
and hTERT, suggesting that CNVs also play a unique role in breast
cancer (Frank et al., 2007; Silva et al., 2014). Here, we found that the
proportion of SNV mutations in ferroptosis-related genes associated
with SKCM was 82.17% (235/286), among which the SNV mutation
frequency of NRAS (20%), CFTR (19%), and TP63 (18%) ranked the
top three. SNVmutations in FGRs might play an important role in the
development and progression of SKCM. Meanwhile, the SNV
mutation frequency of FGRs in the high FerrGR group was higher
than in the low FerrGR group, especially TP63 and NRAS.
TP63 mutations, which are present in the majority of cancers, are
associated with poorer clinical outcomes in SKCM (Matin et al., 2013;
Monti et al., 2017), which is consistent with our findings. The
relationship between TP53 and NRAS mutational status and SKCM
survival was substantially more pronounced. NRAS mutations are
discovered in 15% of SKCM cases and more likely to have an
aggressive tumor (Kelleher and McArthur, 2012; Muñoz-Couselo
et al., 2017). In addition to SNV mutations, CNV mutations were
also assessed in this study. However, the notable differential CNV

FIGURE 6
Evaluationof immunotherapy in SKCMwith FerrGRmodel. (A)Heatmapdisplaying the expression levels of 61 immunecheckpoint genes in thehigh FerrGRgroup
and lowFerrGRgroup. (B)Kaplan-Meier curves of the high-FerrGRand low-FerrGRgrouppatients in theGSE91061 dataset. (C)Theproportionof immune response to
immunotherapy of high- and low-FerrGR groups in the TCGA cohort. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. (D)
Kaplan - Meier survival analysis of OS among patients within each of the three indicated subgroups (Both high: FerrGR-high/TMB -high; Both low: FerrGR-low/
TMB-low; Single high: FerrGR-high/TMB-low or FerrGR-low/TMB-high). (E) Kaplan-Meier survival analysis of OS among patients within each of the three indicated
subgroups (Both high: FerrGR-high/MSI -high; Both low: FerrGR-low/MSI-low; Single high: FerrGR-high or MSI-high).
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variants between high—and low—FerrGR groups were only
discovered in RELA and NOX4. It is consistent with literature
reports that SKCM mainly had SNV mutations but rarely CNVs
(Liu et al., 2020). We also discovered that two FerrGR groups have
their unique methylation levels. Overall, these results indicated that
there were differences in expression and variation of FRGs between the
two FerrGR groups. Besides, SNVs are likely to be the reason why the
FRGs are ferroptosis resistance genes.

ICIs, such as anti-PD-1 and anti-PD-L1 antibodies, exert their
effects by releasing the braking effect of the anti-tumor response
immune system. Despite the breakthrough in ICIs therapy, it did not
work as well in all patients. Therefore, there is a strong interest in
finding biomarkers that can identify good responses to ICIs treatment.
Several studies showed the risk of TMB and neoepitopes had a close
correlation with immunotherapy. High TMB contributed to low
survival outcomes and lower SKCM immune infiltrates (Jiang F
et al., 2020). In addition, tumors having a high mutation load tend
to respond to PD-1 immunotherapy more quickly and have a better

prognosis (Samstein et al., 2019). There are still some patients with
high TMB who do not respond and vice versa. The important reasons
are that TMB only focuses on the number of mutations, and the
current TMB calculation method gives the same weight to each gene
mutation, which is not precise enough to define the overall pattern of
anti-tumor immune response (Sha et al., 2020). MSI is often caused by
a mismatch repair deficiency (MMR), and patients with MMR have
extremely high rates of TMB (Nakayama et al., 1983). These tumors
also have a significant response to immunotherapy (Le et al., 2015; Le
et al., 2017). However, MMR is uncommon in melanoma (Tomlinson
et al., 1996; Richetta et al., 1997; Birindelli et al., 2000). Unfortunately,
the model in this study cannot be used as an independent prognostic
factor for immunotherapy. Therefore, we explored the effect of the
FerrGR model in combination with TMB or MSI for patient
stratification and prediction of clinical outcomes, and found that
patients with high-FerrGR/high-TMB, and patients with high-
FerrGR/high-MSI, had the worst outcomes. Although other
literature suggests that SKCM patients with high TMB or high MSI

FIGURE 7
Tumour immunemicroenvironment analysis of FerrGR model. (A) The heatmap showed the correlations between FerrGR score and clinicopathological
features. (B) Boxplot exhibited the distribution patterns of immune cell infiltration between two FerrGR groups. (C–G) violin plots visualizing the expression of
immune checkpoint genes in the high—and Low—FerrGR groups, (C)CD80, (D)CD86, (E)CD274, (F) PDCD1LG2, (G)CTLA4 (H)Gene set enrichment analysis
(GSEA) results depicting enrichment of immune-related pathways based on FerrGR score.
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have a better prognosis (Sha et al., 2020), our results showed that these
patients had a worse prognosis when the FerrGR score was high at the
same time. Therefore, we hypothesized that the FerrGR score was a co-
predictor with TMB and MSI, and that the FerrGR model could
enhance the predictive ability of TMB and MSI.

The TME is made up of tumor cells and non-tumor cells that play
a vital role in tumor growth and progression (Lim and South, 2014).
Immune cells and stromal cells are two major types of non-tumor
components in the TME. According to recent research, tumor
progression can be caused by imbalances between tumor
progression and the host immune response (Galon et al., 2013). Of
note, ferroptosis can promote tumor growth by driving the
polarization of macrophages in the TME (Dai et al., 2020).
Moreover, hypoxia-inducible factor (HIF) pathways are a positive
trigger for ferroptosis in clear-cell carcinoma (CCC) (Zou et al., 2019).
Based on the ESTIMATE algorithm, we analyzed the relationship
between the two groups and clinical features and assessed immune cell
infiltration in TME. Compared with the low FerrGR group, the high
FerrGR group had a higher immune score and higher tumor purity.
Generally, immune scores increased significantly with the malignant
progression of SKCM (Ning et al., 2021), while tumor purity decreased
at higher grades in our analysis. Immune cells constitute a comfortable
environment for tumor growth, suggesting that the poor prognosis of
patients in the high FerrGR group is due to the tumor
immunosuppressive environment (TIME). TIME is the
immunosuppressive part of TME, which consists of
immunosuppressive cells and immunosuppressive cytokines.

Ferroptosis-related genes with a higher frequency of SNV
mutations in the high FerrGR group may be associated with
increased infiltration of immunosuppressive cells in SKCM. Tregs
regulate innate and adaptive immune cells and maintain self-tolerance
(Sakaguchi et al., 2008). A high proportion of Tregs is associated with
tumor progression, poor survival in many solid tumors, including
SKCM (Gerber et al., 2014), and poor clinical outcomes in SKCM
patients treated with immunotherapy (Cesana et al., 2006). Here, our
studies supported that a high proportion of Tregs in the high FerrGR
group existed antitumor immune responses mediated by T cells.
Conversely, the proportion of T cells CD4 activated in the low
FerrGR group contributed more to immune response than in the
high FerrGR group, according to our findings. Interestingly, we also
found that almost all immune checkpoint genes, including PD-L1 and
PD-L2, were upregulated in the high FerrGR group. Collectively, these
results may be a sign of immune escape in the high FerrGR group
patients.

Six potential targeted drugs, including pevonedistat, crystal-violet,
bardoxolone-methyl, BNTX, cerulenin and HBX-41108, for high
FerrGR samples were predicted. Pevonedistat (MLN4924) leads to
DNA re-replication, cell cycle arrest and death via targeting the
NEDD8-activating enzyme (NAE). It has anti-tumor activity and
supports the clinical benefits observed in recent clinical trials in
SKCM patients (Wong et al., 2017; Wood et al., 2020). For
immunotherapy, the combination of pevonedistat and anti-PD-
L1therapy had a better therapeutic efficacy compared to each agent
alone. Pevonedistat attenuated T cell killing through PD-L1 induction,

FIGURE 8
Potential targeted drugs prediction on basis of the FerrGR model. (A) The Venn chart showed the number of drugs in the PRISM dataset and CTRP v
2.1 databases. (B) The correlation between the AUC value of potential drugs and the FerrGR score. (C,D) The distribution of the AUC value of each potential
drug from (C) RISM dataset and (D)CTRP v 2.1 database according to the FerrGRmodel. (E) The correlation between the IC50 value of potential drugs and the
FerrGR score. (F) The distribution of the IC50 value of each potential drug on basis of the FerrGR model.
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whereas blockade of PD-L1 successfully potentiated the sensitivity of
pevonedistat-treated glioblastoma cancer cells to T cell killing (Zhou
et al., 2019). Hence, a combination of pevonedistat with immune
checkpoint blockade treatment might be promising combinatorial
regimens. Bardoxolone methyl is a novel synthetic triterpenoid and
antioxidant inflammation modulator that activates Nrf2 and inhibits
NF-κB. It can impair tumor growth and induces radiosensitization of oral
squamous cell carcinoma cells (Hermann et al., 2021). But a further
examination of its effects in SKCM is required. Cerulenin, a fatty acid
synthase inhibitor, can retard the growth of melanoma cells and activates
caspase-dependent apoptosis (Ho et al., 2007). Moreover, the anti-tumor
immune responses of cytotoxic T cells were potentiated and ovarian
tumor growth was inhibited by treatment with cerulenin (Yoon and Lee,
2022). It indicated that cerulenin might have potential applications in
cancer immunotherapy. HBX-41108 is a partially-selective ubiquitin-
specific proteases (USPs) inhibitor that stabilizes p53 and induces
caspase 3 and PARP cleavage in cancer cells. As USPs are therapeutic
targets for tumor treatment, HBX-41108 is likely to be an effective drug
for SKCM (Pal and Donato, 2014). Therefore, the relationship between
these potential targeted drugs and SNV mutations, ferroptosis, SKCM
progression and immunotherapy needs further exploration.

Taken together, our results suggested that the FerrGRmodel based
on SNV mutations of 19 key FRGs is a reliable prognostic risk
prediction model for predicting the overall survival of SKCM
patients. This may help guide treatment strategies for SKCM to
improve clinical outcomes and provide theoretical references for
explaining the prognosis difference between patients. Nevertheless,
our study has several limitations. Firstly, there are not relatively
abundant key FRGs in the risk model, which may limit it for
clinical application. In addition, there was no significant difference
between the two FerrGR groups in the immunotherapeutic response,
thus more prospective real-world data should be used to confirm the
accuracy and applicability of this model. Besides, further validation of
this model in prospective studies of SKCM patients is needed.

Conclusion

In a word, we developed the FerrGR model for predicting the
clinical outcomes and guiding the treatment of SKCM. It might have a
contribution to distinguish immune and molecular features, stratify
SKCM patients benefiting from immunotherapy, predict patient
survival, and discover potential targeted drugs Our study provides
new insights into genetic mutations of FRGs in SKCM’s development
and progression, and offers novel ideas for advancing the treatment of
SKCM by targeting ferroptosis. However, further research on
confirming the prognostic value of the FerrGR model is required.
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